首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substance P Hydrolysis by Human Serum Cholinesterase   总被引:7,自引:6,他引:1  
Highly purified human serum cholinesterase (EC 3.1.1.8, also known as pseudocholinesterase and butyrylcholinesterase) had peptidase activity toward substance P. Digestion of substance P was monitored by high performance liquid chromatography, which separated three product peptides. The cleavages occurred sequentially. The first peptide to appear as Arg1-Pro2. The Km for this hydrolysis was 0.3 mM; maximum activity was 7.9 nmol min-1 mg-1 of protein, which corresponded to a turnover number of 0.6 min-1. A second cleavage yielded Lys3-Pro4. A third cleavage occurred at the C-terminal, where the amide was removed from Met11 to yield a peptide containing residues 5-11. Both the peptidase and esterase activities of the enzyme were completely inhibited by the anticholinesterase agent, diisopropylfluorophosphate. Substance P inhibited the hydrolysis of benzoylcholine (a good ester substrate) with a KI of 0.17 mM, indicating that substance P interacted with cholinesterase rather than with a trace contaminant. Peptidase and amidase activities for serum cholinesterase are novel activities for this enzyme. It was demonstrated previously that the related enzyme acetylcholinesterase (EC 3.1.1.7) catalyzed the hydrolysis of substance P, but at entirely different cleavage sites from those reported in the present work. Since butyrylcholinesterase is present in brain and muscle, as well as in serum, it may be involved in the physiological regulation of substance P.  相似文献   

2.
Antiserum prepared against highly purified usual human serum cholinesterase (the most common phenotype) cross-reacted identically with the atypical serum cholinesterase. The level of circulating atypical enzyme protein, determined immunologically, was about 30% lower when the enzyme came from an atypical rather than a usual phenotype, and the level of enzyme activity measured enzymatically atV max with eithero-nitrophenylbutyrate or benzoylcholine as substrate showed approximately the same degree of reduction. The average specific activity (activity atV max per microgram of enzyme protein) in sera from 28 usual and 20 atypical individuals did not differ significantly. These findings suggest that the atypical enzyme not only has altered catalytic properties (K)mbut also might be synthesized more slowly, or clearedin vivo more rapidly, than the usual enzyme. This work was supported by U.S. Public Health Service Grants NS 15871 and GM 27028 and by a grant from the Hoffmann-La Roche Foundation.  相似文献   

3.
A family from Newfoundland was found to have a new rare variant for plasma cholinesterase (E.C.3.1.1.8) recognized by a high-percentage inhibition by dibucaine (DN), particularly when succinyldithiocholine was used as substrate (DNSDTC) but also somewhat high when benzoylcholine was substrate (DNBZCH). The family data demonstrated that the variant is determined by an allele of the usual and atypical alleles at locus 1, and the new allele is designated CHE1*NFLD. The proband who was heterozygous for the Newfoundland and atypical alleles had shown sensitivity to succinylcholine. It is postulated that cholinesterase Newfoundland (NFLD) has a reduced affinity for succinylcholine. Samples selected for high DNs with a benzoylcholine from 200 Canadian Caucasians and 70 Newfoundlanders did not have the variant, and, therefore, it is assumed that the remainder of the samples did not have the variant.  相似文献   

4.
1. A gamma-D-glutamyl-L-di-amino acid endopeptidase II (EC3.4.-.-) active on the peptide moieties of some bacterial peptidoglycans has been purified to homogeneity from the sporulation medium and from the spores of Bacillus sphaericus. 2. Enzyme from both sources showed a single protein band (Mr 28,000) by polyacrylamide gel electrophoresis under denaturing conditions. It is an acidic protein (pI 4.1). Kinetic studies have shown a Km value of 0.24 mM and an apparent Vmax of 8.3 mumol min-1 mg-1 with the pentapeptide L-Ala-gamma-D-Glu-L-Lys-D-[14C]Ala-D-[14C]Ala as substrate. 3. The enzyme was inhibited by p-hydroxymercuribenzoate, a sulfhydryl inhibitor. 4. The 38-residue N-terminal region was sequenced. It may be useful to construct a nucleotide probe for the research of the gene encoding this enzyme.  相似文献   

