首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Distinct functional coupling between cyclooxygenases (COXs) and specific terminal prostanoid synthases leads to phase-specific production of particular prostaglandins (PGs). In this study, we examined the coupling between COX isozymes and PGF synthase (PGFS). Co-transfection of COXs with PGFS-I belonging to the aldo-keto reductase family into HEK293 cells resulted in increased production of PGF only when a high concentration of exogenous arachidonic acid (AA) was supplied. However, this enzyme failed to produce PGF from endogenous AA, even though significant increase in PGF production occurred in cells transfected with COX-2 alone. This poor COX/PGFS-I coupling was likely to arise from their distinct subcellular localization. Measurement of PGF-synthetic enzyme activity in homogenates of several cells revealed another type of PGFS activity that was membrane-bound, glutathione (GSH)-activated, and stimulus-inducible. In vivo, membrane-bound PGFS activity was elevated in the lung of lipopolysaccharide-treated mice. Taken together, our results suggest the presence of a novel, membrane-associated form of PGFS that is stimulus-inducible and is likely to be preferentially coupled with COX-2.  相似文献   

4.
Prostaglandin H2 (PGH2) inhibited noradrenaline induced cyclic AMP accumulation in isolated rat fat cells in a dose-dependent manner. IC50 was 10 – 25 ng/ml both in the absence and in the presence of theophylline. The degree of inhibition produced by PGH2 increased with time of incubation. A stable PGH2 analog did not inhibit cyclic AMP accumulation. PGH2 was rapidly converted by isolated fat cells to PGD2, PGE2 and PGH, but no formation of thromboxane B2 was found either or . PGE2 was a more potent inhibitor than PGH2 of noradrenaline induced cyclic AMP accumulation. PGD2 enhanced cyclic AMP accumulation in a limited concentration interval, while PGF was essentially uneffective.Our results suggest that PGH2 is an inhibitor of cyclic AMP formation in isolated rat fat cells only after conversion to PGE2. A physiological role for PGH2 as a modulator of lipolysis is considered unlikely.  相似文献   

5.
This study investigates the effects of chronic methionine intake on bradykinin (BK)-relaxation. Vascular reactivity experiments were performed on carotid rings from male Wistar rats. Treatment with methionine (0.1, 1 or 2 g kg−1 per day) for 8 and 16 weeks, but not for 2 and 4 weeks, reduced the relaxation induced by BK. Indomethacin, a non-selective cyclooxygenase (COX) inhibitor, and SQ29548, a selective thromboxane A2 (TXA2)/prostaglandin H2 (PGH2) receptor antagonist prevented the reduction in BK-relaxation observed in the carotid from methionine-treated rats. Conversely, AH6809, a selective prostaglandin F (PGF) receptor antagonist did not alter BK-relaxation in the carotid from methionine-treated rats. The nitric oxide synthase (NOS) inhibitors L-NAME, L-NNA and 7-nitroindazole reduced the relaxation induced by BK in carotids from control and methionine-treated rats. In summary, we found that chronic methionine intake impairs the endothelium-dependent relaxation induced by BK and this effect is due to an increased production of endothelial vasoconstrictor prostanoids (possibly TXA2) that counteracts the relaxant action displayed by the peptide.  相似文献   

6.
ObjectivesNSAIDs are used to relieve pain and decrease inflammation by inhibition of cyclooxygenase (COX)-catalyzed prostaglandin (PG) synthesis. PGs are fatty acid mediators involved in cartilage homeostasis, however the action of their synthesizing COX-enzymes in cartilage differentiation is not well understood. In this study we hypothesized that COX-1 and COX-2 have differential roles in chondrogenic differentiation.MethodsATDC5 cells were differentiated in the presence of COX-1 (SC-560, Mofezolac) or COX-2 (NS398, Celecoxib) specific inhibitors. Specificity of the NSAIDs and inhibition of specific prostaglandin levels were determined by EIA. Prostaglandins were added during the differentiation process. Chondrogenic outcome was determined by gene- and protein expression analyses.ResultsInhibition of COX-1 prevented Col2a1 and Col10a1 expression. Inhibition of COX-2 resulted in decreased Col10a1 expression, while Col2a1 remained unaffected. To explain this difference expression patterns of both COX-enzymes as well as specific prostaglandin concentrations were determined. Both COX-enzymes are upregulated during late chondrogenic differentiation, whereas only COX-2 is briefly expressed also early in differentiation. PGD2 and PGE2 followed the COX-2 expression pattern, whereas PGF and TXA2 levels remained low. Furthermore, COX inhibition resulted in decreased levels of all tested PGs, except for PGD2 and PGF in the COX-1 inhibited condition. Addition of PGE2 and PGF resulted in increased expression of chondrogenic markers, whereas TXA2 increased expression of hypertrophic markers.ConclusionsOur findings point towards a differential role for COX-enzymes and PG-production in chondrogenic differentiation of ATDC5 cells. Ongoing research is focusing on further elucidating the functional partition of cyclooxygenases and specific prostaglandin production.  相似文献   

