首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Fas-associated death domain (FADD) protein is an adapter molecule that bridges the interactions between membrane death receptors and initiator caspases. The death receptors contain an intracellular death domain (DD) which is essential to the transduction of the apoptotic signal. The kinase receptor-interacting protein 1 (RIP1) is crucial to programmed necrosis. The cell type interplay between FADD and RIP1, which mediates both necrosis and NF-κB activation, has been evaluated in other studies, but the mechanism of the interaction of the FADD and RIP1 proteins remain poorly understood. Here, we provided evidence indicating that the DD of human FADD binds to the DD of RIP1 in vitro. We developed a molecular docking model using homology modeling based on the structures of FADD and RIP1. In addition, we found that two structure-based mutants (G109A and R114A) of the FADD DD were able to bind to the RIP1 DD, and two mutations (Q169A and N171A) of FADD DD and four mutations (G595, K596, E620, and D622) of RIP1 DD disrupted the FADD–RIP1 interaction. Six mutations (Q169A, N171A, G595, K596, E620, and D622) lowered the stability of the FADD–RIP1 complex and induced aggregation that structurally destabilized the complex, thus disrupting the interaction.  相似文献   

3.
Signaling through the tumor necrosis factor receptor (TNFR) superfamily can lead to apoptosis or promote cell survival, proliferation, and differentiation. A subset of this family, including TNFR1 and Fas, signals cell death via an intracellular death domain and therefore is termed the death receptor (DR) family. In this study, we identified new members of the DR family, designated xDR-M1 and xDR-M2, in Xenopus laevis. The two proteins, which show high homology (71.7% identity), have characteristics of the DR family, that is, three cysteine-rich domains, a transmembrane domain, and a death domain. To elucidate how members of xDR-M subfamily regulate cell death and survival, we examined the intracellular signaling mediated by these receptors in 293T and A6 cells. Overexpression of xDR-M2 induced apoptosis and activated caspase-8, c-Jun N-terminal kinase, and nuclear factor-kappaB, although its death domain to a greater extent than did that of xDR-M1 in 293T cells. A caspase-8 inhibitor potently blocked this apoptosis induced by xDR-M2. In contrast, xDR-M1 showed a greater ability to induce apoptosis through its death domain than did xDR-M2 in A6 cells. Interestingly, a general serine protease inhibitor, but not the caspase-8 inhibitor, blocked the xDR-M1-induced apoptosis. These results imply that activation of caspase-8 or serine protease(s) may be required for the xDR-M2- or xDR-M1-induced apoptosis, respectively. Although xDR-M1 and xDR-M2 are very similar to each other, the difference in their death domains may result in diverse signaling, suggesting distinct roles of xDR-M1 and xDR-M2 in cell death or survival.  相似文献   

4.
We recently identified TL1A, an endothelium-derived T cell costimulator and a ligand for tumor necrosis factor receptor superfamily members DR3 and decoy receptor 3. To elucidate the signaling events triggered by TL1A-DR3 interaction and to understand the molecular mechanisms regulating DR3-mediated apoptosis, we have studied the effect of TL1A and an agonistic DR3 monoclonal antibody in human erythroleukemic TF-1 cells, which express DR3 endogenously. TL1A induced the formation of a DR3 signaling complex containing TRADD, TRAF2, and RIP and activated the NF-kappaB and the ERK, JNK, and p38 mitogen-activated protein kinase pathways. However, TL1A or an agonistic DR3 monoclonal antibody did not induce apoptosis in these cells nor were there detectable levels of FADD or procaspase-8 seen in the signaling complex. Interestingly, DR3-mediated apoptosis was induced in TF-1 cells in the presence of a NF-kappaB pathway-specific inhibitor but not in the presence of mitogen-activated protein kinase inhibitors, either alone or in combination, suggesting that DR3-induced NF-kappaB activation was responsible for resistance to apoptosis in these cells. Consistent with this, we found that TL1A significantly increased the production of c-IAP2, a known NF-kappaB-dependent anti-apoptotic protein, and that the NF-kappaB inhibitor or cycloheximide prevented its synthesis. Furthermore, inhibition of c-IAP2 production by RNA interference significantly sensitized TF-1 cells to TL1A-induced apoptosis. Our study identifies a molecular mechanism by which TL1A and DR3 regulate cell fate in TF-1 cells.  相似文献   

