首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heavier analogs of C2H2 have been studied at the B3LYP level for their μ and μ42 coordination properties with the transition metals. Based on known alkyne compounds, transition metal fragments [W2(μ-NH)(Cp)2(Cl)2] and [Fe4(CO)12] have been chosen. The SBKJC relativistic effective core potentials and their associated basis sets were used on W, Fe, Sn and Pb, and the 6-31G(d) basis set was used on all other elements. All the complexes of Si2H2, Ge2H2, Sn2H2 and Pb2H2 are found to be local minima. The trans-twist nature of the ligand A2H2 (A = Si-Pb) is large in μ-coordinated complexes of W, and it is very small in μ42 coordinated complexes of Fe. The electronic structure of these complexes was investigated using fragment molecular orbital method (FMO).  相似文献   

2.
Human non-pancreatic secretory phospholipase A2 (hnpsPLA2) is a group IIA phospholipase A2 which plays an important role in the innate immune response. This enzyme was found to exhibit bactericidal activity toward Gram-positive bacteria, but not Gram-negative ones. Though native hnpsPLA2 is active over a broad pH range, it is only highly active at alkaline conditions with the optimum activity pH of about 8.5. In order to make it highly active at neutral pH, we have obtained two hnpsPLA2 mutants, Glu89Lys and Arg100Glu that work better at neutral pH in a previous study. In the present study, we tested the bactericidal effects of the native hnpsPLA2 and the two mutants. Both native hnpsPLA2 and the two mutants exhibit bactericidal activity toward Gram-positive bacteria. Furthermore, they can also kill Escherichia coli, a Gram-negative bacterium. The two mutants showed better bactericidal activity for E. coli at neutral pH than the native enzyme, which is consistent with the enzyme activities. As hnpsPLA2 is highly stable and biocompatible, it may provide a promising therapy for bacteria infection treatment or other bactericidal applications.  相似文献   

3.
The peroxiredoxins (Prxs) constitute a very large and highly conserved family of thiol-based peroxidases that has been discovered only very recently. We consider here these enzymes through the angle of their discovery, and of some features of their molecular and physiological functions, focusing on complex phenotypes of the gene mutations of the 2-Cys Prxs subtype in yeast. As scavengers of the low levels of H2O2 and as H2O2 receptors and transducers, 2-Cys Prxs have been highly instrumental to understand the biological impact of H2O2, and in particular its signaling function. 2-Cys Prxs can also become potent chaperone holdases, and unveiling the in vivo relevance of this function, which is still not established, should further increase our knowledge of the biological impact and toxicity of H2O2. The diverse molecular functions of 2-Cys Prx explain the often-hard task of relating them to peroxiredoxin genes phenotypes, which underscores the pleiotropic physiological role of these enzymes and complex biologic impact of H2O2.  相似文献   

4.
The structural and functional interaction between D2 dopamine receptor (DR) and A2A adenosine receptor (AR) has suggested these two receptors as a pharmacological target in pathologies associated with dopamine dysfunction, such as Parkinson's disease. In transfected cell lines it has been demonstrated the activation of D2DR induces a significant negative regulation of A2AAR-mediated responses, whereas few data are at now available about the regulation of A2AAR by D2DR agonists at receptor recognition site. In this work we confirmed that in A2AAR/D2DR co-transfected cells, these receptors exist as homo- and hetero-dimers. The classical D2DR agonists were able to negatively modulate both A2AAR affinity and functionality. These effects occurred even if any significant changes in A2AAR/D2DR energy transfer interaction could be detected in BRET experiments.Since the development of new molecules able to target A2A/D2 dimers may represent an attractive tool for innovative pharmacological therapy, we also identified a new small molecule, 3-(3,4-dimethylphenyl)-1-(2-piperidin-1-yl)ethyl)piperidine (compound 1), full agonist of D2DR and modulator of A2A-D2 receptor dimer. This compound was able to negatively modulate A2AAR binding properties and functional responsiveness in a manner comparable to classical D2R agonists. In contrast to classical agonists, compound 1 led to conformational changes in the quaternary structure in D2DR homomers and heteromers and induced A2AAR/D2DR co-internalization. These results suggest that compound 1 exerts a high control of the function of heteromers and could represent a starting point for the development of new drugs targeting A2AAR/D2 DR heteromers.  相似文献   