5.
J M Konopka  H A Lardy  P A Frey 《Biochemistry》1986,25(19):5571-5575
Rat liver cytosolic phosphoenolpyruvate carboxykinase (PEPCK) utilizes inosine 5'-(3-thiotriphosphate) (ITP gamma S) as an excellent substrate, with Km and V values of 0.08 mM and 37 mumol min-1 (mg of protein)-1, respectively, compared with the corresponding values of 0.168 mM and 76 mumol min-1 (mg of protein)-1 for ITP. Thus, the V/Km values for the two substrates are the same. Reaction of (RP)-[gamma-18O2]ITP gamma S with oxalacetate catalyzed by cytosolic PEPCK produces (SP)-thio[18O]phosphoenolpyruvate. Therefore, thiophosphoryl transfer catalyzed by this enzyme proceeds with overall inversion of configuration at P. The reaction mechanism involves an uneven number of phosphotransfer steps, most likely a single step transfer between bound substrates. The results do not support the involvement of a phosphoryl enzyme intermediate in the mechanism.  相似文献   

6.
Pressure, as a perturbing variable, is one of the most powerful tools to investigate the thermodynamic parameters of chemical reactions and to study the mechanism of enzyme-catalyzed reactions. The effect of elevated hydrostatic pressure (up to 0.8 kbar) on the reaction of butyrylcholinesterase with N-methyl-(7-dimethylcarbamoxy)quinolinium was determined under single-turnover conditions at 35 degrees C. The rate of carbamylation was monitored as the accumulation of the fluorescent ion, N-methyl-7-hydroxyquinolinium, in a high-pressure stopped-flow apparatus designed for the assay of fluorescence. Elevated pressure favored formation of the enzyme-substrate complex but inhibited carbamylation of the enzyme. Because a single reaction step was recorded, it was possible to interpret the data obtained under high pressure in the form of Michaelis-Menten equations. From the pressure dependence of the dissociation constant for the enzyme-substrate complex and the rate constant for carbamylation, maximal volume changes accompanying these events were determined. The value for the binding process, delta Vb = -129 ml.mol-1, is too large to be related only to volumetric changes in the active center. Substrate-induced conformational change and change of water structure appear to be the dominant contributions to the overall volume change associated with substrate binding. The large positive activation volume measured (delta V not equal to = 119 ml.mol-1) may also reflect extended structural and hydration changes. At pressures greater than 0.4 kbar, an additional pressure effect, dependent on substrate concentration, occurred in a narrow pressure interval. This effect may have resulted from a substrate-induced pressure-sensitive enzyme conformational state.  相似文献   

7.
The kinetic properties of Trypanosoma brucei brucei triose-phosphate isomerase are compared with those of the commercially available rabbit muscle and yeast enzymes and with published data on the chicken muscle enzyme. With glyceraldehyde 3-phosphate as substrate Km = 0.25 +/- 0.05 mM and kcat = 3.7 X 10(5) min-1. With dihydroxyacetone phosphate as substrate Km = 1.2 +/- 0.1 mM and kcat = 6.5 X 10(4) min-1. The pH dependence of Km and Vmax at 0.1 M ionic strength is in agreement with the results published for the yeast and chicken muscle enzymes. At ionic strength below 0.05 M the effect of a charged group specific for the trypanosomal enzyme and absent from the yeast and rabbit muscle enzymes becomes detectable. This effect significantly increases Km whereas Vmax becomes slightly higher. Trypanosomal triose-phosphate isomerase is inhibited by sulphate, phosphate and arsenate ions, by 2-phosphoglycolate and a number of documented inhibitors in the same concentration range as are the other triose-phosphate isomerases. The trypanocidal drug, Suramin inhibits T. brucei and rabbit muscle triose-phosphate isomerase to the same extent while leaving the yeast enzyme relatively unaffected.  相似文献   

