首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective. Hydrogen has been reported to selectively reduce the hydroxyl radical, the most cytotoxic of reactive oxygen species. In this study we investigated the effects of hydrogen-rich saline on the prevention of lung injury induced by intestinal ischemia/reperfusion (I/R) in rats. Methods. Male Sprague-Dawley rats (n = 30, 200-220 g) were divided randomly into three experimental groups: sham operated, intestinal I/R plus saline treatment (5 ml/kg, i.v.), and intestinal I/R plus hydrogen-rich saline treatment (5 ml/kg, i.v.) groups. Intestinal I/R was produced by 90 min of intestinal ischemia followed by a 4 h of reperfusion. Results. Hydrogen-rich saline treatment decreased the neutrophil infiltration, the lipid membrane peroxidation, NF-κB activation and the pro-inflammatory cytokine interleukin IL-1β and TNF-α in the lung tissues compared with those in saline-treated rat. Conclusion. Hydrogen-rich saline attenuates lung injury induced by intestinal I/R.  相似文献   

2.
Intestinal ischemia/reperfusion (I/R) is a critical and triggering event in the development of distal organ dysfunction, frequently involving the lungs. Respiratory failure is a common cause of death and complications after intestinal I/R. In this study we investigated the effects of edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) on the prevention of lung injury induced by intestinal I/R in rats. Edaravone has been used for protection against I/R injury in patients with cerebral infarction. When rats were subjected to 180 min of intestinal ischemia, a high incidence of mortality was observed within 24 h. In this situation, intravenous administration of edaravone just before the start of reperfusion reduced the mortality in a dose-dependent manner. To examine the efficacy of edaravone on the lung injury induced by intestinal I/R in more detail, we performed 120 min of intestinal ischemia followed by 120 min of reperfusion. Edaravone treatment decreased the neutrophil infiltration, the lipid membrane peroxidation, and the expression of proinflammatory cytokine interleukin-6 mRNA in the lungs after intestinal I/R compared to the I/R-treated rat lungs without edaravone treatment. Histopathological analysis also indicated the effectiveness of edaravone. In conclusion, edaravone ameliorated the lung injury induced by intestinal I/R, resulting in a reduction in mortality.  相似文献   

3.
The flavonoids (-)-epigallocatechin-3-gallate (EGCg) and (-)-epicatechin-3-gallate (ECg) are major components of green tea and show numerous biological effects. We investigated the glucuronidation of these compounds and of quercetin by microsomes. Quercetin was almost fully glucuronidated by liver microsomes after 3 h, whereas ECg and ECGg were conjugated to a lesser extent ([Formula: See Text] and [Formula: See Text] respectively). The intestinal microsomes also glucuronidated quercetin much more efficiently than ECg and EGCg. Although the rates were lower than quercetin, intestinal microsomes exhibited higher activity on the galloyl group of ECg and EGCg compared to the flavonoid ring, whereas hepatic glucuronidation was higher on the flavonoid ring of EGCg and ECg compared to the galloyl groups. The low glucuronidation rates could partially explain why these flavanols are present in plasma as unconjugated forms.  相似文献   

4.
Tian XF  Zhang XS  Li YH  Wang ZZ  Zhang F  Wang LM  Yao JH 《Life sciences》2006,79(22):2069-2076
The aim of this study is to investigate the role of proteasome in the pathogenesis of lung injury induced by intestinal ischemia/reperfusion (I/R) by examining the effect of the proteasome inhibitor lactacystin on neutrophil infiltration, intracellular adhesion molecule-1 (ICAM-1) expression and nuclear factor kappa B (NF-κB) activation. Thirty-two Wistar rats were divided into (1) control, (2) intestinal I/R, (3) 0.2 mg/kg lactacystin pretreated, and (4) 0.6 mg/kg lactacystin pretreated groups (n = 8). Injuries in lung and intestine were induced by intestinal I/R, and were characterized by histological edema, hemorrhage and infiltration of inflammatory cells. The results showed a significant increase in serum creatine kinase B (CK-B) and lung water content in intestine and lung injuries. As compared with the control group, the myeloperoxidase (MPO) activity in intestine and lung as well as the serum TNF-α level increased significantly in intestinal I/R group. Simultaneously, expression of ICAM-1 and NF-κB p65 was also observed in the I/R group. Pre-treatment with lactacystin markedly reduced 20S proteasome activity in circulating white blood cells and ameliorated intestine and lung injuries. These results demonstrated that the proteasome participates in the pathogenesis of lung injury induced by intestinal I/R. Lactacystin as a proteasome inhibitor can prevent this kind of injury by decreasing ICAM-1 and TNF-α production via the inhibition of NF-κB activation.  相似文献   

