首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sphingolipid research has surged in the past two decades and has produced a wide variety of evidence supporting the role of this class of molecules in mediating cellular growth, differentiation, senescence, and apoptosis. Ceramides are a subgroup of sphingolipids (SLs) that are directly involved in the process of initiation of apoptosis. We, and others, have recently shown that ceramides are capable of the formation of protein-permeable channels in mitochondrial outer membranes under physiological conditions. These pores are indeed good candidates for the pathway of release of pro-apoptotic proteins from the mitochondrial intermembrane space (IMS) into the cytosol to initiate intrinsic apoptosis. Here, we review recent findings on the regulation of ceramide channel formation and disassembly, highlighting possible implications on the initiation of the intrinsic apoptotic pathway.  相似文献   

2.
Mitochondrial Ceramide and the Induction of Apoptosis   总被引:11,自引:0,他引:11  
In most cell types, a key event in apoptosis is the release of proapoptotic intermembrane space proteins from mitochondria to the cytoplasm. In general, it is the release of these intermembrane space proteins that is responsible for the activation of caspases and DNases that are responsible for the execution of apoptosis. The mechanism for the increased permeability of the mitochondrial outer membrane during the induction phase of apoptosis is currently unknown and highly debated. This review will focus on one such proposed mechanism, namely, the formation of ceramide channels in the mitochondrial outer membrane. Ceramides are known to play a major regulatory role in apoptosis by inducing the release of proapoptotic proteins from the mitochondria. As mitochondria are known to contain the enzymes responsible for the synthesis and hydrolysis of ceramide, there exists a mechanism for regulating the level of ceramide in mitochondria. In addition, mitochondrial ceramide levels have been shown to be elevated prior to the induction phase of apoptosis. Ceramide has been shown to form large protein permeable channels in planar phospholipid and mitochondrial outer membranes. Thus, ceramide channels are good candidates for the pathway with which proapoptotic proteins are released from mitochondria during the induction phase of apoptosis.  相似文献   

3.
Recent evidence suggests that the ability of ceramides to induce apoptosis is due to a direct action on mitochondria. Mitochondria are known to contain enzymes responsible for ceramide synthesis and hydrolysis and mitochondrial ceramide levels have been shown to be elevated prior to the mitochondrial phase of apoptosis. Ceramides have been reported to induce the release of intermembrane space proteins from mitochondria, which has been linked to their ability to form large channels in membranes. The aim of this study was to determine if the membrane concentration of ceramide required for the formation of protein permeable channels is within the range that is present in mitochondria during the induction phase of apoptosis. Only a very small percentage of the ceramide actually inserts into the mitochondrial membranes. The permeability of the mitochondrial outer membrane correlates directly with the level of ceramide in the membrane. Importantly, the concentration of ceramide at which significant channel formation occurs is consistent with the level of mitochondrial ceramide that occurs during the induction phase of apoptosis (4 pmol ceramide/nanomole phospholipid). Similar results were obtained with short- and long-chain ceramide. Ceramide channel formation is specific to mitochondrial membranes in that no channel formation occurs in the plasma membranes of erythrocytes even at concentrations 20 times higher than those required for channel formation in mitochondrial outer membranes. Thus, ceramide channels are good candidates for the pathway by which proapoptotic proteins are released from mitochondria during the induction phase of apoptosis.  相似文献   

4.
凋亡诱导期,线粒体内神经酰胺水平升高,当每纳摩尔线粒体膜磷脂内含4~6皮摩尔神经酰胺时,神经酰胺即在线粒体外膜形成稳定的跨膜通道,从而使外膜通透性增加,线粒体膜间蛋白释放,启动细胞凋亡.神经酰胺通道只能在线粒体外膜形成,它是由神经酰胺柱组成的桶装结构,神经酰胺的反式双键具有增加通道的稳定性的作用.  相似文献   