8.
Acetyl phosphate produced an increase in the maximum velocity (Vmax. for the carboxylation of phosphoenolpyruvate catalysed by phosphoenolpyruvate carboxylase. The limiting Vmax. was 22.2 mumol X min-1 X mg-1 (185% of the value without acetyl phosphate). This compound also decreased the Km for phosphoenolpyruvate to 0.18 mM. The apparent activation constants for acetyl phosphate were 1.6 mM and 0.62 mM in the presence of 0.5 and 4 mM-phosphoenolpyruvate respectively. Carbamyl phosphate produced an increase in Vmax. and Km for phosphoenolpyruvate. The variation of Vmax./Km with carbamyl phosphate concentration could be described by a model in which this compound interacts with the carboxylase at two different types of sites: an allosteric activator site(s) and the substrate-binding site(s). Carbamyl phosphate was hydrolysed by the action of phosphoenolpyruvate carboxylase. The hydrolysis produced Pi and NH4+ in a 1:1 relationship. Values of Vmax. and Km were 0.11 +/- 0.01 mumol of Pi X min-1 X mg-1 and 1.4 +/- 0.1 mM, respectively, in the presence of 10 mM-NaHCO3. If HCO3- was not added, these values were 0.075 +/- 0.014 mumol of Pi X min-1 X mg-1 and 0.76 +/- 0.06 mM. Vmax./Km showed no variation between pH 6.5 and 8.5. The reaction required Mg2+; the activation constants were 0.77 and 0.31 mM at pH 6.5 and 8.5 respectively. Presumably, carbamyl phosphate is hydrolysed by phosphoenolpyruvate carboxylase by a reaction the mechanism of which is related to that of the carboxylation of phosphoenolpyruvate.  相似文献   

9.
Characterization of proline endopeptidase from rat brain   总被引:1,自引:0,他引:1  
P C Andrews  C M Hines  J E Dixon 《Biochemistry》1980,19(24):5494-5500
A homogeneous proline endopeptidase from rat brain is characterized with respect to its substrate specificity and the residues essential for catalysis. The two fluorogenic substrate analogues tested, pyroglutamylhistidylprolyl-beta-naphthylamide and pyroglutamy(N-benzylimidazolyl)-histidylprolyl-beta-naphthylamide, have higher Vmax values (19.5 and 26.9 mumol . min-1 . mg-1, respectively) and considerably lower Km values (0.034 and 0.020 mM, respectively) than pyroglutamylhistidylprolylamide (Vmax = 2.9 mumol . min-1 . mg-1 and Km = 4.1 mM). Both fluorogenic substrates give rise to pH optima and pH-rate profiles similar to those of the amide. Values of Km and kcat are determined as a function of pH. Km is pH independent, with the titration curve for kcatKm-1 implicating an active-site residue(s) with a pKa of 6.2. Proline endopeptidase can be completely inactivated by low concentrations of diisopropyl fluorophosphate with an observed second-order rate constant of 2.5 x 10(4) min-1 . M-1. The stoichiometry of the alkylphosphorylation is 0.83 mol/mol of enzyme. The pH dependence of the inactivation by diisopropylfluorophosphate implicates a residue(s) involved in covalent bond formation having a pKa of 6.0. These data suggest that proline endopeptidase is a serine proteinase.  相似文献   

10.
The ligand binding and kinetic behaviour of butyrylcholinesterase (EC 3.1.1.8, acylcholine acylhydrolase) from human plasma was studied at 35 degrees C under high hydrostatic pressure. The binding of phenyltrimethylammonium was studied by affinity electrophoresis at various pressures ranging from 10(-3) to 2 kbar. The kinetics of enzyme carbamylation with N-methyl(7-dimethylcarbamoxy)quinolinium iodide was studied in single-turnover conditions up to 1.2 kbar using a high-pressure stopped-flow fluorimeter. Experiments were carried out in different media: 1 mM Tris-HCl (pH 8) with water, water containing 0.1 M lithium chloride and deuterium oxide as solvents. The volume changes (delta V and delta V++) associated with each process were determined from the pressure-dependence of the binding and kinetic constants. Kinetic data show that the binding of substrate to the enzyme leads to a pressure-sensitive enzyme conformational state which cannot accomplish the catalytic act. The pressure-induced inhibitory effect is highly cooperative; it depends on both the nature (charged or neutral) and the concentration of the substrate. Also, large solvent effects indicate that enzyme sensitivity to pressure depends on the solvent structure. This findings suggests that the substrate-dependent pressure effect is modulated by the solvation state of the enzyme.  相似文献   