5.
Fas ligand (FasL) has been well characterized as a death factor. However, recent studies revealed that FasL possesses inflammatory activity. Here we found that FasL induces production of the inflammatory chemokine IL-8 without inducing apoptosis in HEK293 cells. Reporter gene assays involving wild-type and mutated IL-8 promoters and NF-kappaB- and AP-1 reporter constructs indicated that an FasL-induced NF-kappaB and AP-1 activity are required for maximal promoter activity. FasL induced NF-kappaB activation with slower kinetics than did TNF-alpha, yet this response was cell autonomous and not mediated by secondary paracrine factors. The death domain of Fas, FADD, and caspase-8 were required for NF-kappaB activation by FasL. A dominant-negative mutant of IKKgamma inhibited the FasL-induced NF-kappaB activation. However, TRADD and RIP, which are essential for the TNF-alpha-induced NF-kappaB activation, were not involved in the FasL-induced NF-kappaB activation. Moreover, CLARP/FLIP inhibited the FasL- but not the TNF-alpha-induced NF-kappaB activation. These results show that FasL induces NF-kappaB activation and IL-8 production by a novel mechanism, distinct from that of TNF-alpha. In addition, we found that mouse FADD had a dominant-negative effect on the FasL-induced NF-kappaB activation in HEK293 cells, which may indicate a species difference between human and mouse in the FasL-induced NF-kappaB activation.  相似文献   

6.
Activation of NF-kappaB by FADD, Casper, and caspase-8   总被引:14,自引:0,他引:14  
Fas-associated death domain protein (FADD), caspase-8-related protein (Casper), and caspase-8 are components of the tumor necrosis factor receptor type 1 (TNF-R1) and Fas signaling complexes that are involved in TNF-R1- and Fas-induced apoptosis. Here we show that overexpression of FADD and Casper potently activates NF-kappaB. In the presence of caspase inhibitors, overexpression of caspase-8 also activates NF-kappaB. A caspase-inactive point mutant, caspase-8(C360S), activates NF-kappaB as potently as wild-type caspase-8, suggesting that caspase-8-induced apoptosis and NF-kappaB activation are uncoupled. NF-kappaB activation by FADD and Casper is inhibited by the caspase-specific inhibitors crmA and BD-fmk, suggesting that FADD- and Casper-induced NF-kappaB activation is mediated by caspase-8. FADD, Casper, and caspase-8-induced NF-kappaB activation are inhibited by dominant negative mutants of TRAF2, NIK, IkappaB kinase alpha, and IkappaB kinase beta. A dominant negative mutant of RIP inhibits FADD- and caspase-8-induced but not Casper-induced NF-kappaB activation. A mutant of Casper and the caspase-specific inhibitors crmA and BD-fmk partially inhibit TNF-R1-, TRADD, and TNF-induced NF-kappaB activation, suggesting that FADD, Casper, and caspase-8 function downstream of TRADD and contribute to TNF-R1-induced NF-kappaB activation. Moreover, activation of caspase-8 results in proteolytic processing of NIK, which is inhibited by crmA. When overexpressed, the processed fragments of NIK do not activate NF-kappaB, and the processed C-terminal fragment inhibits TNF-R1-induced NF-kappaB activation. These data indicate that FADD, Casper, and pro-caspase-8 are parts of the TNF-R1-induced NF-kappaB activation pathways, whereas activated caspase-8 can negatively regulate TNF-R1-induced NF-kappaB activation by proteolytically inactivating NIK.  相似文献   