5.
Oxidation of vanadyl sulfate by H2O2 involves multiple reactions at neutral pH conditions. The primary reaction was found to be oxidation of V(IV) to V(V) using 0.5 equivalent of H2O2, based on the loss of blue color and the visible spectrum. The loss of V(IV) and formation V(V) compounds were confirmed by ESR and51V-NMR spectra, respectively. In the presence of excess H2O2 (more than two equivalents), the V(V) was converted into diperoxovanadate, the major end-product of these reactions, identified by changes in absorbance in ultraviolet region and by the specific chemical shift in NMR spectrum. The stoichiometric studies on the H2O2 consumed in this reaction support the occurrence of reactions of two-electron oxidation followed by complexing two molecules of H2O2. Addition of a variety of compounds—Tris, ethanol, mannitol, benzoate, formate (hydroxyl radical quenching), histidine, imidazole (singlet oxygen quenching), and citrate—stimulated a secondary reaction of oxygen-consumption that also used V(IV) as the reducing source. This reaction requires concomitant oxidation of vanadyl by H2O2, favoured at low H2O2:V(IV) ratio. Another secondary reaction of oxygen release was found to occur during vanadyl oxidation by H2O2 in acidic medium in which the end-product was not diperoxovanadate but appears to be a mixture of VO 3 + (–546 ppm), VO3+ (–531 ppm) and VO 2 + (–512 ppm), as shown by the51V-NMR spectrum. This reaction also occurred in phosphate-buffered medium but only on second addition of vanadyl. The compounds that stimulated the oxygen-consumption reaction were found to inhibit the oxygen-release reaction. A combination of these reactions occur depending on the proportion of the reactants (vanadyl and H2O2), the pH of the medium and the presence of some compounds that affect the secondary reactions.  相似文献   

6.
Hydrogen peroxide (H2O2)-induced aggregation of calf platelets and its modification by agents with specific properties were characterized employing a spectrophotometric assay. An Arrhenius activation energy of 20 ± 1 kcal/mol was found in the temperature range of 25‡-36‡C. Rate inhibition occurred on either side of this temperature range, and under anaerobic conditions. Exogenous Ca2+ ions were not required but Ca2+ ions, at 1 mM-concentration, optimally increased rates and extent of aggregation at suboptimal H2O2 concentrations but only extent of aggregation at optimal H2O2 concentrations. Ba2+, Sr2+, Cd2+, Mn2+ and Ni2+ ions (1 mM) and Zn2+, Pb2+ and Hg2+ ions (10 mM) were inhibitory. The cyclo-oxygenase inhibitor, indomethacin (10-30 mM) exerted only mild inhibition by a competitive mechanism. Another cyclo-oxygenase inhibitor, aspirin, functioned to increase aggregation. Ligands acting directly at the prostaglandin H2/thromboxane A, receptor (5Z. 9, 11, 13E, 15(S) 15-hydroxy 9(11) epoxy methano prosta 5, 13-dien-1-oic acid, pinane thromboxane A2, arachidonic acid, eicosapentaenoic acid, and N-ethylmaleimide) functioned as competitive inhibitors. Another platelet-activating sulphydryl reagent, thimerosal, also inhibited competitively while the protein kinase C inhibitor, sphingosine, and the protein kinase C modulator, Zn2+ ions, inhibited by different mechanisms. The results indicate direct action of H2O2 at the prostaglandin H2/thromboxane A2 receptor, possibly its sulphydryls, to activate the protein kinase C pathway, independently of cyclo-oxygenase products. The results underscored the power of the kinetic approach for investigating mechanisms of platelet activation.  相似文献   

7.
H2 oxidation,O2 uptake and CO2 fixation in hydrogen treated soils   总被引:2,自引:0,他引:2  
Dong  Z.  Layzell  D.B. 《Plant and Soil》2001,229(1):1-12
In many legume nodules, the H2 produced as a byproduct of N2 fixation diffuses out of the nodule and is consumed by the soil. To study the fate of this H2 in soil, a H2 treatment system was developed that provided a 300 cm3 sample of a soil:silica sand (2:1) mixture with a H2 exposure rate (147 nmol H2 cm–3hr–1) similar to that calculated exist in soils located within 1–4 cm of nodules (30–254 nmol H2 cm–3hr–1). After 3 weeks of H2 pretreatment, the treated soils had a Km and Vmax for H2 uptake (1028 ppm and 836 nmol cm–3 hr–1, respectively) much greater than that of control, air-treated soil (40.2 ppm and 4.35 nmol cm–3 hr–1, respectively). In the H2 treated soils, O2, CO2 and H2 exchange rates were measured simultaneously in the presence of various pH2. With increasing pH2, a 5-fold increase was observed in O2 uptake, and CO2 evolution declined such that net CO2 fixation was observed in treatments of 680 ppm H2 or more. At the H2 exposure rate used to pretreat the soil, 60% of the electrons from H2 were passed to O2, and 40% were used to support CO2 fixation. The effect of H2 on the energy and C metabolism of soil may account for the well-known effect of legumes in promoting soil C deposition.  相似文献   