7.
Metabolism and action of the prostaglandin endoperoxide PGH2 in rat kidney   总被引:3,自引:0,他引:3  
Kidney membrane fractions metabolized [1-14C]PGH2 to TXB2, PGE2, PGF, PGD2, 6-keto PGF, and HHT. TXA2, as measured by TXB2, was enzymatically formed in cortex microsomes and was identified by thin layer chromatography and gas chromatography - mass spectrometry. PGH2 caused a labile inhibition of cortical PGE2-stimulated adenylate cyclase. PGE2, PGF, and PGD2 are stimulators of cortical adenylate cyclase. The inability of two thromboxane synthetase inhibitors, imidazole and 9,11-azoprosta-5,13 dienoic acid, to block PGH2 inhibition suggested that TXA2 was not an obligatory intermediate in this process. Therefore, a potential function of cortical PGH2 is inhibition of adenylate cyclase.  相似文献   

8.
9.

Background  

Prostaglandin (PG) F is a key regulator of endometrial function and exerts its biological action after coupling with its heptahelical G protein-coupled receptor (FP receptor). In endometrial adenocarcinoma the FP receptor expression is elevated. We have shown previously that PGF-FP receptor signalling in endometrial adenocarcinoma cells can upregulate several angiogenic factors including fibroblast growth factor-2 (FGF2). In the present study, we investigated the paracrine effect of conditioned medium produced via PGF-FP receptor signalling in endometrial adenocarcinoma cells stably expressing the FP receptor (Ishikawa FPS cells), on endothelial cell function.  相似文献   

10.
Leukotriene D4 (LTD4)-induced bronchoconstriction in guinea-pig airways has a cyclooxygenase (COX)-dependent component. The main objective of this study was to establish if prostaglandin (PG) D2-induced bronchoconstriction also was modulated by COX products. The effects of non-selective and selective COX-1 and COX-2 inhibitors on bronchoconstriction induced by LTD4 and PGD2 were investigated in the perfused and ventilated guinea-pig lung (IPL). Both LTD4-induced bronchoconstriction and thromboxane (TX) A2 release was suppressed by COX inhibitors or by TX synthesis inhibition. The release of additional COX products following CysLT1 receptor activation by LTD4 was established by measurements of immunoreactive 6-keto PGF (a stable metabolite of PGI2) and PGE2. In contrast, TP receptor-mediated bronchoconstriction by PGD2 was somewhat enhanced by COX inhibitors, and there was no measurable release of COX products after TP receptor activation with U-46619. PGE2 was bronchoprotective in IPL as it inhibited the histamine-induced bronchoconstriction. In the isolated guinea-pig trachea, neither PGD2 nor U-46619 actively released PGE2, but continuous production of PGE2 and PGI2 was established, and the response to PGD2 was enhanced also in the trachea by COX inhibition. The study documented that bronchoconstriction induced by LTD4 and PGD2 in IPL was modulated differently by COX products. Whereas bronchoconstriction induced by LTD4 was amplified predominantly by secondarily released TXA2, that induced by PGD2 was attenuated by bronchoprotective PGE2 and PGI2, presumably tonically produced in the airways.  相似文献   

11.
Prostaglandin E synthase (PGES), which converts cyclooxygenase (COX)-derived prostaglandin H2 (PGH2) to PGE2, is known to comprise a group of at least three structurally and biologically distinct enzymes. Two of them are membrane-bound and have been designated as mPGES-1 and mPGES-2. mPGES-1 is a perinuclear protein that is markedly induced by proinflammatory stimuli and downregulated by anti-inflammatory glucocorticoids as in the case of COX-2. It is functionally coupled with COX-2 in marked preference to COX-1. mPGES-2 is synthesized as a Golgi membrane-associated protein, and the proteolytic removal of the N-terminal hydrophobic domain leads to the formation of a mature cytosolic enzyme. This enzyme is rather constitutively expressed in various cells and tissues and is functionally coupled with both COX-1 and COX-2. Cytosolic PGES (cPGES) is constitutively expressed in a wide variety of cells and is functionally linked to COX-1 to promote immediate PGE2 production. Recently, mice have been engineered with specific deletions in each of these three PGES enzymes. In this review, we summarize the current understanding of the in vivo roles of PGES enzymes by knockout mouse studies and provide an overview of their biochemical properties.  相似文献   