7.
Wang Y  Sun X  Wu J  Xu BE  Gu C  Wang H  Wang X  Tan F  Peng X  Qiang B  Yuan J  Luo Y 《Biochemistry》2008,47(1):441-448
Tumor necrosis factor alpha (TNFalpha) triggers a signaling pathway converging on the activation of NF-kappaB, which forms the basis for many physiological and pathological processes. In a kinase gene screen using a NF-kappaB reporter, we observed that overexpression of casein kinase 1alpha (CK1alpha) enhanced TNFalpha-induced NF-kappaB activation, and a CK1alpha kinase dead mutant, CK1alpha (K46A), reduced NF-kappaB activation induced by TNFalpha. We subsequently demonstrated that CK1alpha interacted with receptor interacting protein 1 (RIP1) but not with TRADD, TRAF2, MEKK3, IKKalpha, IKKbeta, or IKKgamma in mammalian cells. RIP1 is an indispensable molecule in TNFalpha/NF-kappaB signaling. We demonstrated that CK1alpha interacted with and phosphorylated RIP1 at the intermediate domain. Finally, we showed that CK1alpha enhanced RIP1-mediated NF-kappaB activation. Taken together, our studies suggest that CK1alpha is another kinase that regulates RIP1 function in NF-kappaB activation.  相似文献   

8.
Receptor-interacting protein (RIP) plays a critical role in tumor necrosis factor alpha (TNF-alpha)-induced NF-kappaB activation. However, the mechanism by which RIP mediates TNF-alpha-induced signal transduction is not fully understood. In this study, we reconstituted RIP-deficient Jurkat T cells with a fusion protein composed of full-length MEKK3 and the death domain of RIP (MEKK3-DD). In these cells, MEKK3-DD substitutes for RIP and directly associates with TRADD in TNF receptor complexes following TNF-alpha stimulation. We found that TNF-alpha-induced NF-kappaB activation was fully restored by MEKK3-DD in these cells. In contrast, expression of a fusion protein composed of NEMO, a component of the IkappaB kinase complex, and the death domain of RIP (NEMO-DD) cannot restore TNF-alpha-induced NF-kappaB activation in RIP-deficient cells. These results indicate that the role of RIP is to specifically recruit MEKK3 to the TNF-alpha receptor complex, whereas the forced recruitment of NEMO to the TNF-alpha receptor complex is insufficient for TNF-alpha-induced NF-kappaB activation. Although MEKK2 has a high degree of homology with MEKK3, MEKK2-DD, unlike MEKK3-DD, also fails to restore TNF-alpha-induced NF-kappaB activation in RIP-deficient cells, indicating that RIP-dependent recruitment of MEKK3 plays a specific role in TNF-alpha signaling.  相似文献   

9.
Intestinal epithelial cells (IEC) are capable of responding to IL-1 stimulation by producing a variety of pro-inflammatory cytokines. Recently, we have found that binding of the alpha3beta1 integrin may have a regulatory effect on IL-1 responses and intracellular signaling by suppressing cytokine secretion, mRNA expression and the downstream intracellular signaling events from IKK to NF-kappaB activation. In this study, we extend these findings by showing that treatment of the Caco-2 epithelial cells with a cross-linking anti-alpha3 integrin antibody resulted in a suppression in the levels of IL-1 induced AP-1 binding activity in nuclear extracts. Furthermore, suppressed levels of IL-1 induced c-Jun N-terminal kinase (JNK) phosphorylation and kinase activity were seen with the antibody treated cells. Cells cultured on purified laminin-5, the ligand for the alpha3beta1 integrin, did not show significantly elevated levels of JNK phosphorylation after IL-1 stimulation while cells cultured on fibronectin yielded significantly elevated levels of IL-1 induced JNK phosphorylation. These results indicate that binding of the alpha3beta1 integrin results in a suppression in the activation of the IL-1 induced intracellular signaling pathway from JNK to AP-1. This novel regulatory effect may be a potentially important mechanism to regulate IL-1 mediated responses by IEC.  相似文献   