5.
目的: 探讨肺缺血/再灌注(LI/R)时肝脏损伤的影响,并初步探索细胞自噬(Autophagy)在其中发挥的作用。方法: 构建大鼠缺血/再灌注肺损伤(LI/RI)模型,模型制备方法为大鼠麻醉后切开气管进行机械通气,使用动脉夹将肺门夹闭模拟缺血过程,30 min后松开动脉夹,恢复灌注3 h。24只大鼠随机分为伪手术组(Sham组)、缺血/再灌注组(I/R组)、溶剂组(DMSO组)和自噬抑制剂组(3-MA组),每组均6只,后2组大鼠术前分别腹腔注射DMSO和3-MA,造模结束后使用肺湿/干重比判断造模是否成功;抽取静脉血测定肝脏转氨酶指标ALT与AST;取肝脏组织,光镜下观察肝脏形态改变,以及电镜下观察肝细胞超微结构;使用RT-qPCR和Western blot实验分别检测肝脏组织细胞中自噬相关蛋白的基因mRNA表达水平和蛋白表达水平。结果: 与Sham组相比,其余各组肺湿/干重比均升高;血AST和ALT均有大幅升高且肝脏组织损伤明显,其中以I/R组升高最为明显,光镜下组织形态学及电镜下细胞微细结构均有不同程度的破坏;肝脏中自噬相关蛋白的基因表达水平与蛋白表达水平均有明显不同,表现为自噬上升 (P<0.01或P<0.05)。I/R组和DMSO组肝脏组织均有较重损伤,肝细胞结构破坏严重,自噬小体形成,而AST、ALT、自噬相关蛋白转录和表达水平等各项指标均无统计学差异(P>0.05)。而相较于DMSO组,3-MA组肝脏组织损伤有所减轻,肝细胞微细结构损伤程度低,且无自噬小体形成,血中AST和ALT下降,肝脏组织内自噬水平均下降 (P<0.05)。结论: 肺缺血/再灌注可引起大鼠肝损伤;细胞自噬可介导大鼠肺缺血/再灌注引起的肝损伤,抑制细胞自噬可以有效减轻大鼠LI/R引起的肝损伤。  相似文献   

6.
Green tea catechins (GTCs) are polyphenolic flavonoids formerly called vitamin P. GTCs, especially (-)-epigallocatechin-3-gallate (EGCG), lower the incidence of cancers, collagen-induced arthritis, oxidative stress-induced neurodegenerative diseases, and streptozotocin-induced diabetes. Also, inhibition of adipogenesis by green tea and green tea extract has been demonstrated in cell lines, animal models, and humans. The obesity-preventive effects of green tea and its main constituent EGCG are widely supported by results from epidemiological, cell culture, animal, and clinical studies in the last decade. Studies with adipocyte cell lines and animal models have demonstrated that EGCG inhibits extracellular signal-related kinases (ERK), activates AMP-activated protein kinase (AMPK), modulates adipocyte marker proteins, and down-regulates lipogenic enzymes as well as other potential targets. Also, the catechin components of green tea have been shown to possess anti-carcinogenic properties possibly related to their anti-oxidant activity. In addition, it was shown that dietary supplementation with EGCG could potentially contribute to nutritional strategies for the prevention and treatment of type 2 diabetes mellitus. In this review, the biological activities and multiple mechanisms of EGCG in cell lines, animal models, and clinical observations are explained.  相似文献   