8.
The purpose of this study was to determine the roles of calcium-dependent phospholipase A2 (cPLA2) and calcium-independent phospholipase A2 (iPLA2) in thapsigargin-induced membrane susceptibility to secretory phospholipase A2 (sPLA2) and programmed cell death. 3H-arachidonic acid release was observed in the presence of thapsigargin. This release was inhibited partially by an inhibitor of iPLA2 (BEL) and completely by an inhibitor of both cPLA2 and iPLA2 (MAFP) suggesting that these enzymes were active during apoptosis. The process of cell death did not require the activity of either enzyme since neither inhibitor impeded the progression of apoptosis. However, both inhibitors increased the susceptibility of the membrane to sPLA2 in the presence of thapsigargin. In the case of BEL, this effect appeared to involve direct induction of apoptosis in a sub-population of the cells independent of the action of iPLA2. In conclusion, the results suggested that cPLA2 and iPLA2 are active during thapsigargin-induced apoptosis in S49 cells and that cPLA2 tempers the tendency of the cells to become susceptible to sPLA2 during apoptosis.  相似文献   

9.
Summary

Red algae have the highest known selectivity factor (Srel) for CO2 over O2 of ribulose bisphosphate carboxylase-oxygenase (RUBISCO). This allows the prediction that a red alga relying on diffusive supply of CO2 to RUBISCO from air-equilibrated solution should have less O2 inhibition of photosynthesis than would an otherwise similar non-red alga with a lower Srel of RUBISCO. Furthermore, RUBISCO shows an increased Srel values at low temperatures. The prediction that O 2inhibition of photosynthesis should be small for marine red algae relying on diffusive CO2 entry growing in the North Sea with an annual temperature range of 4–16°C was tested in O2 electrode experiments at 12°C. Phycodrys rubens and Plocamium cartilagineum, which rely on diffusive CO2 entry showed, as predicted, only a small inhibition at lower inorganic C concentrations. Palmaria palmata, which has a CO2 concentrating mechanism, had the expected negligible O 2 inhibition of photosynthesis at any inorganic C concentration except (non-significantly) for saturating inorganic C.  相似文献   

10.

Aim

Many cancers originate and flourish in a prolonged inflammatory environment. Our aim is to understand the mechanisms of how the pathway of prostaglandin E2 (PGE2) biosynthesis and signaling can promote cancer growth in inflammatory environment at cellular and animal model levels.

Main methods

In this study, a chronic inflammation pathway was mimicked with a stable cell line that over-expressed a novel human enzyme consisting of cyclooxygenase isoform-2 (COX-2) linked to microsomal (PGE2 synthase-1 (mPGES-1)) for the overproduction of pathogenic PGE2. This PGE2-producing cell line was co-cultured and co-implanted with three human cancer cell lines including prostate, lung, and colon cancers in vitro and in vivo, respectively.

Key findings

Increases in cell doubling rates for the three cancer cell types in the presence of the PGE2-producing cell line were clearly observed. In addition, one of the four human PGE2 subtype receptors, EP1, was used as a model to identify PGE2-signaling involved in promoting the cancer cell growth. This finding was further proven in vivo by co-implanting the PGE2-producing cells line and the EP1-positive cancer cells into the immune deficient mice, after that, it was observed that the PGE2-producing cells promoted all three types of cancer formation in the mice.