5.
Ceramide channels formed in the outer membrane of mitochondria have been proposed to be the pathways by which proapoptotic proteins are released from mitochondria during the early stages of apoptosis. We report that sphingosine also forms channels in membranes, but these differ greatly from the large oligomeric barrel-stave channels formed by ceramide. Sphingosine channels have short open lifetimes and have diameters less than 2 nm, whereas ceramide channels have long open lifetimes, enlarge in size reaching diameters in excess of 10 nm. Unlike ceramide, sphingosine forms channels in erythrocyte plasma membranes that vary in size with concentration, but with a maximum possible channel diameter of 2 nm. In isolated mitochondria, a large proportion of the added sphingosine was rapidly metabolized to ceramide in the absence of externally added fatty acids or fatty-acyl-CoAs. The ceramide synthase inhibitor, fumonisin B1 failed to prevent sphingosine metabolism to ceramide and actually increased it. However, partial inhibition of conversion to ceramide was achieved in the presence of ceramidase inhibitors, indicating that reverse ceramidase activity is at least partially responsible for sphingosine metabolism to ceramide. A small amount of cytochrome c release was detected. It correlated with the level of ceramide converted from sphingosine. Thus, sphingosine channels, unlike ceramide channels, are not large enough to allow the passage of proapoptotic proteins from the intermembrane space of mitochondria to the cytoplasm.  相似文献   

6.
Ceramides are known to play a major regulatory role in apoptosis by inducing cytochrome c release from mitochondria. We have previously reported that C(2)- and C(16)-ceramide, but not dihydroceramide, form large channels in planar membranes (Siskind, L. J., and Colombini, M. (2001) J. Biol. Chem. 275, 38640-38644). Here we show that ceramides do not trigger a cytochrome c secretion or release mechanism, but simply raise the permeability of the mitochondrial outer membrane, via ceramide channel formation, to include small proteins. Exogenously added reduced cytochrome c was able to freely permeate the mitochondrial outer membrane with entry to and exit from the intermembrane space facilitated by ceramides in a dose- and time-dependent manner. The permeability pathways were eliminated upon removal of C(2)-ceramide by bovine serum albumin, thus ruling out a detergent-like effect of C(2)-ceramide on membranes. Ceramide channels were not specific to cytochrome c, as ceramides induced release of adenylate kinase, but not fumerase from isolated mitochondria, showing some specificity of these channels for the outer mitochondrial membrane. SDS-PAGE results show that ceramides allow release of intermembrane space proteins with a molecular weight cut-off of about 60,000. These results indicate that the ceramide-induced membrane permeability increases in isolated mitochondria are via ceramide channel formation and not a release mechanism, as the channels that allow cytochrome c to freely permeate are reversible, and are not specific to cytochrome c.  相似文献   

7.
Early in apoptosis, ceramide levels rise and the mitochondrial outer membrane becomes permeable to small proteins. The self-assembly of ceramide to form channels could be the means by which intermembrane space proteins are released to induce apoptosis. Dihydroceramide desaturase converts dihydroceramide to ceramide. This conversion may be removing an inhibitor as well as generating a pro-apoptotic agent. We report that both long and short chain dihydroceramides inhibit ceramide channel formation in mitochondria. One tenth as much dihydroceramide was sufficient to inhibit the permeabilization of the outer membrane by about 95% (C2) and 51% (C16). Similar quantities inhibited the release of carboxyfluorescein from liposomes indicating that other mitochondrial components are not necessary for the inhibition. The apoptogenic activity of ceramide may thus depend on the ceramide to dihydroceramide ratio resulting in a more abrupt transition from the normal to the apoptotic state when the de novo pathway is used in mitochondria.  相似文献   

8.
Reports suggest that excessive ceramide accumulation in mitochondria is required to initiate the intrinsic apoptotic pathway and subsequent cell death, but how ceramide accumulates is unclear. Here we report that liver mitochondria exhibit ceramide formation from sphingosine and palmitoyl-CoA and from sphingosine and palmitate. Importantly, this activity was markedly decreased in liver from neutral ceramidase (NCDase)-deficient mice. Moreover, the levels of ceramide were dissimilar in liver mitochondria of WT and NCDase KO mice. These results suggest that NCDase is a key participant of ceramide formation in liver mitochondria. We also report that highly purified liver mitochondria have ceramidase, reverse ceramidase, and thioesterase activities. Increased accessibility of palmitoyl-CoA to the mitochondrial matrix with the pore-forming peptide zervamicin IIB resulted in 2-fold increases in palmitoyl-CoA hydrolysis by thioesterase. This increased hydrolysis was accompanied by an increase in ceramide formation, demonstrating that both outer membrane and matrix localized thioesterases can regulate ceramide formation. Also, ceramide formation might occur both in the outer mitochondrial membrane and in the mitochondrial matrix, suggesting the existence of distinct ceramide pools. Taken together, these results suggest that the reverse activity of NCDase contributes to sphingolipid homeostasis in this organelle in vivo.  相似文献   