10.
11.
Apoptosis can be induced by an extrinsic pathway involving the ligand-mediated activation of death receptors such as tumor necrosis factor receptor-1 (TNFR-1). TNFR-1-associated death domain (TRADD) protein is an adapter molecule that bridges the interaction between TNFR-1 and receptor-interacting serine/threonine-protein kinase 1 (RIP1). However, the molecular mechanism of the complex formation of these proteins has not yet been identified. Here, the binding among TNFR-1, TRADD, and RIP1 was identified using a GST pull-down assay and Biacore biosensor experiment. This study showed that structural characterization and formation of the death-signaling complex could be predicted using TNFR-1, TRADD, and RIP1. In addition, we found that the structure-based mutations of TNFR-1 (P367A and P368A), TRADD (F266A), and RIP1 (M637A and R638A) disrupted formation of the death domain (DD) complex and prevented stable interactions among those DDs.  相似文献   

12.
c-Jun N-terminal kinase (JNK) is a member of the mitogen-activated protein kinase (MAPK) family and controls essential processes such as inflammation, cell differentiation, and apoptosis. JNK signalling is triggered by extracellular signals such as cytokines and environmental stresses. Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory cytokine with chemokine-like functions in leukocyte recruitment and atherosclerosis. MIF promotes MAPK signalling through ERK1/2, while it can either activate or inhibit JNK phosphorylation, depending on the cell type and underlying stimulation context. MIF activities are mediated by non-cognate interactions with the CXC chemokine receptors CXCR2 and CXCR4 or by ligation of CD74, which is the cell surface expressed form of the class II invariant chain. ERK1/2 signalling stimulated by MIF is dependent on CD74, but the receptor pathway involved in MIF activation of the JNK pathway is unknown. Here we comprehensively characterize the stimulatory effect of MIF on the canonical JNK/c-Jun/AP-1 pathway in fibroblasts and T cell lines and identify the upstream signalling components. Physiological concentrations of recombinant MIF triggered the phosphorylation of JNK and c-Jun and rapidly activated AP-1. In T cells, MIF-mediated activation of the JNK pathway led to upregulated gene expression of the inflammatory chemokine CXCL8. Activation of JNK signalling by MIF involved the upstream kinases PI3K and SRC and was found to be dependent on CXCR4 and CD74. Together, these data show that the CXCR4/CD74/SRC/PI3K axis mediates a rapid and transient activation of the JNK pathway as triggered by the inflammatory cytokine MIF in T cells and fibroblasts.  相似文献   

13.
The proteolytic activity of caspases is involved in apoptosis and inflammation. In this regard, caspase-1 is required for pro-interleukin (IL)-1beta and pro-IL-18 maturation. We report here on a novel function of caspase-1 as an activator of nuclear factor of the kappa-enhancer in B-cells (NF-kappaB) and p38 mitogen-activated protein kinase (MAPK). This function is not shared by the murine caspase-1 homologues caspase-11 and -12. In contrast to pro-IL-1beta maturation, caspase-1-induced NF-kappaB activation is not inhibited by the virus-derived caspase-1 inhibitor cytokine response modifier A and is equally induced by the enzymatically inactive caspase-1 C285A mutant. Although the general NF-kappaB-inhibiting protein A20 inhibits caspase-1-derived activation of NF-kappaB, dominant-negative forms of TRAF2 and RIP1 have no effect. We demonstrate that caspase-1 interacts with RIP2 and that dominant-negative forms of RIP2 and IkappaB kinase complex-beta inhibit caspase-1-mediated NF-kappaB activation. Structure-function analysis shows that the caspase recruitment domain of caspase-1 mediates the activation of NF-kappaB and p38 MAPK. These data demonstrate that caspase-1 contributes to inflammation by two distinct pathways: proteolysis of pro-IL-1beta, and RIP2-dependent activation of NF-kappaB and p38 MAPK mediated by the caspase recruitment domain.  相似文献   

