首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Immobilized antibody microarrays were compared to the Luminex flow cytometry system that utilizes suspensions of polystyrene microbeads covalently coupled with capture antibodies. The two immunoassays were performed for comparison of reproducibility, limits of detection and dynamic range. The Luminex system showed lower limits of detection and increased dynamic range among samples whereas the protein microarrays could be more amenable to miniaturization. Both technologies were capable of sensitive multiplexed detection.  相似文献   

3.
In recent years, in situ protein synthesis microarray technologies have enabled protein microarrays to be created on demand just before they are needed. In this paper, we utilized the TUS-TER immobilization technology to allow label-free detection with real-time kinetics of protein–protein interactions using surface plasmon resonance imaging (SPRi). We constructed an expression-ready plasmid DNA with a C-terminal TUS fusion tag to directionally immobilize the in situ synthesized recombinant proteins onto the surface of the biosensor. The expression plasmid was immobilized on the polyethylene imine-modified gold surface, which was then coupled with a cell-free expression system on the flow cell of the SPRi instrument. The expressed TUS fusion proteins bind on the surface via the immobilized TER DNA sequence with high affinity (∼3–7 × 10−13 M). The expression and immobilization of the recombinant in situ expressed proteins were confirmed by probing with specific antibodies. The present study shows a new low cost method for in situ protein expression microarrays that has the potential to study the kinetics of protein–protein interactions. These protein microarrays can be created on demand without the problems of stability associated with protein arrays used in the drug discovery and biomarker discovery fields.  相似文献   

4.
Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less established, and one reason for this is a lack of suitable glycans with which to populate arrays. Polysaccharide microarrays are relatively easy to produce because of the ease of immobilizing large polymers noncovalently onto a variety of microarray surfaces, but they lack analytical resolution because polysaccharides often contain multiple distinct carbohydrate substructures. Microarrays of defined oligosaccharides potentially overcome this problem but are harder to produce because oligosaccharides usually require coupling prior to immobilization. We have assembled a library of well characterized plant oligosaccharides produced either by partial hydrolysis from polysaccharides or by de novo chemical synthesis. Once coupled to protein, these neoglycoconjugates are versatile reagents that can be printed as microarrays onto a variety of slide types and membranes. We show that these microarrays are suitable for the high throughput characterization of the recognition capabilities of monoclonal antibodies, carbohydrate-binding modules, and other oligosaccharide-binding proteins of biological significance and also that they have potential for the characterization of carbohydrate-active enzymes.  相似文献   

5.
Protein microarrays are playing an increasingly important role in the discovery and characterization of protein-ligand interactions. The uniform orientation conferred by site-specific immobilization is a demonstrable advantage in using such microarrays. Here, we report on a general strategy for fabricating gold surfaces displaying a protein in a uniform orientation. An azido group was installed at the C-terminus of a model protein, bovine pancreatic ribonuclease, by using the method of expressed protein ligation and a synthetic bifunctional reagent. This azido protein was immobilized by Staudinger ligation to a phosphinothioester-displaying self-assembled monolayer on a gold surface. Immobilization proceeded rapidly and selectively via the azido group. The immobilized enzyme retained its catalytic activity and was able to bind to its natural ligand, the ribonuclease inhibitor protein. This strategy provides a general means to fabricate microarrays displaying proteins in a uniform orientation.  相似文献   

6.
Anbazhagan R 《BioTechniques》2002,32(6):1398-1402
Microarrays are extensively used in molecular biology experiments. While several vendors offer microarrays on a variety of platforms, many researchers prefer to use custom microarrays with a selected list of clones for their experiments. Many research centers have established core facilities for the production of custom microarrays. Microarray production involves a number of steps, including maintaining a master list of stock clones, selecting required clones for custom microarrays, subculturing selected clones, amplifying inserts, recording results, and identifying the orientation of clones in the microarray. We have created a simple, user-friendly, and versatile Microsoft Excel spreadsheet-based software, Microarray Assistant, which can assist the user in all the steps of microarray design and synthesis. In addition, the program gives options to insert, delete, or interchange clones during various steps. The program also gives a visual picture of the locations of the clones in the plates, as well as in the microarray. The program can also be used to assist in the transfer of clones between plates of different configuration.  相似文献   