9.
Marco Colombini 《BBA》2010,1797(6-7):1239-1244
A key, decision-making step in apoptosis is the release of proteins from the mitochondrial intermembrane space. Ceramide can self-assemble in the mitochondrial outer membrane to form large stable channels capable of releasing said proteins. Ceramide levels measured in mitochondria early in apoptosis are sufficient to form ceramide channels in the outer membrane. The channels are in dynamic equilibrium with non-conducting forms of ceramide in the membrane. This equilibrium can be strongly influenced by other sphingolipids and Bcl-2 family proteins. The properties of ceramide channels formed in a defined system, planar phospholipid membranes, demonstrate that proteins are not required for channel formation. In addition, experiments in the defined system reveal structural information. The results indicated that the channels are barrel-like structures whose staves are ceramide columns that span the membrane. Ceramide channels are good candidates for the protein release pathway that initiates the execution phase of apoptosis.  相似文献   

10.
Among the permeability pathways in the mitochondrial outer membrane (MOM), whose elucidation was pioneered by Kathleen Kinnally, there is one formed by the lipid, ceramide. Electron microscopic visualization shows that ceramide channels are large cylindrical structures of varying pore size, with a most frequent size of 10 nm in diameter, large enough to allow all soluble proteins to translocate between the cytosol and the mitochondrial intermembrane space. Similar results were obtained with electrophysiological measurements. Studies of the dynamics of the channels are consistent with a right cylinder. Ceramide channels form at mole fractions of ceramide that are found in the MOM early in the apoptotic process, before or at the time of protein release from mitochondria. That these channels are good candidates for the protein release pathway is supported by the fact that channel formation is inhibited by anti-apoptotic proteins and favored by Bax. Bcl-xL inhibits ceramide channel formation by binding to the apolar ceramide tails using its hydrophobic grove. Bax interaction with the polar regions of ceramide results in MOM permeabilization through synergy with ceramide. Evidence that ceramide channels actually function to favor apoptosis in vivo is supported by the expression of Bcl-xL containing point mutations in cells induced to undergo apoptosis. The Bcl-xL mutants inhibit differentially Bax and ceramide channels and thus tease apart, to some extent, these two modes of MOM permeabilization. Ceramide channels have the right properties and appropriate regulation to be key players in the induction of apoptosis.  相似文献   

11.
Neutral ceramidase is a type II integral membrane protein, which is occasionally secreted into the extracellular milieu after the processing of its N-terminal anchor. We found that when overexpressed in CHOP cells, neutral ceramidase hydrolyzed cell surface ceramide, which increased in amount after the treatment of cells with bacterial sphingomyelinase, leading to an increase in the cellular level of sphingosine and sphingosine 1-phosphate. On the other hand, knockdown of the endogenous enzyme by siRNA decreased the cellular level of both sphingolipid metabolites. The treatment of cells with bovine serum albumin significantly reduced the cellular level of sphingosine, but not sphingosine 1-phosphate, generated by overexpression of the enzyme. The cellular level of sphingosine 1-phosphate increased with overexpression of the cytosolic sphingosine kinase. These results suggest that sphingosine 1-phosphate is mainly produced inside of the cell after the incorporation of sphingosine generated on the plasma membranes. The enzyme also seems to participate in the hydrolysis of serum-derived ceramide in the vascular system. Significant amounts of sphingosine as well as sphingosine 1-phosphate were generated in the cell-free conditioned medium of ceramidase transfectants, compared with mock transfectants. No increase in these metabolites was observed if serum or bacterial sphingomyelinase was omitted from the conditioned medium, suggesting that the major source of ceramide is the serum-derived sphingomyelin. A sphingosine 1-phosphate receptor, S1P(1), was internalized much faster by the treatment of S1P(1)-overexpressing cells with conditioned medium of ceramidase transfectants than that of mock transfectants. Collectively, these results clearly indicate that the enzyme is involved in the metabolism of ceramide at the plasma membrane and in the extracellular milieu, which could regulate sphingosine 1-phosphate-mediated signaling through the generation of sphingosine.  相似文献   