14.
Glutaredoxin 2 (Grx2) from Escherichia coli protects cerebellar neurons from dopamine-induced apoptosis via nuclear factor kappa B (NF-kappaB) activation, which is mediated by the expression of redox factor-1 (Ref-1). An analysis of the mechanisms underlying Grx2 protective activity revealed dual activation of signal transduction pathways. Grx2 significantly activated the Ras/phosphoinositide 3-kinase/Akt/NF-kappaB cascade in parallel to the Jun N-terminal kinase (JNK)/AP1 cascade. Dopamine, in comparison, down-regulated both pathways. Treatment of neurons with Ref-1 antisense oligonucleotide reduced the ability of Grx2 to activate Akt and AP-1 but had no effect on the phosphorylation of JNK1/2, suggesting that Akt/NF-kappaB and AP-1 are regulated by Ref-1. Exposure of the neurons to JNK1/2 antisense oligonucleotide in the presence of Grx2 significantly reduced AP-1 and NF-kappaB DNA binding activities and abolished Grx2 protection. These results demonstrate that dual activation of Ras/phosphoinositide 3-kinase and AP-1 cascades, which are mediated by Ref-1, is an essential component of the Grx2 mechanism of action.  相似文献   

15.
Trimeric tumor necrosis factor (TNF) binding leads to recruitment of TRADD to TNFR1. In current models, TRADD recruits RIP, TRAF2, and FADD to activate NF-kappaB, Jun N-terminal protein kinase (JNK), and apoptosis. Using stable short-hairpin RNA (shRNA) knockdown (KD) cells targeting these adaptors, TNF death-inducing signaling complex immunoprecipitation demonstrates competitive binding of TRADD and RIP to TNFR1, whereas TRAF2 recruitment requires TRADD. Analysis of KD cells indicates that FADD is necessary for Fas-L- or TRAIL- but not TNF-induced apoptosis. Interestingly, TRADD is dispensable, while RIP is required for TNF-induced apoptosis in human tumor cells. TRADD is required for c-Jun phosphorylation upon TNF exposure. RIP KD abrogates formation of complex II following TNF exposure, whereas TRADD KD allows efficient RIP-caspase 8 association. Treatment with TRAIL also induces formation of a complex II containing FADD, RIP, IKKalpha, and caspase 8 and 10, leading to activation of caspase 8. Our data suggest that TNF triggers apoptosis in a manner distinct from that of Fas-L or TRAIL.  相似文献   

16.
Death domain (DD)-containing proteins are involved in both apoptosis and survival/proliferation signaling induced by activated death receptors. Here, a phylogenetic and structural analysis was performed to highlight differences in DD domains and their key regulatory interaction sites. The phylogenetic analysis shows that receptor DDs are more conserved than DDs in adaptors. Adaptor DDs can be subdivided into those that activate or inhibit apoptosis. Modeling of six homotypic DD interactions involved in the TNF signaling pathway implicates that the DD of RIP (Receptor interacting protein kinase 1) is capable of interacting with the DD of TRADD (TNFR1-associated death domain protein) in two different, exclusive ways: one that subsequently recruits CRADD (apoptosis/inflammation) and another that recruits NFkappaB (survival/proliferation).  相似文献   

17.
Death receptors are a subfamily of the tumor necrosis factor (TNF) receptor subfamily. They are characterized by a death domain (DD) motif within their intracellular domain, which is required for the induction of apoptosis. Fas-associated death domain protein (FADD) is reported to be the universal adaptor used by death receptors to recruit and activate the initiator caspase-8. CD95, TNF-related apoptosis-inducing ligand (TRAIL-R1), and TRAIL-R2 bind FADD directly, whereas recruitment to TNF-R1 is indirect through another adaptor TNF receptor-associated death domain protein (TRADD). TRADD also binds two other adaptors receptor-interacting protein (RIP) and TNF-receptor-associated factor 2 (TRAF2), which are required for TNF-induced NF-kappaB and c-Jun N-terminal kinase activation, respectively. Analysis of the native TNF signaling complex revealed the recruitment of RIP, TRADD, and TRAF2 but not FADD or caspase-8. TNF failed to induce apoptosis in FADD- and caspase-8-deficient Jurkat cells, indicating that these apoptotic mediators were required for TNF-induced apoptosis. In an in vitro binding assay, the intracellular domain of TNF-R1 bound TRADD, RIP, and TRAF2 but did not bind FADD or caspase-8. Under the same conditions, the intracellular domain of both CD95 and TRAIL-R2 bound both FADD and caspase-8. Taken together these results suggest that apoptosis signaling by TNF is distinct from that induced by CD95 and TRAIL. Although caspase-8 and FADD are obligatory for TNF-mediated apoptosis, they are not recruited to a TNF-induced membrane-bound receptor signaling complex as occurs during CD95 or TRAIL signaling, but instead must be activated elsewhere within the cell.  相似文献   