7.
Li Y  Yao JH  Hu XW  Fan Z  Huang L  Jing HR  Liu KX  Tian XF 《Life sciences》2011,88(1-2):104-109
AimThe aim of this study is to evaluate the role of Rho-kinase in the pathogenesis of lung injury induced by intestinal ischemia/reperfusion (I/R) and the preconditioning effects of fasudil hydrochloride. The novel therapeutic approach of using Rho-kinase inhibitors in the treatment of intestinal I/R is introduced.MethodsSprague–Dawley (SD) rats were divided into 4 groups: intestinal I/R group, two fasudil pretreatment groups (7.5 mg/kg and 15 mg/kg), and controls. Intestinal and lung histopathology was evaluated; myeloperoxidase (MPO) and superoxide dismutase (SOD) levels in lung parenchyma were determined. Serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were measured. eNOS and P-ERM expression were measured by Western Blot.ResultsLung and intestinal injury were induced by intestinal I/R, characterized by histological damage and a significant increase in BALF protein. Compared to controls, serum TNF-α, IL-6, and lung MPO activity increased significantly in the I/R group, while SOD activity decreased. A strongly positive P-ERM expression was observed, while eNOS expression was weak. After fasudil administration, injury was ameliorated. Serum TNF-α, IL-6, lung MPO and P-ERM expression decreased significantly as compared to the I/R group, while SOD activity and eNOS expression increased significantly.SignificanceRho-kinase plays a key role in the pathogenesis of lung injury induced by intestinal I/R. The inhibition of the Rho-kinase pathway by fasudil hydrochloride may prevent lung injury.  相似文献   

8.
川芎嗪对脑缺血/再灌注后所致肺损伤的影响   总被引:2,自引:0,他引:2  
目的:观察川芎嗪对脑缺血/再灌注后肺损伤的影响。方法:采用Pulsinelli等的方法建立大鼠急性全脑缺血/再灌注模型。将Wistar大鼠随机分为三组,即:对照组(Control)、缺血/再灌注组(I/R)、川芎嗪+缺血/再灌注组(TEP+I/R),分别测定各组肺功能(PaO2、PaCO2),肺系数(LI%)、血浆和肺组织中与自由基有关物质的含量。结果:川芎嗪可有效改善脑缺血/再灌注后肺功能,减轻肺水肿,减少胞浆酶的漏出,增加自由基清除醇的活性,抑制组织脂质过氧化的发生。结论:川芎嗪对脑缺血/再灌注后肺损伤具有保护作用,其机制可能与其抗氧自由基和膜保护作用有关。  相似文献   

9.
The flavonoids (-)-epigallocatechin-3-gallate (EGCg) and (-)-epicatechin-3-gallate (ECg) are major components of green tea and show numerous biological effects. We investigated the glucuronidation of these compounds and of quercetin by microsomes. Quercetin was almost fully glucuronidated by liver microsomes after 3 h, whereas ECg and ECGg were conjugated to a lesser extent ([Formula: See Text] and [Formula: See Text] respectively). The intestinal microsomes also glucuronidated quercetin much more efficiently than ECg and EGCg. Although the rates were lower than quercetin, intestinal microsomes exhibited higher activity on the galloyl group of ECg and EGCg compared to the flavonoid ring, whereas hepatic glucuronidation was higher on the flavonoid ring of EGCg and ECg compared to the galloyl groups. The low glucuronidation rates could partially explain why these flavanols are present in plasma as unconjugated forms.  相似文献   

10.
目的:探讨七叶皂苷钠对肠缺血/再灌注肠过氧化损伤的影响及其机制。方法:复制大鼠肠缺血/再灌注(I/R)损伤模型,观察七叶皂苷钠对血浆和肠组织超氧化物歧化酶(SOD)、丙二醛(MDA)、二胺氧化酶(DAO)、髓过氧化物酶(MPO)的影响,同时观察肠组织水肿和病理损害。结果:七叶皂苷钠可显著改善肠损伤,降低肠组织湿/干比值及含水率,同时升高血浆和肠组织SOD活性,降低血浆和肠组织MPO活性及MDA含量(P〈0.01)。结论:七叶皂苷钠对肠I/R后肠黏膜具有保护作用,其机制可能与抑制中性粒细胞的聚集与活化,对抗脂质过氧化损伤有关。  相似文献   

11.
Green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) has various beneficial properties including chemopreventive, anticarcinogenic, and antioxidant actions. The interaction with proteins known as EGCG-binding targets may be related to the anticancer effects. However, the binding mechanisms for this activity remain poorly understood. Using mass spectrometry and chemical detection methods, we found that EGCG forms covalent adducts with cysteinyl thiol residues in proteins through autoxidation. To investigate the functional modulation caused by binding of EGCG, we examined the interaction between EGCG and a thiol enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Concentration-dependent covalent binding of EGCG to GAPDH was found to be coupled to the irreversible inhibition of GAPDH activity. Mutation experiments revealed that EGCG is primarily bound to the cysteinyl thiol group of the active center, indicating that the irreversible inhibition of GAPDH is due to the covalent attachment of EGCG to the active-center cysteine. Moreover, using EGCG-treated cancer cells, we identified GAPDH as a target of EGCG covalent binding through specific interactions between catechols and aminophenyl boronate agarose resin. Based on these findings, we propose that the covalent modification of proteins by EGCG may be a novel pathway related to the biological activity of EGCG.  相似文献   