12.
Ceramides have been implicated in the initiation of apoptosis by permeabilizing the mitochondrial outer membrane to small proteins, including cytochrome c. In addition, ceramides were shown to form large metastable channels in planar membranes and liposomes, indicating that these lipids permeabilize membranes directly. Here we analyze molecular models of ceramide channels and test their stability in molecular dynamics simulations. The structural units are columns of four to six ceramides H-bonded via amide groups and arranged as staves in either a parallel or antiparallel manner. Two cylindrical assemblies of 14 columns (four or six molecules per column) were embedded in a fully hydrated palmitoyloleoyl-phosphatidylcholine phospholipid bilayer, and simulated for 24 ns in total. After equilibration, the water-filled pore adopted an hourglass-like shape as headgroups of ceramides and phospholipids formed a smooth continuous interface. The structure-stabilizing interactions were both hydrogen bonds between the headgroups (including water-mediated interactions) and packing of the hydrocarbon tails. Ceramide's essential double bond reduced the mobility of the hydrocarbon tails and stabilized their packing. The six-column assembly remained stable throughout a 10-ns simulation. During simulations of four-column assemblies, pairs of columns displayed the tendency of splitting out from the channels, consistent with the previously proposed mechanism of channel disassembly.  相似文献   

13.
A tale of two mitochondrial channels,MAC and PTP,in apoptosis   总被引:1,自引:0,他引:1  
The crucial step in the intrinsic, or mitochondrial, apoptotic pathway is permeabilization of the mitochondrial outer membrane. Permeabilization triggers release of apoptogenic factors, such as cytochrome c, from the mitochondrial intermembrane space into the cytosol where these factors ensure propagation of the apoptotic cascade and execution of cell death. However, the mechanism(s) underlying permeabilization of the outer membrane remain controversial. Two mechanisms, involving opening of two different mitochondrial channels, have been proposed to be responsible for the permeabilization; the permeability transition pore (PTP) in the inner membrane and the mitochondrial apoptosis-induced channel (MAC) in the outer membrane. Opening of PTP would lead to matrix swelling, subsequent rupture of the outer membrane, and an unspecific release of intermembrane proteins into the cytosol. However, many believe PTP opening is a consequence of apoptosis and this channel is thought to principally play a role in necrosis, not apoptosis. Activation of MAC is exquisitely regulated by Bcl-2 family proteins, which are the sentinels of apoptosis. MAC provides specific pores in the outer membrane for the passage of intermembrane proteins, in particular cytochrome c, to the cytosol. The electrophysiological characteristics of MAC are very similar to Bax channels and depletion of Bax significantly diminishes MAC activity, suggesting that Bax is an essential constituent of MAC in some systems. The characteristics of various mitochondrial channels and Bax are compared. The involvement of MAC and PTP activities in apoptosis of disease and their pharmacology are discussed.  相似文献   

14.
Ceramides, which are membrane sphingolipids and key mediators of cell-stress responses, are generated by a family of (dihydro) ceramide synthases (Lass1-6/CerS1-6). Here, we report that brain development features significant increases in sphingomyelin, sphingosine, and most ceramide species. In contrast, C(16:0)-ceramide was gradually reduced and CerS6 was down-regulated in mitochondria, thereby implicating CerS6 as a primary ceramide synthase generating C(16:0)-ceramide. Investigations into the role of CerS6 in mitochondria revealed that ceramide synthase down-regulation is associated with dramatically decreased mitochondrial Ca(2+)-loading capacity, which could be rescued by addition of ceramide. Selective CerS6 complexing with the inner membrane component of the mitochondrial permeability transition pore was detected by immunoprecipitation. This suggests that CerS6-generated ceramide could prevent mitochondrial permeability transition pore opening, leading to increased Ca(2+) accumulation in the mitochondrial matrix. We examined the effect of high CerS6 expression on cell survival in primary oligodendrocyte (OL) precursor cells, which undergo apoptotic cell death during early postnatal brain development. Exposure of OLs to glutamate resulted in apoptosis that was prevented by inhibitors of de novo ceramide biosynthesis, myriocin and fumonisin B1. Knockdown of CerS6 with siRNA reduced glutamate-triggered OL apoptosis, whereas knockdown of CerS5 had no effect: the pro-apoptotic role of CerS6 was not stimulus-specific. Knockdown of CerS6 with siRNA improved cell survival in response to nerve growth factor-induced OL apoptosis. Also, blocking mitochondrial Ca(2+) uptake or decreasing Ca(2+)-dependent protease calpain activity with specific inhibitors prevented OL apoptosis. Finally, knocking down CerS6 decreased calpain activation. Thus, our data suggest a novel role for CerS6 in the regulation of both mitochondrial Ca(2+) homeostasis and calpain, which appears to be important in OL apoptosis during brain development.  相似文献   