11.
J P Benedetto  M B Martel  R Got 《Biochimie》1979,61(10):1125-1132
Kinetic studies indicate that glucose-6-phosphatase is a multifunctional enzyme. a) Phosphohydrolase activities. The mannose-6-phosphatase activity is low (Km = 8 mM, VM = 90 nmoles. min-1mg-1). The enzyme shows a strong affinity for glucose-6-phosphate (Km = 2.5 mM, VM = 220 nmoles.min-1mg-1). beta-glycerophosphate (K1 = 30 mM), D-glucose (Ki = 120 mM) are mixed type inhibitors; pyrophosphate (Ki = 2 mM) is a non competitive one. b) Phosphotransferase activities. Di and triphosphate adenylic nucleosides or phosphoenol pyruvate are not substrates. Carbamylphosphate serves as a phosphoryl donor with D-glucose as acceptor. The phosphate transfer is consisstent with a random mechanism in which the binding of one substrate increases the enzymes affinity for the second substrate. Apparent Km values for carbamyl-phosphate range from 5.2 mM (D-glucose concentration leads to infinity) to 8 mM (D-glucose concentration leads to 0). The corresponding apparent Km values for D-glucose are 59 mM (carbamyl-phosphate concentration leads to infinity) to 119 mM (carbamyl-phosphate concentration leads to 0). Maximal reaction velocity with infinite levels of both substrates is 270 nmoles.min-1.mg-1. Pyrophosphate is a poor phosphoryl donnor (Km = 55 mM with D-glucose concentration 250 mM). In addition we do not find any latency; detergents, namely sodium deoxycholate, Triton X 100 do not affect or inhibit glucose-6-phosphatase activity.  相似文献   

12.
Glycerate-3-kinase (EC 2.7.1.31) from spinach leaves shows absolute specificity for D-glycerate as phosphate acceptor, yielding 3-phosphoglycerate as a product. ATP complexed with either Mg2+ or Mn2+ is the preferred phosphate donor. The enzyme has Km (D-glycerate) = 0.25 mM, Km (Mg-ATP) = 0.21 mM, Vmax = 300 mumol min-1 mg protein-1, and a turnover number = 12,000 X min-1. The equilibrium constant for the reaction is approximately 300 at pH 7.8. Pyrophosphate, 3-phosphoglycerate and ribulose 1,5-bisphosphate are the strongest inhibitors among the phosphorylated and nonphosphorylated metabolites tested; however, their regulatory role in vivo is questioned. Substrate kinetics, as well as product and analog inhibition data, are consistent with a sequential random mechanism. The distinct characteristic of the glycerate kinase-catalyzed reaction is the formation of a dead-end complex between the enzyme, D-glycerate, and 3-phosphoglycerate.  相似文献   

13.
Flounder (Platichthys flesus) muscle contains two types of cholinesterases, that differ in molecular form and in substrate specificity. Both enzymes were purified by affinity chromatography. About 8% of cholinesterase activity could be attributed to collagen-tailed asymmetric acetylcholinesterase sedimenting at 17S, 13S and 9S, which showed catalytic properties of a true acetylcholinesterase. 92% of cholinesterase activity corresponded to an amphiphilic dimeric enzyme sedimenting at 6S in the presence of Triton X-100. Treatment with phospholipase C yielded a hydrophilic form and uncovered an epitope called the cross-reacting determinant, which is found in the hydrophilic form of a number of glycosyl-phosphatidylinositol-anchored proteins. This enzyme showed catalytic properties intermediate to those of acetylcholinesterase and butyrylcholinesterase. It hydrolyzed acetylthiocholine, propionylthiocholine, butyrylthiocholine and benzoylthiocholine. The Km and the maximal velocity decreased with the length and hydrophobicity of the acyl chain. At high substrate concentrations the enzyme was inhibited. The p(IC50) values for BW284C51 and ethopropazine were between those found for acetylcholinesterase and butylcholinesterase. For purified detergent-soluble cholinesterase a specific activity of 8000 IU/mg protein, a turnover number of 2.8 x 10(7) h-1, and 1 active site/subunit were determined.  相似文献   