12.
The conversion of (1-14C) PGH2 was studied in human placental and fetal membrane cellular preparations (tissue fragments, homogenate, cytosol, microsomes). Placental and amnion homogenates convert labelled PGH2 into PGE2 through a very active PGE2 isomerase. However isolated placental microsomes do not metabolise PGH2 into PGE2 but into T×A2 (identified as T×B2 by GC-MS) and presumably 12-HHT. This microsomal T×A2 synthetase is not active in the whole tissue nor in the homogenate. Placental cytosol gives mainly PGD2. No conversion into PGI2 (identofied as 6 keto PGF) nor PGF was observed in any fraction.Some aspects of PG synthesis regulation by the placental cytosol were studied: the cytosol contains a heat-stable factor that inhibits T×A2 synthesis and shifts PGH2 placental microsome metabolism towards PGE2. In addition the placental cytosol inhibits human platelet-aggregation through a heat-labile factor which is not PGI2 nor PGD2. A multiple step regulation of the various PG metabolites synthetised from arachidonic acid in the placenta can be outlined and its physiological implications are discussed.  相似文献   

13.
The effect on smooth muscle of the endoperoxides PGG2 and PGH2, which are intermediates in prostaglandin biosynthesis, was studied in different systems in vitro and in vivo. On gastrointestinal smooth muscle (gerbil colon, rat stomach) PGG2 and PGH2 produced contractions comparable to those of PGE2 and PGF2a whereas contractions elicited on vascular (rabbit aorta) and airway (guinea-pig trachea) smooth muscle were considerably greater than those of PGE2 and PGF2a respectively. On intravenous injection into guinea-pigs PGG2 and PGH2 caused a triphasic change in blood pressure and were 8–10 times more effective than PGF2a in producing an increase in tracheal insufflation pressure. When given as aerosols the unstable endoperoxides were less effective than PGF2a. It is concluded that the endoperoxides are potent smooth muscle stimulants and that they are more effective than their degradation products (PGD2, PGE2, PGF2a) in some systems.  相似文献   

14.
15.
Previously, we demonstrated that prostaglandin D2 (PGD2), a natural product of the endoperoxide PGH2, evoked bronchoconstriction when given I.V. to dogs (PROSTAGLANDINS 13:255–269, 1977). The present investigation in anesthetized dogs demonstrated that aerosols of PGD2 (0.001–0.1%) produced concentration-dependent increases in pulmonary resistance (RL) and decreases in dynamic lung compliance (CDYN) which were short-lived and equipotent to PGF. These alterations in pulmonary mechanics were partially, yet significantly, inhibited by atropine, thereby suggesting that at least a portion of the bronchoconstriction may be cholinergically mediated. Concomitant cardiovascular depressant effects of both PGD2 and PGF aerosols were much less and more variable than their bronchopulmonary effects.These results demonstrate a potent bronchoconstrictor effect of aerosolized PGD2 in dogs. PGD2 warrants further attention as a possible mediator of the bronchospasm seen in acute, reversible airways obstruction.  相似文献   

16.
The induced synthesis of bioactive prostanoids downstream of cyclooxygenase-2 (COX-2) and prostaglandin H2 (PGH2) exerts a critical event in colorectal carcinogenesis. Here we demonstrate that APCMin/+ mice with genetic deletion of microsomal prostaglandin E synthase-1 (mPGES-1), which catalyses the terminal conversion of PGH2 into PGE2, surprisingly develop more and generally larger intestinal tumors than do mPGES-1 wild type littermates (mean number of tumors/intestine 80 vs. 38, p < 0.0005, mean tumor diameter 1.64 vs. 1.12 mm, p < 0.0005). No deviation regarding the expression of other PGE2 related enzymes (COX-1, COX-2, mPGES-2, cPGES, and 15-PGDH) or receptors (EP1-4) was obvious among the mPGES-1 deficient mice. PGE2 levels were suppressed in tumors of mPGES-1 deficient animals, but the concentrations of other PGH2 derived prostanoids were generally enhanced, being most prominent for TxA2 and PGD2. Thus, we hypothesise that a redirected synthesis towards other lipid mediators might (over)compensate for loss of mPGES-1/PGE2 during intestinal tumorigenesis. Nevertheless, our results question the suitability for mPGES-1 targeting therapy in the treatment or prevention of colorectal cancer.  相似文献   