15.
The role of ceramide in biological functions is typically based on the elevation of cellular ceramide, measured by LC-MS in the total cell lysate. However, it has become increasingly appreciated that ceramide in different subcellular organelles regulates specific functions. In the plasma membrane, changes in ceramide levels might represent a small percentage of the total cellular ceramide, evading MS detection but playing a critical role in cell signaling. Importantly, there are currently no efficient techniques to quantify ceramide in the plasma membrane. Here, we developed a method to measure the mass of ceramide in the plasma membrane using a short protocol that is based on the hydrolysis of plasma membrane ceramide into sphingosine by the action of exogenously applied bacterial recombinant neutral ceramidase. Plasma membrane ceramide content can then be determined by measuring the newly generated sphingosine at a stoichiometry of 1:1. A key step of this protocol is the chemical fixation of cells to block cellular sphingolipid metabolism, especially of sphingosine to sphingosine 1-phosphate. We confirmed that chemical fixation does not disrupt the lipid composition at the plasma membrane, which remains intact during the time of the assay. We illustrate the power of the approach by applying this protocol to interrogate the effects of the chemotherapeutic compound doxorubicin. Here we distinguished two pools of ceramide, depending on the doxorubicin concentration, consolidating different reports. In summary, we have developed the first approach to quantify ceramide in the plasma membrane, allowing the study of new avenues in sphingolipid compartmentalization and function.  相似文献   

16.
Mitochondria mediate both cell survival and death. The intrinsic apoptotic pathway is initiated by the permeabilization of the mitochondrial outer membrane to pro-apoptotic inter-membrane space (IMS) proteins. Many pathways cause the egress of IMS proteins. Of particular interest is the ability of ceramide to self-assemble into dynamic water-filled channels. The formation of ceramide channels is regulated extensively by Bcl-2 family proteins and dihydroceramide. Here, we show that the chain length of biologically active ceramides serves as an important regulatory factor. Ceramides are synthesized by a family of six mammalian ceramide synthases (CerS) each of which produces a subset of ceramides that differ in their fatty acyl chain length. Various ceramides permeabilize mitochondria differentially. Interestingly, the presence of very long chain ceramides reduces the potency of C16-mediated mitochondrial permeabilization indicating that the intercalation of the lipids in the dynamic channel has a destabilizing effect, reminiscent of dihydroceramide inhibition of ceramide channel formation (Stiban et al., 2006). Moreover, mitochondria isolated from cells overexpressing the ceramide synthase responsible for the production of C16-ceramide (CerS5) are permeabilized faster upon the exogenous addition of C16-ceramide whereas they are resistant to permeabilization with added C24-ceramide. On the other hand mitochondria isolated from CerS2-overexpressing cells show the opposite pattern, indicating that the product of CerS2 inhibits C16-channel formation ex vivo and vice versa. This interplay between different ceramide metabolic enzymes and their products adds a new dimension to the complexity of mitochondrial-mediated apoptosis, and emphasizes its role as a key regulatory step that commits cells to life or death.  相似文献   