Significance

This study clearly demonstrated that the human COX-2 linked to mPGES-1 is a pathway that, when mediated by the EP, is linked to promoting cancer growth in a chronic inflammatory environment. The identified pathway could be used as a novel target for developing and advancing anti-inflammation and anti-cancer interventions.  相似文献   

11.
ZrO2 supported La2O3 catalyst prepared by impregnation method was examined in the transesterification reaction of sunflower oil with methanol to produce biodiesel. It was found that the catalyst with 21 wt% loaded La2O3 and calcined at 600 °C showed the optimum activity. The basic property of the catalyst was studied by CO2-TPD, and the results showed that the fatty acid methyl ester (FAME) yield was related to their basicity. The catalyst was also characterized by TG–DTA, XRD, FTIR, SEM and TEM, and the mechanism for the formation of basic sites was discussed. It was also found that the crystallite size of support ZrO2 decreased by loading of La2O3, and the model of the solid-state reaction on the surface of La2O3/ZrO2 catalyst was proposed. Besides, the influence of various reaction variables on the conversion was investigated.  相似文献   

12.
A new supermolecular assembly crystal, [C6H8N2]6H3[PW12O40]·2H2O (DMB-PWA), was synthesized with phosphotungstic acid (PWA) and 1,2-diaminobenzene (DMB) under hydrothermal conditions and was characterized by Fourier-transform infrared spectra (FTIR) and single-crystal X-ray diffraction analysis. DMB-PWA could effectively catalyze oxidative degradation of chitosan with H2O2 in the heterogeneous phase. The optimum degradation conditions were determined by orthogonal tests as follows: amount of chitosan 1.00 g, 30% (wt %); H2O2, 3.0 mL; dosage of catalyst, 0.06 g; reaction temperature, 85 °C; and reaction time, 30 min. The water-soluble chitosan with a viscosity-average molecular weight (Mv) of 4900 was obtained under the optimum degradation conditions and was characterized by FTIR, ultraviolet-visible diffuse reflection spectra (UV-vis DRS), and X-ray powder diffraction analysis.  相似文献   

13.
Upregulation and activation of phospholipases A2 (PLA2) and cyclooxygenases (COX) leading to prostaglandin E2(PGE2) production have been implicated in a number of neurodegenerative diseases. In this study, we investigated PGE2 production in primary rat astrocytes in response to agents that activate PLA2 including pro-inflammatory cytokines (IL-1β, TNFα and IFNγ), the P2 nucleotide receptor agonist ATP, and oxidants (H2O2 and menadione). Exposure of astrocytes to cytokines resulted in a time-dependent increase in PGE2 production that was marked by increased expression of secretory sPLA2 and COX-2, but not COX-1 and cytosolic cPLA2. Although astrocytes responded to ATP or phorbol ester (PMA) with increased cPLA2 phosphorylation and arachidonic acid release, ATP or PMA only caused a small increase in levels of PGE2. However, when astrocytes were first treated with cytokines, further exposure to ATP or PMA, but not H2O2 or menadione, markedly increased PGE2 production. These results suggest that ATP release during neuronal excitation or injury can enhance the inflammatory effects of cytokines on PGE2 production and may contribute to chronic inflammation seen in Alzheimer's disease.  相似文献   

14.
Summary In sepsis tissue O2 uptake may be abnormally limited because of a depressed O2 consumption/O2 transport relationship. This study has been performed to assess patterns of O2 consumption, CO2 production and O2 transport in septic patients undergoing total parenteral nutrition; more in particular, this study has investigated the interdependence between the patterns of blood O2 uptake and simultaneous CO2 release, and the availability of substrates (amino acids, glucose and fat). It has been shown that the O2 consumption/O2 transport relationship is significantly influenced by the exogenous amino acid load, which tends to increase O2 uptake and O2 consumption at any given O2 transport, thus suggesting a favourable effect of amino acid administration on energy metabolism. The data on CO2 production and CO2 release, in addition to reconfirming the results of previous studies, have shown that the changes in O2 uptake and in CO2 production mediated by substrate doses have a quantifiable impact on blood O2-CO2 exchange interactions.  相似文献   

15.
《Free radical research》2013,47(1):601-607
Exposure of Lemma sp. to SO2 resulted in an increased activity of superoxide dismutase. About 3 to 4 fold increase in the activity was observed within 30 minutes after the plants were fumigated with 10 ml/l of SO2. Paraquat, a well known superoxide generator, doubled the enzyme activity after 1 hour of treatment with 0.1 mM paraquat. Superoxide dismutase activity was also enhanced by cadmium treatment but the response was not immediate. Optimum increase in the activity of enzyme was observed after 4 days of treatment with 40 mg/l of cadmium in the medium. Treatment with H2O2 very clearly inhibited the activity of superoxide dismutase in Lemna.  相似文献   