18.
19.
Interleukin-1 (IL-1) plays a crucial role in the immunopathological responses involved with tissue destruction in chronic inflammatory diseases, such as periodontal disease, as it stimulates host cells including fibroblasts to produce various inflammatory mediators and catabolic factors. We comprehensively investigated the involvement of mitogen-activated protein kinases (MAPKs)/activator protein-1 (AP-1) and IkappaB kinases (IKKs)/IkappaBs/nuclear factor-kappaB (NF-kappaB) in IL-1beta-stimulated IL-6, IL-8, prostaglandin E(2) (PGE(2)) and matrix metalloproteinase-1 (MMP-1) production by human gingival fibroblasts (HGF). Three MAPKs, extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK), which were simultaneously activated by IL-1beta, mediated subsequent c-fos and c-jun mRNA expression and DNA binding of AP-1 at different magnitudes. IKKalpha/beta/IkappaB-alpha/NF-kappaB was also involved in the IL-1 signaling cascade. Further, IL-1beta stimulated HGF to produce IL-6, IL-8, PGE(2) and MMP-1 via activation of the 3 MAPKs and NF-kappaB, as inhibitors of each MAPK and NF-kappaB significantly suppressed the production of IL-1beta-stimulated factors, though these pathways might also play distinct roles in IL-1beta activities. Our results strongly suggest that the MAPKs/AP-1 and IKK/IkappaB/NF-kappaB cascades cooperatively mediate the IL-1beta-stimulated synthesis of IL-6, IL-8, PGE(2) and MMP-1 in HGF.  相似文献   

20.
MDP (muramyl dipeptide), a component of peptidoglycan, interacts with NOD2 (nucleotide-binding oligomerization domain 2) stimulating the NOD2-RIP2 (receptor-interacting protein 2) complex to activate signalling pathways important for antibacterial defence. Here we demonstrate that the protein kinase activity of RIP2 has two functions, namely to limit the strength of downstream signalling and to stabilize the active enzyme. Thus pharmacological inhibition of RIP2 kinase with either SB 203580 [a p38 MAPK (mitogen-activated protein kinase) inhibitor] or the Src family kinase inhibitor PP2 induces a rapid and drastic decrease in the level of the RIP2 protein, which may explain why these RIP2 inhibitors block MDP-stimulated downstream signalling and the production of IL-1beta (interleukin-1beta) and TNFalpha (tumour necrosis factor-alpha). We also show that RIP2 induces the activation of the protein kinase TAK1 (transforming-growth-factor-beta-activated kinase-1), that a dominant-negative mutant of TAK1 inhibits RIP2-induced activation of JNK (c-Jun N-terminal kinase) and p38alpha MAPK, and that signalling downstream of NOD2 or RIP2 is reduced by the TAK1 inhibitor (5Z)-7-oxozeaenol or in TAK1-deficient cells. We also show that MDP activates ERK1 (extracellular-signal-regulated kinase 1)/ERK2 and p38alpha MAPK in human peripheral-blood mononuclear cells and that the activity of both MAPKs and TAK1 are required for MDP-induced signalling and production of IL-1beta and TNFalpha in these cells. Taken together, our results indicate that the MDP-NOD2/RIP2 and LPS (lipopolysaccharide)-TLR4 (Toll-like receptor 4) signalling pathways converge at the level of TAK1 and that many subsequent events that lead to the production of pro-inflammatory cytokines are common to both pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号