17.
Ceramides are known to play a major regulatory role in apoptosis by inducing cytochrome c release from mitochondria. We have previously reported that ceramide, but not dihydroceramide, forms large and stable channels in phospholipid membranes and outer membranes of isolated mitochondria. C(2)-ceramide channel formation is characterized by conductance increments ranging from <1 to >200 nS. These conductance increments often represent the enlargement and contracture of channels rather than the opening and closure of independent channels. Enlargement is supported by the observation that many small conductance increments can lead to a large decrement. Also the initial conductances favor cations, but this selectivity drops dramatically with increasing total conductance. La(+3) causes rapid ceramide channel disassembly in a manner indicative of large conducting structures. These channels have a propensity to contract by a defined size (often multiples of 4 nS) indicating the formation of cylindrical channels with preferred diameters rather than a continuum of sizes. The results are consistent with ceramides forming barrel-stave channels whose size can change by loss or insertion of multiple ceramide columns.  相似文献   

18.
Early in mitochondria-mediated apoptosis, the mitochondrial outer membrane becomes permeable to proteins that, when released into the cytosol, initiate the execution phase of apoptosis. Proteins in the Bcl-2 family regulate this permeabilization, but the molecular composition of the mitochondrial outer membrane pore is under debate. We reported previously that at physiologically relevant levels, ceramides form stable channels in mitochondrial outer membranes capable of passing the largest proteins known to exit mitochondria during apoptosis (Siskind, L. J., Kolesnick, R. N., and Colombini, M. (2006) Mitochondrion 6, 118-125). Here we show that Bcl-2 proteins are not required for ceramide to form protein-permeable channels in mitochondrial outer membranes. However, both recombinant human Bcl-x(L) and CED-9, the Caenorhabditis elegans Bcl-2 homologue, disassemble ceramide channels in the mitochondrial outer membranes of isolated mitochondria from rat liver and yeast. Importantly, Bcl-x L and CED-9 disassemble ceramide channels in the defined system of solvent-free planar phospholipid membranes. Thus, ceramide channel disassembly likely results from direct interaction with these anti-apoptotic proteins. Mutants of Bcl-x L act on ceramide channels as expected from their ability to be anti-apoptotic. Thus, ceramide channels may be one mechanism for releasing pro-apoptotic proteins from mitochondria during the induction phase of apoptosis.  相似文献   

19.
Mitochondrial outer membrane permeabilization to proteins, an irreversible step in apoptosis by which critical proteins are released, is tightly regulated by Bcl-2 family proteins. The exact nature of the release pathway is still undefined. Ceramide is an important sphingolipid, involved in various cellular processes including apoptosis. Here we describe the structural properties of ceramide channels and their regulation by the anti-apoptotic and pro-apoptotic proteins of the Bcl-2 family. The evolutionarily conserved regulation of ceramide channels by Bcl-2 family proteins, consistent with their role in apoptosis, lends credibility to the notion that ceramide channels constitute the protein release pathway.  相似文献   

20.
Sphingolipids are degraded by sphingomyelinase and ceramidase in the gut to ceramide and sphingosine, which may inhibit cell proliferation and induce apoptosis, and thus have anti-tumour effects in the gut. Although previous rodent studies including experiments on knockout mice indicate a role of neutral ceramidase in ceramide digestion, the human enzyme has never been purified and characterized in its purified form. We here report the purification and characterization of neutral ceramidase from human ileostomy content, using octanoyl-[(14)C]sphingosine as substrate. After four chromatographic steps, a homogeneous protein band with 116kDa was obtained. MALDI mass spectrometry identified 16 peptide masses similar to human ceramidase previously cloned by El Bawab et al. [Molecular cloning and characterization of a human mitochondrial ceramidase, J. Biol. Chem. 275 (2000) 21508-21513] and Hwang et al. [Subcellular localization of human neutral ceramidase expressed in HEK293 cells, Biochem. Biophys. Res. Commun. 331 (2005) 37-42]. By RT-PCR and 5'-RACE methods, a predicted partial nucleotide sequence of neutral ceramidase was obtained from a human duodenum biopsy sample, which was homologous to that of known neutral/alkaline ceramidases. The enzyme has neutral pH optimum and catalyses both hydrolysis and formation of ceramide without distinct bile salt dependence. It is inhibited by Cu(2+) and Zn(2+) ions and by low concentrations of cholesterol. The enzyme is a glycoprotein but deglycosylation does not affect its activity. Our study indicates that neutral ceramidase is expressed in human intestine, released in the intestinal lumen and plays a major role in ceramide metabolism in the human gut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号