17.
The mechanical effects of PGD2 and PGF on longitudinal and circular muscles of the guinea-pig isolated proximal colon were investigated. PGD2 and PGF (1 nM – 10 μM) produced a dose-dependent contraction in longitudinal and circular muscles. The contractile action of PGD2 was more potent than that of PGF in circular muscle and was less potent in longitudinal muscle.Contractions induced by PGD2 or PGF(1 μM) were unaffected by atropine (1 μM) in both muscles, but tetrodotoxin (1 μM) slightly inhibited these contractions in longitudinal muscle.The results suggest that in longitudinal muscle PGD2 and PGF have largely a direct action on the muscle cells and a partial neuronal action on the non-cholinergic intrinsic nerves, whereas in circular muscle these PGs have only a direct action on the muscle cells.  相似文献   

18.
We have reported tha allicin, a constituent of garlic oil, has no effect on the activities of platelet cyclooxygenase or thromboxane synthase, or vascular PGI2 synthase. The effect of allicin on glutathione (GSH) dependent PGH2 to PGE2 isomerase is unknown. We therefore studied the effect of allicin on PGE2 biosynthesis in a murine mammary adenocarcinoma cell line (No 4526). Intact or sonicated cells were incubated with either 14C-arachidonic acid (AA) or 14C-PHG2, respectively. Following metabolism, products were extracted, separated by TLC and analyzed by radiochromatographic scan. PGE2 was predominantly formed with minimal amounts of PGF and PGD2. Formation of 6-keto-PGF or TXB2 was not detected indicating the absence of TXA2 and PGI2 synthase activity. Indomethacin and ibuprofen inhibited the PGE2 formation (p < 0.05). The enzymatic PGE2 formation in sonicates was blocked by depletion of the cellular non-protein thiols by buthionine sulfoximine and was shown to be dependent on GSH. Allicin, over the range of 10–1000 μM, inhibited the formation of PGE2 in cells exposed to 2.0 μM 14C-AA for 20 min. and in sonicated cells incubated with 20.0 μM 14C-PGH2 for 2 min (p < 0.05). Allicin did not alter cyclooexygenase-mediated oxygen utilization in ram seminal vessicle microsomes, suggesting that allicin selectively inhibits the GSH-dependent PGH2 to PGE2 isomerase in this adenocarcinoma cell line.  相似文献   

19.
Glutathione S-transferases (GSTs) of Oesophagostomum dentatum possess considerable similarity to synthetic prostaglandin D synthase (PGDS), and therefore their ability to convert prostaglandin (PG) H2 to PGD2in vitro was investigated with a commercial Prostaglandin D Synthase Inhibitor Screening Assay Kit. Fractioned homogenates of O. dentatum third-stage larvae only displayed cytosolic but not microsomal GST. Both total larval homogenate and isolated GST could metabolise PGH2 to PGD2, which could be inhibited by the GST inhibitor sulfobromophthalein (SBP) in a dose-dependent manner, whereas reactions to the specific PGDS inhibitor HQL-79 were not dose-dependent. Inhibition of larval development by SBP in vitro was abolished by the addition of PGD2 but not by PGH2, supporting the assumption that GST acts as PGDS and is important for nematode development. Since motility and viability of O. dentatum larvae are reduced in vitro by various inhibitors of eicosanoid metabolism, enzymes of this pathway, including GST, constitute putative intervention targets.  相似文献   

20.
Prostaglandins (PGs) are important local messenger molecules in many tissues and organs of animals including human. For applications in medicine and animal care, PGs are mostly purified from animal tissues or chemically synthesized. To generate a clean, reliable, and inexpensive source for PGs, we have now engineered expression of a suitable cyclooxygenase gene in Escherichia coli and achieved production levels of up to 2.7 mg l−1 PGF. The cyclooxygenase gene cloned from the red alga Gracilaria vermiculophylla appears to be fully functional without any eukaryotic modifications in E. coli. A crude extract of the recombinant E. coli cells is able to convert in vitro the substrate arachidonic acid (AA) to PGF. Furthermore, these E. coli cells produced PGF in a medium supplemented with AA and secreted the PGF product. To our knowledge, this is the first report of the functional expression of a cyclooxygenase gene and concomitant production of PGF in E. coli. The successful microbial synthesis of PGs with reliable yields promises a novel pharmaceutical tool to produce PGF at significantly reduced prices and greater purity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号