14.
The reduction of the heterodisulfide of coenzyme M (H-S-CoM) and 7-mercaptoheptanoyl-L-threonine phosphate (H-S-HTP) is a key reaction in the metabolism of methanogenic bacteria. The heterodisulfide reductase catalyzing this step was purified 80-fold to apparent homogeneity from Methanobacterium thermoautotrophicum. The native enzyme showed an apparent molecular mass of 550 kDa. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed the presence of three different subunits of apparent molecular masses 80 kDa, 36 kDa, and 21 kDa. The enzyme, which was brownish yellow, contained per mg protein 7 +/- 1 nmol FAD, 130 +/- 10 nmol non-heme iron and 130 +/- 10 nmol acid-labile sulfur, corresponding to 4 mol FAD and 72 mol FeS/mol native enzyme. The purified heterodisulfide reductase catalyzed the reduction of CoM-S-S-HTP (app. Km = 0.1 mM) with reduced benzylviologen at a specific rate of 30 mumol.min-1.mg protein-1 (kcat = 68 s-1) and the reduction of methylene blue with H-S-CoM (app. Km = 0.2 mM) plus H-S-HTP (app. Km less than 0.05 mM) at a specific rate of 15 mumol.min-1.mg-1. The enzyme was highly specific for CoM-S-S-HTP and H-S-CoM plus H-S-HTP. The physiological electron donor/acceptor remains to be identified.  相似文献   

15.
1. Two mitochondrial forms of acetoacetyl-CoA thiolases designated as enzyme A and enzyme B were crystallized from ox liver. They could be shown to be homogenous by polyacrylamide gel electrophoresis. 2. In direction of acetoacetyl-CoA cleavage enzyme A shows a double competitive substrate inhibition when acetoacetyl-CoA is varied at different fixed CoA concentrations. With enzyme B a parallel kinetic pattern is obtained when acetoacetyl-CoA is varied at different fixed CoA concentrations. In direction of acetoacetyl-CoA synthesis both enzymes show linear reciprocal plots of initial velocities against acetyl-CoA concentrations in absence of CoA. These initial velocity kinetics in the forward and in the reverse direction are in accordance with a ping-pong mechanism of reaction for both enzymes involving an acetyl-S-enzyme as intermediate. 3. Under saturating concentrations of substrate, the ratios of acetoacetyl-CoA synthesis/aceto-acetyl-CoA cleavage is 0.31 for enzyme A and 0.08 for enzyme B. The maximum velocity in direction of acetoacetyl-CoA synthesis of enzymes A and B are 0.43 mumol X min-1 X unit thiolase-1 and 0.10 mumol X min-1 X unit thiolase-1, respectively. 4. Both enzymes show nearly the same affinity for acetyl-CoA. The Km values are 91 muM (enzyme A) and 80 muM (enzyme B). 5. Coenzyme A and acetoacetyl-CoA both act as inhibitors in direction of acetoacetyl-CoA synthesis: coenzyme A is a nonlinear competitive inhibitor of both enzymes. Acetoacetyl-CoA exerts a negative cooperativity on enzyme A (nH = 0.63) and is a competitive inhibitor for enzyme B (Ki = 1.6 muM). 6. The catalytic and regulatory properties of the acetoacetyl-CoA thiolases A and B are discussed in terms of their proposed role in regulating ketogenesis. Intracellular fluctuations of acetoacetyl-CoA/3-hydroxybutyryl-CoA ratios, resulting in a suspension of inhibition of both enzymes at high NADH/NAD ratios, are postulated as a control mechanism of ketogenesis in addition to mechanisms already known.  相似文献   