7.
Dougherty JD  Geschwind DH 《Neuron》2005,45(2):183-185
The power of microarrays in neuroscience has been challenged by the cellular heterogeneity and complexity of the central nervous system. In this issue of Neuron, Arlotta, Molyneaux, and colleagues have developed a technique combining retrograde labeling, flow cytometry, and microarrays to purify and molecularly characterize a specific population of neurons from the brain, focusing here on cortical projection neurons. We discuss these findings and the implications of this development for both systems and molecular neuroscience.  相似文献   

8.
We have fabricated double-stranded DNA (dsDNA) microarrays containing unimolecular hairpin dsDNA probes immobilized on glass slides. The unimolecular hairpin dsDNA microarrays were manufactured by four steps: Firstly, synthesizing single-stranded DNA (ssDNA) oligonucleotides with two reverse-complementary sequences at 3' hydroxyl end and an overhang sequence at 5' amino end. Secondly, microspotting ssDNA on glutaraldehyde-derived glass slide to form ssDNA microarrays. Thirdly, annealing two reverse-complementary sequences to form hairpin primer at 3' end of immobilized ssDNA and thus to create partial-dsDNA microarray. Fourthly, enzymatically extending hairpin primer to convert partial-dsDNA microarrays into complete-dsDNA microarray. The excellent efficiency and high accuracy of the enzymatic synthesis were demonstrated by incorporation of fluorescently labeled dUTPs in Klenow extension and digestion of dsDNA microarrays with restriction endonuclease. The accessibility and specificity of the DNA-binding proteins binding to dsDNA microarrays were verified by binding Cy3-labeled NF-kappaB to dsDNA microarrays. The dsDNA microarrays have great potential to provide a high-throughput platform for investigation of sequence-specific DNA/protein interactions involved in gene expression regulation, restriction and so on.  相似文献   

9.
Detection of antigen-specific T cells on p/MHC microarrays   总被引:1,自引:0,他引:1  
The development of high-throughput protein microarrays for rapidly determining antigen-specific T-cell receptor repertoires of diverse T-cell populations can enable comprehensive, broad-based analyses of T-cell responses. Promising applications include medical diagnostics, vaccine development, treatment of autoimmune diseases and detection of potential agents of bioterrorism. In this study, we examined the feasibility of using peptide/major histocompatibility complex (p/MHC) microarrays to selectively capture and enumerate antigen-specific T cells. Results are presented for p/MHC microarrays consisting of a dimeric MHC-immunoglobulin complex, K(b)-Ig, loaded with either a cognate or non-cognate peptide for binding CD8(+) T cells. We quantified the sensitivity of these K(b)-Ig microarrays by measuring a lower detection limit of 0.05% antigen-specific CD8(+) T cells mixed with splenocytes from C57BL/6J mouse. A fivefold increase in this lower detection limit (0.01%) was achieved using a secondary capture anti-Ig antibody to coat the microarray surface. This higher sensitivity is comparable to that obtained using standard state-of-the-art fluorescence activated cell sorting (FACS) instruments. We also found that contacting the T-cell suspension with the K(b)-Ig microarrays under mild shear flow conditions produced more uniform distributions of captured T cells on the individual spots and better spot-to-spot reproducibility across the entire microarray.  相似文献   

10.
Protein microarrays or proteome chips are potentially powerful tools for comprehensive analysis of protein-protein interactions. In interaction analysis, a set of immobilized proteins is arrayed on slides and each slide is probed with a set of fluorescently labeled proteins. Here we have developed and tested an in vitro protein microarray, in which both arraying and probing proteins were prepared by cell-free translation. The in vitro synthesis of fluorescently labeled proteins was accomplished by a new method: a fluorophore-puromycin conjugate was incorporated into a protein at the C-terminus on the ribosome. The resulting fluorescently labeled proteins were confirmed to be useful for probing protein-protein interactions on protein microarrays in model experiments. Since the in vitro protein microarrays can easily be extended to a high-throughput format and also combined with in vitro display technologies such as the streptavidin-biotin linkage in emulsions method (Doi and Yanagawa, FEBS Lett. 1999, 457, 227-230), our method should be useful for large-scale analysis of protein-protein interactions.  相似文献   