12.
目的:评价右美托咪啶对小鼠肺缺血/再灌注诱发肾脏损伤的影响。方法:雄性健康SPF级C57BL/6J小鼠50只,体重20 g~24 g,8~10周龄,采用随机数字表法,将其分为5组(n=10):假手术组(sham组)、肺缺血/再灌注损伤组(I/R组)、肺缺血/再灌注+生理盐水组(NS组)、右美托咪啶组(Dex组)、右美托咪啶+阿替美唑(Atip)(DA组)。采用小鼠在体左侧肺门夹闭30 min再灌注180 min方法制备肺缺血/再灌注损伤(I/R)模型。Dex组在肺门阻断前30 min腹腔注射右美托咪啶20 μg/kg,NS组为用同Dex组等体积的生理盐水替代Dex,DA组腹腔注射右美托咪啶(20 μg/kg)+阿替美唑(250 μg/kg),其余处理同I/R组。再灌注结束后静脉取血ELISA法检测血浆中IL-1β和TNF-α浓度;取双肾组织,透射电镜下观察肾组织病理学结果。结果:与对照组相比,其余组血浆IL-1β和TNF-α浓度明显升高,肾组织病理学损伤明显加重;与I/R、NS、DA组相比,Dex组IL-1β和TNF-α浓度明显下降,差异有统计学意义(P<0.05),且肾组织超微结构损伤有所减轻。结论:右美托咪啶预先给药可减轻小鼠肺缺血/再灌注诱发肾脏损伤,其机制可能与抑制炎性反应有关。  相似文献   

13.
《Free radical research》2013,47(8):946-953
Abstract

(-)-Epigallocatechin-3-gallate (EGCg) is a naturally occurring polyphenol found in plant-based foods and beverages such as green tea. Although EGCg can eliminate carbonyl species produced by glucose autoxidation and thus can inhibit protein glycation, it is also reported to be a pro-oxidant that stimulates protein glycation in vitro. To better understand the balance between antioxidant and pro-oxidant features of EGCg, we evaluated EGCg-mediated bioactivities in a human serum albumin (HSA)/glucose model by varying three different parameters (glucose level, EGCg concentration, and time of exposure to EGCg). Measurements of glycation-induced fluorescence, protein carbonyls, and electrophoretic mobility showed that the level of HSA glycation was positively related to the glucose level over the range 10–100 mM during a 21-day incubation at 37°C and pH: 7.4. Under mild glycemic pressure (10 mM), long exposure to EGCg enhanced HSA glycation, while brief exposure to low concentrations of EGCg did not. Under high glycemic pressure (100 mM glucose), long exposure to EGCg inhibited glycation. For the first time we showed that brief exposure to EGCg reversed glycation-induced fluorescence, indicating a restorative effect. In conclusion, our research identified glucose level, EGCg concentration, and time of exposure as critical factors dictating EGCg bioactivities in HSA glycation. EGCg did not affect HSA glycation under normal physiological conditions but had a potential therapeutic effect on HSA severely damaged by glycation.  相似文献   

14.
Intestinal ischemia/reperfusion (I/R) is a common pathophysiological process in clinical severe patients, and the effect of intestinal I/R injury on the patient''s systemic pathophysiological state is far greater than that of primary intestinal injury. In recent years, more and more evidence has shown that intestinal microbiota and its metabolites play an important role in the occurrence, development, diagnosis and treatment of intestinal I/R injury. Intestinal microbiota is regulated by host genes, immune response, diet, drugs and other factors. The metabolism and immune potential of intestinal microbiota determine its important significance in host health and diseases. Therefore, targeting the intestinal microbiota and its metabolites may be an effective therapy for the treatment of intestinal I/R injury and intestinal I/R-induced extraintestinal organ injury. This review focuses on the role of intestinal microbiota and its metabolites in intestinal I/R injury and intestinal I/R-induced extraintestinal organ injury, and summarizes the latest progress in regulating intestinal microbiota to treat intestinal I/R injury and intestinal I/R-induced extraintestinal organ injury.  相似文献   