16.
beta-Glucosidase is a key enzyme in the hydrolysis of cellulose to D-glucose. beta-Glucosidase was purified from cultures of Trichoderma reesei QM 9414 grown on wheat straw as carbon source. The enzyme hydrolyzed cellobiose and aryl beta-glucosides. The double-reciprocal plots of initial velocity vs. substrate concentration showed substrate inhibition with cellobiose and salicin. However, when p-nitrophenyl beta-D-glucopyranoside was the substrate no inhibition was observed. The corresponding kinetic parameters were: K = 1.09 +/- 0.2 mM and V = 2.09 +/- 0.52 mumol.min-1.mg-1 for salicin; K = 1.22 +/- 0.3 mM and V = 1.14 +/- 0.21 mumol.min-1.mg-1 for cellobiose; K = 0.19 +/- 0.02 mM and V = 29.67 +/- 3.25 mumol.min-1.mg-1 for p-nitrophenyl beta-D-glucopyranoside. Studies of inhibition by products and by alternative product supported an Ordered Uni Bi mechanism for the reaction catalyzed by beta-glucosidase on p-nitrophenyl beta-D-glucopyranoside as substrate. Alternative substrates as salicin and cellobiose, a substrate analog such as maltose and a product analog such as fructose were competitive inhibitors in the p-nitrophenyl beta-D-glucopyranoside hydrolysis.  相似文献   

17.
Two different aminotransferases, that have glyoxylate as the amino acceptor, have specific activities of 1 to 2 mumol . min-1 . mg of protein-1 in the isolated peroxisomal fraction from spinach leaves. Their properties were evaluated after separation on a hydroxylapatite column. Both enzymes had a Km for glyoxylate of 0.15 mM and an amino acid Km of 2 to 3 mM. Reactions proceeded by a Ping Pong Bi Bi mechanism. Serine:glyoxylate aminotransferase was relatively specific for both substrates and could only be slightly reversed with 100 mM glycine, although the Ki of glycine was 33 mM. The glutamate:glyoxylate amino-transferase protein was equally active in catalyzing an alanine:glyoxylate aminotransferase reaction, but the reverse reactions with 100 mM glycine were hardly measureable, although the Ki (glycine) was 8.7 mM. Protection against hydroxylamine inhibition from reaction with pyridoxal phosphate was used to investigate the specificity of amino acid binding. Substrate amino acids protected at about the same concentration as their Km, while glycine protected at its Ki concentration. Thus, the nearly irreversible catalysis with glycine is not due to a failure to bind glycine. The significance of a peroxisomal alanine:glyoxylate aminotransferase activity has not been incorporated into schemes for the oxidative photosynthetic carbon cycle.  相似文献   

18.
An extracellular beta-glucosidase (EC 3.2.1.21) was purified from culture filtrate of the anaerobic rumen fungus Orpinomyces sp. strain PC-2 grown on 0.3% (wt vol-1) Avicel by using Q Sepharose anion-exchange chromatography, ammonium sulfate precipitation, chromatofocusing ion-exchange chromatography, and Superose 12 gel filtration. The enzyme is monomeric with a M(r) of 85,400, as estimated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, has a pI of 3.95, and contains about 8.5% (wt vol-1) carbohydrate. The N terminus appears to be blocked. The enzyme catalyzes the hydrolysis of cellobiose and p-nitrophenyl-beta-D-glucoside (PNPG). The Km and Vmax values with cellobiose as the substrate at pH 6.0 and 40 degrees C are 0.25 mM and 27.1 mumol.min-1 x mg-1, respectively; with PNPG as the substrate, the corresponding values are of 0.35 mM and 27.7 mumol.min-1 x mg-1. Glucose (Ki = 8.75 mM, with PNPG as the substrate) and gluconolactone (Ki = 1.68 x 10(-2) and 2.57 mM, with PNPG and cellobiose as the substrates, respectively) are competitive inhibitors. Optimal activity with PNPG and cellobiose as the substrates is at pH 6.2 and 50 degrees C. The enzyme has high activity against sophorose (beta-1,2-glucobiose) and laminaribiose (beta-1,3-glucobiose) but has no activity against gentiobiose (beta-1,6-glucobiose). The activity of the beta-glucosidase is stimulated by Mg2+, Mn2+, Co2+, and Ni2+ and inhibited by Ag+, Fe2+, Cu2+, Hg2+, SDS, and p-chloromercuribenzoate.  相似文献   