11.
The aims were to evaluate the common reference design approach in microarray experiments and to evaluate the technical performance and the normalisation of cDNA microarrays with a limited number of spots. Total RNA from 3 normal and 3 tumour sample biopsies were used for synthesis of amino-allyl labelled cRNA. Equal amounts of cRNA from all samples were mixed as reference. After conjugation of cRNA with fluorophores (Cy3/Cy5), each individual tumour cRNA was hybridised to a cDNA microarray together with reference cRNA, scanned and analysed. We show that our procedures for producing cDNA microarrays are reproducible. The concordance between duplicated spots and replicate hybridisation was found to be high. We have demonstrated that our cDNA microarrays are of a high technical quality. The majority of the cDNA microarrays had low local spot background levels. Despite the high background levels for some local spots, variation could be minimized by locally weighted scatter plot smooth normalisation (LOWESS), which we showed was also suitable for normalisation of cDNA microarrays with a limited number of probes.  相似文献   

12.
Microarrays offer a compact solution for massively parallel screening. In recent years, microarrays have branched away from the exclusive pursuit of small molecule 'hits' in target centric screens, towards the sophisticated dissection of disease biology and comparative profiling of cellular states. This has led to innovative and instructive ways in which the platform may be deployed, providing new-found methods with which to harness the throughput achievable. Library design and diversity continues to drive success with peptide and small molecule microarrays. Newer synthesis and immobilization strategies extend the already wide repertoire of fabrication methods available. Herein we describe the latest advances in the small molecule and peptide microarray arena, which herald even more exciting breakthroughs in the coming decade.  相似文献   

13.
Synthetic DNA probes attached to microarrays usually range in length from 25 to 70 nucleotides. There is a compromise between short probes with lower sensitivity, which can be accurately synthesized in higher yields, and long probes with greater sensitivity but lower synthesis yields. Described here are microarrays printed with spots containing a mixture of two short probes, each designed to hybridize at noncontiguous sites in the same targeted sequence. We have shown that, for a printed microarray, mixed probe spots containing a pair of 30mers show significantly greater hybridization than spots containing a single 30mer and can approach the amount of hybridization to spots containing a 60mer or a 70mer. These spots with mixed oligonucleotide probes display cooperative hybridization signals greater than those that can be achieved by either probe alone. Both the higher synthesis yields of short probes and the greater sensitivity of long oligonucleotides can be utilized. This strategy provides new design options for microarray hybridization assays to detect RNA abundance, RNA splice variants, or sequence polymorphisms.  相似文献   

14.
The preparation of effective conventional antibody microarrays depends on the availability of high quality material and on the correct accessibility of the antibody active moieties following their immobilization on the support slide. We show that spotting bacteria that expose recombinant antibodies on their external surface directly on nanostructured-TiO(2) or epoxy slides (purification-independent microarray - PIM) is a simple and reliable alternative for preparing sensitive and specific microarrays for antigen detection. Variable domains of single heavy-chain antibodies (VHHs) against fibroblast growth factor receptor 1 (FGFR1) were used to capture the antigen diluted in serum or BSA solution. The FGFR1 detection was performed by either direct antigen labeling or using a sandwich system in which FGFR1 was first bound to its antibody and successively identified using a labeled FGF. In both cases the signal distribution within each spot was uniform and spot morphology regular. The signal-to-noise ratio of the signal was extremely elevated and the specificity of the system was proved statistically. The LOD of the system for the antigen was calculated being 0.4ng/mL and the dynamic range between 0.4ng/mL and 10μg/mL. The microarrays prepared with bacteria exposing antibodies remain fully functional for at least 31 days after spotting. We finally demonstrated that the method is suitable for other antigen-antibody pairs and expect that it could be easily adapted to further applications such as the display of scFv and IgG antibodies or the autoantibody detection using protein PIMs.  相似文献   

15.
News in Brief     
Protein microarrays are versatile tools for parallel, miniaturized screening of binding events involving large numbers of immobilized proteins in a time- and cost-effective manner. They are increasingly applied for high-throughput protein analyses in many research areas, such as protein interactions, expression profiling and target discovery. While conventionally made by the spotting of purified proteins, recent advances in technology have made it possible to produce protein microarrays through in situ cell-free synthesis directly from corresponding DNA arrays. This article reviews recent developments in the generation of protein microarrays and their applications in proteomics and diagnostics.  相似文献   