16.
17.
The [CO2] in the xylem of tree stems is typically two to three orders of magnitude greater than atmospheric [CO2]. In this study, xylem [CO2] was experimentally manipulated in saplings of sycamore (Platanus occidentalis L.) and sweetgum (Liquidambar styraciflua L.) by allowing shoots severed from their root systems to absorb water containing [CO2] ranging from 0.04% to 14%. The effect of xylem [CO2] on CO2 efflux to the atmosphere from uninjured and mechanically injured, i.e., wounded, stems was examined. In both wounded and unwounded stems, and in both species, CO2 efflux was directly proportional to xylem [CO2], and increased 5-fold across the range of xylem [CO2] produced by the [CO2] treatment. Xylem [CO2] explained 76–77% of the variation in pre-wound efflux. After wounding, CO2 efflux increased substantially but remained directly proportional to internal stem [CO2]. These experiments substantiated our previous finding that stem CO2 efflux was directly related to internal xylem [CO2] and expanded our observations to two new species. We conclude that CO2 transported in the xylem may confound measurements of respiration based on CO2 efflux to the atmosphere. This study also provided evidence that the rapid increase in CO2 efflux observed after tissues are excised or injured is likely the result of the rapid diffusion of CO2 from the xylem, rather than an actual increase in the rate of respiration of wounded tissues.  相似文献   

18.
李术艺  冯旗  董依然 《微生物学报》2021,61(6):1632-1649
地质封存将工业和能源相关领域生产活动产生的二氧化碳(CO2)进行捕集并注入到深部地下岩石构造中,以实现长期储存的目标,是降低温室气体排放、实现CO2长期封存的重要可行性手段之一。向深部地下地质构造中注入大量CO2会导致深地环境发生显著变化,进而引起原生微生物活性及群落结构发生明显改变。因此,地质封存CO2能够直接或间接影响深地微生物驱动的生物地球化学过程。同时,微生物在短期和长期的超临界CO2(scCO2)胁迫作用下,也会通过不同的适应性进化方式影响CO2在地下环境中的迁移、转化和赋存形态。本文介绍了国内外二氧化碳捕获与封存发展现状以及地质封存CO2影响条件下的scCO2-水-微生物-矿物的相互作用领域的最新科研进展,并展望了利用深地微生物强化CO2固定以及将其转化为高附加值产物的潜力。  相似文献   

19.
Menadione-catalyzed H2O2 production by viable cells was proportional to viable cell number, and the assay of this H2O2 production was applied to the cytotoxicity test of 17 substances which were used for international validation of fixed-dose procedure as an alternative to the classical LD50 test. The cytotoxicity of substances tested was observed 4 h after the incubation with animal cells, and the viability was determined in 10 min according to menadione-catalyzed H2O2 production assay. IC50 of each substance required for 50% inhibition of menadione-catalyzed H2O2 production was similar among HepG2, HuH-6KK, HUVE, Vero, Intestine407, NIH/3T3 and Neuro-2a cells. Twelve substances, 3 substances and 2 substances showed the difference of one, two and three orders in the magnitude between LD50 and IC50, respectively. These results show that menadione-catalyzed H2O2 production assay is useful for the rapid detection of toxic compounds having the basal cytotoxicity common to various cells, but is unfit for the detection of organ-specific toxic compounds. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
A simple approach to determine CO2/O2 specificity factor () of ribulose 1,5-bisphosphate carboxylase/oxygenase is described. The assay measures the amount of CO2 fixation at varying [CO2]/[O2] ratios after complete consumption of ribulose 1,5-bisphosphate (RuBP). Carbon dioxide fixation catalyzed by the carboxylase was monitored by directly measuring the moles of 14CO2 incorporated into 3-phosphoglycerate (PGA). This measurement at different [CO2]/[O2] ratios is used to determine graphically by several different linear plots the total RuBP consumed by the two activities and the CO2/O2 specificity factor. The assay can be used to measure the amounts of products of the carboxylase and oxygenase reactions and to determine the concentration of the substrate RuBP converted to an endpoint amount of PGA and phosphoglycolate. The assay was found to be suitable for all [CO2]/[O2] ratios examined, ranging from 14 to 215 micromolar CO2 (provided as 1–16 mM NaHCO3) and 614 micromolar O2 provided as 50% O2. The procedure described is extremely rapid and sensitive. Specificity factors for enzymes of highly divergent values are in good agreement with previously published data.Abbreviations HEPPS N-(2-hydroxyethyl)piperazine-N-(3-propanesulfonic acid) - L large subunit of rubisco - PGA 3-phosphoglyceric acid - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP d-ribulose 1,5-bisphosphate - S small subunit of rubisco - XuBP d-xylulose 1,5-bisphosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号