19.
Prolonged incubation of zinc-zinc leucine aminopeptidase (bovine lens) (EC 3.4.1.1) with 0.05 M CoCl2 and M KCl in 0.2 M N-ethylmorpholine-HCl at pH 7.5 and 37 degrees yields an active enzyme in which 2 g atoms of Co2+ per 54,000 dalton subunit have replaced the Zn2+. Incubation of cobalt-cobalt leucine aminopeptidase with various AnCl2 concentrations or zinc-zinc leucine aminopeptidase with various CoCl2 concentrations in M KCl and 0.2 M N-ethylmorpholine-HCl at pH 7.5 and 37 degrees demonstrates that Co2+ and Zn2+ compete reversibly for two independent binding sites per subunit for which the ratio of the association constants for Zn2+ and Co2+ (1KZn:1KCo = 1KZn/Co; 2KZn:2KCo = 2KZn/Co) are 115 and 15.9 for sites 1 and 2, respectively. The specific activities of the various species of enzyme with 2 mM L-leucine p-nitroanilide as substrate in 0.2 M N-ethylmorpholine-HCl and 0.01 M NaHCO3 at pH 7.5 are estimated to be (in micromoles per min per mg) 0.043 for the zinc-zinc. 0.039 for the zinc-cobalt, 0.541 for the cobalt-zinc, and 0.536 for the cobalt-cobalt forms, which implies that activity is affected only when cobalt is substituted at site 1, the "activation site." The site, at which cobalt substitution has no effect on activity, is designated the "structural site." The value of Km for cobalt-cobalt leucine aminopeptidase with L-leucine p-nitroanilide as substrate in 0.2 M N-ethylmorpholine-HCl at pH 7.5 containing 0.01 M NaHCO3 at 30 degrees is 0.52 mM while Vmax is 0.90 mumol per min per mg. In the additional presence of 1 M KCl, Km is 0.19 mM while Vmax is 0.68 mumol per min per mg.  相似文献   

20.
The reaction velocity of glucose-6-phosphate dehydrogenase (G6PDH) and phosphogluconate dehydrogenase (PGDH) was quantified with a cytophotometer by continuous monitoring of the reaction product as it was formed in liver cryostat sections from normal, young mature female rats at 37 degrees C. Control incubations were performed in media lacking both substrate and coenzyme for G6PDH activity and lacking substrate for PGDH activity. All reaction rates were non-linear but test minus control reactions showed linearity with incubation time up to 5 min using Nitro BT as final electron acceptor. End point measurements after incubation for 5 min at 37 degrees C revealed that the highest specific activity of G6PDH was present in the intermediate area (Vmax = 7.79 +/- 1.76 mumol H2 cm-3 min-1) and of PGDH in the pericentral and intermediate areas (Vmax = 17.19 +/- 1.73 mumol H2 cm-3 min-1). In periportal and pericentral areas, Vmax values for G6PDH activity were 4.48 +/- 1.03 mumol H2 cm-3 min-1) and 3.47 +/- 0.78 mumol H2 cm-3 min-1), respectively. PGDH activity in periportal areas showed a Vmax of 10.84 +/- 0.33 mumol H2 cm3 min-1. Variation of the substrate concentration for G6PDH activity yielded similar KM values of 0.17 +/- 0.07 mM, 0.15 +/- 0.13 mM and 0.22 +/- 0.11 mM in periportal, pericentral and intermediate areas, respectively. KM values of 0.87 +/- 0.12 mM in periportal and of 1.36 +/- 0.10 mM in pericentral and intermediate areas were found for PGDH activity. The significant difference between KM values for PGDH in areas within the acinus support the hypothesis that PGDH is present in the cytoplasmic matrix and in the microsomes. A discrepancy existed between KM and Vmax values determined in cytochemical assays using cryostat sections and values calculated from biochemical assays using diluted homogenates. In cytochemical assays, the natural microenvironment for enzymes is kept for the demonstration of their activity and thus may give more accurate information on enzyme reactions as they take place in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号