15.
Intestinal ischemia/reperfusion (I/R) produces reactive oxygen species (ROS) activating signal transduction and apoptosis. The aim of this study was to evaluate the effect of (?)-epigallocatechin-3-gallate (EGCG) administration in inhibition of apoptosis by attenuating the expression of NF-kB, c-Jun and caspace-3 in intestinal I/R. Thirty male wistar rats were used. Group A sham operation, B I/R, C I/R-EGCG 50 mg/kg ip. Intestinal ischemia was induced for 60 min by clamping the superior mesenteric artery. Malondialdehyde (MDA), myeloperoxidase (MPO), light histology, Fragment End Labelling of DNA (TUNEL), immunocytochemistry for NF-kB, c-Jun and caspace-3 analysis in intestinal specimens were performed 120 min after reperfusion. Apoptosis as indicated by TUNEL and Caspace-3, NF-kB and c-Jun was widely expressed in I/R group but only slightly expressed in EGCG treated groups. MDA and MPO showed a marked increase in the I/R group and a significant decrease in the EGCG treated group. Light histology showed preservation of architecture in the EGCG treated group. In conclusion, EGCG pre-treatment is likely to inhibit intestinal I/R-induced apoptosis by down-regulating the expression of NF-kB, c-Jun and caspase-3.  相似文献   

16.
Intestinal ischemia/reperfusion (I/R) produces reactive oxygen species (ROS) activating signal transduction and apoptosis. The aim of this study was to evaluate the effect of (-)-epigallocatechin-3-gallate (EGCG) administration in inhibition of apoptosis by attenuating the expression of NF-kB, c-Jun and caspace-3 in intestinal I/R. Thirty male wistar rats were used. Group A sham operation, B I/R, C I/R-EGCG 50 mg/kg ip. Intestinal ischemia was induced for 60 min by clamping the superior mesenteric artery. Malondialdehyde (MDA), myeloperoxidase (MPO), light histology, Fragment End Labelling of DNA (TUNEL), immunocytochemistry for NF-kB, c-Jun and caspace-3 analysis in intestinal specimens were performed 120 min after reperfusion. Apoptosis as indicated by TUNEL and Caspace-3, NF-kB and c-Jun was widely expressed in I/R group but only slightly expressed in EGCG treated groups. MDA and MPO showed a marked increase in the I/R group and a significant decrease in the EGCG treated group. Light histology showed preservation of architecture in the EGCG treated group. In conclusion, EGCG pre-treatment is likely to inhibit intestinal I/R-induced apoptosis by down-regulating the expression of NF-kB, c-Jun and caspase-3.  相似文献   

17.
Background: A major mechanism underlying warm ischemia/reperfusion (I/R) injury during liver transplantation is the activation of the caspase chain, which leads to apoptosis. Recently, it was demonstrated that the release of cathepsin B, a cysteine protease, from the cytosol in liver injury induces mitochondrial release of cytochrome c and the activation of caspase-3 and -9, thereby leading to apoptosis. The aim of this study was to ascertain if cathepsin B inactivation attenuates the apoptotic injury due to I/R in mouse liver. Methods: A model of segmental (70%) hepatic ischemia was used. Eighteen mice were anesthetized and randomly divided into three groups: (1) Control group: sham operation (laparotomy); (2) Ischemic group: midline laparotomy followed by occlusion of all structures in the portal triad to the left and median lobes for 60 min (ischemic period); (3) Study group: like group 2, but with intraperitoneal administration of a pharmacological inhibitor of cathepsin B (4 mg/100 g) 30 min before induction of ischemia. Serum liver enzyme levels were measured by biochemical analysis, and intrahepatic caspase-3 activity was measured by fluorometric assay; apoptotic cells were identified by morphological criteria, the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) fluorometric assay, and immunohistochemistry for caspase-3. Results: Showed that at 6 h of reperfusion, there was a statistically significant reduction in liver enzyme levels in the animals pretreated with cathepsin B inhibitor (p < 0.05). On fluorometric assay, caspase-3 activity was significantly decreased in group 3 compared to group 2 (p < 0.0001). The reduction in postischemic apoptotic hepatic injury in the cathepsin B inhibitor -treated group was confirmed morphologically, by the significantly fewer apoptotic hepatocyte cells detected (p < 0.05); immunohistochemically, by the significantly weaker activation of caspase-3 compared to the ischemic group (p < 0.05); and by the TUNEL assay (p < 0.05). Conclusion: The administration of cathepsin B inhibitor before induction of ischemia can attenuate postischemic hepatocyte apoptosis and thereby minimize liver damage. Apoptotic hepatic injury seems to be mediated through caspase-3 activity. These findings have important implications for the potential use of cathepsin B inhibitors in I/R injury during liver transplantation.  相似文献   