16.
Fabrication of high quality microarrays   总被引:1,自引:0,他引:1  
Fabrication of DNA microarray demands that between ten (diagnostic microarrays) and many hundred thousands of probes (research or screening microarrays) are efficiently immobilised to a glass or plastic surface using a suitable chemistry. DNA microarray performance is measured by parameters like array geometry, spot density, spot characteristics (morphology, probe density and hybridised density), background, specificity and sensitivity. At least 13 factors affect these parameters and factors affecting fabrication of microarrays are used in this review to compare different fabrication methods (spotted microarrays and in situ synthesis of microarrays) and immobilisation chemistries.  相似文献   

17.
18.
PNA microarrays for hybridisation of unlabelled DNA samples   总被引:2,自引:1,他引:1  
Several strategies have been developed for the production of peptide nucleic acid (PNA) microarrays by parallel probe synthesis and selective coupling of full-length molecules. Such microarrays were used for direct detection of the hybridisation of unlabelled DNA by time-of-flight secondary ion mass spectrometry. PNAs were synthesised by an automated process on filter-bottom microtitre plates. The resulting molecules were released from the solid support and attached without any purification to microarray surfaces via the terminal amino group itself or via modifications, which had been chemically introduced during synthesis. Thus, only full-length PNA oligomers were attached whereas truncated molecules, produced during synthesis because of incomplete condensation reactions, did not bind. Different surface chemistries and fitting modifications of the PNA terminus were tested. For an examination of coupling selectivity, bound PNAs were cleaved off microarray surfaces and analysed by MALDI-TOF mass spectrometry. Additionally, hybridisation experiments were performed to compare the attachment chemistries, with fully acetylated PNAs spotted as controls. Upon hybridisation of unlabelled DNA to such microarrays, binding events could be detected by visualisation of phosphates, which are an integral part of nucleic acids but missing entirely in PNA probes. Overall best results in terms of selectivity and sensitivity were obtained with thiol-modified PNAs on maleimide surfaces.  相似文献   

19.
Oligonucleotide microarrays, also called "DNA chips," are currently made by a light-directed chemistry that requires a large number of photolithographic masks for each chip. Here we describe a maskless array synthesizer (MAS) that replaces the chrome masks with virtual masks generated on a computer, which are relayed to a digital micromirror array. A 1:1 reflective imaging system forms an ultraviolet image of the virtual mask on the active surface of the glass substrate, which is mounted in a flow cell reaction chamber connected to a DNA synthesizer. Programmed chemical coupling cycles follow light exposure, and these steps are repeated with different virtual masks to grow desired oligonucleotides in a selected pattern. This instrument has been used to synthesize oligonucleotide microarrays containing more than 76,000 features measuring 16 microm 2. The oligonucleotides were synthesized at high repetitive yield and, after hybridization, could readily discriminate single-base pair mismatches. The MAS is adaptable to the fabrication of DNA chips containing probes for thousands of genes, as well as any other solid-phase combinatorial chemistry to be performed in high-density microarrays.  相似文献   

20.
We describe here the development of a carbohydrate-based microarray to extend the scope of biomedical research on carbohydrate-mediated molecular recognition and anti-infection responses. We have demonstrated that microbial polysaccharides can be immobilized on a surface-modified glass slide without chemical conjugation. With this procedure, a large repertoire of microbial antigens (approximately 20,000 spots) can be patterned on a single micro-glass slide, reaching the capacity to include most common pathogens. Glycoconjugates of different structural characteristics are shown here to be applicable for microarray fabrication, extending the repertoires of diversity and complexity of carbohydrate microarrays. The printed microarrays can be air-dried and stably stored at room temperature for long periods of time. In addition, the system is highly sensitive, allowing simultaneous detection of a broad spectrum of antibody specificities with as little as a few microliters of serum specimen. Finally, the potential of carbohydrate microarrays is demonstrated by the discovery of previously undescribed cellular markers, Dex-Ids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号