18.
Thioredoxin (Trx) and thioredoxin reductase (TrxR) function as antioxidant and anti-apoptotic proteins, which are often up-regulated in drug-resistant cancer cells. (-)-epigallocatechin-3-gallate (EGCG) is a naturally occurring antioxidant in green tea, but also exhibits prooxidant and apoptosis-inducing properties. We have previously showed a linkage between EGCG-induced inactivation of TrxR and decreased cell survival, revealing TrxR as a new target of EGCG. However, the molecular events underlying the importance of Trx/TrxR in EGCG-induced cytotoxicity remain unclear. Here, we show that the crosstalk between EGCG and Trx/TrxR occurred in a redox-dependent manner, and EGCG induced inactivation of Trx/TrxR in parallel with increased ROS levels in HeLa cells. Moreover, EGCG displayed great reactivity with Cys/Sec residues that have low pK(a) values. The structure of EGCG suggests that its quinone form would readily react with thiolate and selenolate nucleophiles. Using mass spectrometry, we have demonstrated the formation of EGCG-Trx1 (Cys(32)) and EGCG-TrxR (Cys/Sec) conjugates, confirming that EGCG quinone specifically conjugates with active-site Cys(32) in Trx or C-terminal Cys/Selenocysteine (Sec) couple in TrxR under conditions where Trx/TrxR are reduced. Non-reduced form of Trx/TrxR could escape from EGCG inhibition. These data reveal a potential mechanism for enhancing EGCG-induced cancer cell death by the NADPH-dependent reduction of Trx/TrxR.  相似文献   

19.
AimsIntestinal ischemia/reperfusion (I/R) injury is implicated in many clinical conditions, and it performs a fundamental role in their pathophysiologies. Oral administration of antioxidants and nitric oxide (NO) donors ameliorate intestinal injury. Here, the effects of l-arginine, allopurinol and NG-nitro-l-arginine methyl ester (l-NAME) were investigated.Main methodsOne hundred twenty-eight male Wistar rats were separated into 4 groups and subjected to occlusion of the superior mesenteric artery for 60 min. The Control group did not receive any substance before the surgical operation. However, the 3 other groups received the following: l-arginine (800 mg/kg body weight; l-Arg group), l-NAME (50 mg/kg; l-NAME group) or allopurinol (100 mg/kg; Allo group). Each substance was given by mouth in 3 equal doses 24, 12 and 1 h before the surgical operation. Each group was then divided into 4 subgroups, which underwent different durations of reperfusion (0, 1, 8 or 24 h). At the end of each time point, blood and tissue samples were collected, and histological examinations were performed. Serum nitrite and catalase, intestinal tissue myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS) and nitrotyrosine (NT) levels were determined.Key findingsAt each reperfusion time point, the Allo group exhibited the mildest histological lesions in contrast to the l-NAME group, which showed the most severe lesions. MPO was decreased significantly in the Allo and l-Arg groups during reperfusion, and allopurinol administration caused earlier and stronger effect. iNOS and NT levels were higher in the l-Arg group and lower in the Allo group. Serum nitrite and catalase were increased in the l-NAME group after 24 h.SignificanceOral administration of allopurinol exerted a strong and protective effect on the intestinal tissue that was subjected to I/R earlier than l-arginine. This finding was also supported with the MPO, iNOS and NT data.  相似文献   

20.
Reactive oxygen species have been implicated in cellular injury during ischemia/reperfusion (I/R). Mitochondria are one of the main targets of oxygen free radicals and damage to this organelle leads to cell death. Reports suggest that nitric oxide (NO) may offer protection from damage during I/R. This study has looked at the functional changes and lipid alteration to mitochondria during intestinal I/R and the protection offered by NO. It was observed that I/R of the intestine is associated with functional alterations in the mitochondria as suggested by MTT reduction, respiratory control ratio and mitochondrial swelling. Mitochondrial lipid changes suggestive of activation of phospholipase A(2) and phospholipase D were also seen after (I/R) mediated injury. These changes were prevented by the simultaneous presence of a NO donor in the lumen of the intestine. These studies have suggested that structural and functional alterations of mitochondria are prominent features of I/R injury to the intestine which can be ameliorated by NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号