共查询到20条相似文献,搜索用时 15 毫秒
1.
Vaccinia topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at sites containing the sequence 5'-CCCTT downward arrow. The covalently bound topoisomerase can religate the CCCTT strand to a 5'-OH-terminated polynucleotide or else transfer the strand to a non-DNA nucleophile such a water or glycerol. Here, we report that vaccinia topoisomerase also catalyzes strand transfer to hydrogen peroxide. The observed alkaline pH-dependence of peroxidolysis is consistent with enzyme-mediated attack by peroxide anion on the covalent intermediate. The reaction displays apparent first-order kinetics. From a double-reciprocal plot of k(obs) versus [H(2)O(2)] at pH 10, we determined a rate constant for peroxidolysis of 6.3 x 10(-)(3) s(-)(1). This rate is slower by a factor of 200 than the rate of topoisomerase-catalyzed strand transfer to a perfectly aligned 5'-OH DNA strand but is comparable to the rate of DNA strand transfer across a 1-nucleotide gap. Strand transfer to 2% hydrogen peroxide is 300 times faster than strand transfer to 20% glycerol and approximately 2000 times faster than topoisomerase-catalyzed hydrolysis of the covalent intermediate. Hydroxylamine is also an effective nucleophile in topoisomerase-mediated strand transfer (k(obs) = 6.4 x 10(-)(4) s(-)(1)). The rates of the peroxidolysis, hydroxylaminolysis, glycerololysis, and hydrolysis reactions catalyzed by the mutant enzyme H265A were reduced by factors of 100-700, in accordance with the 100- to 400-fold rate decrements in DNA cleavage and religation by H265A. We surmise that vaccinia topoisomerase catalyzes strand transfer to DNA and non-DNA nucleophiles via a common reaction pathway in which His-265 stabilizes the scissile phosphate in the transition state rather than acting as a general acid or base. 相似文献
2.
S Shuman 《The Journal of biological chemistry》1992,267(12):8620-8627
Vaccinia virus DNA topoisomerase I forms a 3'-phosphoryl intermediate with duplex DNAs containing the conserved binding/cleavage motif 5'CCCTT decreases. Covalently bound enzyme is capable of transferring the incised DNA strand to a heterologous DNA acceptor containing a 5'OH terminus. Both intramolecular and intermolecular religation reactions are catalyzed. Intramolecular strand transfer occurs to the noncleaved strand of the DNA duplex and results in formation of a hairpin loop. Intermolecular religation to an exogenous DNA strand is favored over hairpin formation and requires the potential for base pairing between the acceptor and the noncleaved strand of the donor complex. As few as 4 potential base pairs are sufficient to support intermolecular transfer. These results in vitro are consistent with the proposal that vaccinia topoisomerase can catalyze sequence-specific strand transfer during genetic recombination in vivo (Shuman, S. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 10104-10108.). 相似文献
3.
The specificity of vaccinia topoisomerase for transesterification to DNA at the sequence 5′-CCCTT and its versatility in strand transfer have illuminated the recombinogenic properties of type IB topoisomerases and spawned topoisomerase-based strategies for DNA cloning. Here we characterize a pathway of topoisomerase-mediated DNA ligation in which enzyme bound covalently to a CCCTT end with an unpaired +1T nucleotide rapidly and efficiently joins the CCCTT strand to a duplex DNA containing a 3′ A overhang. The joining reaction occurs with high efficiency, albeit slowly, to duplex DNAs containing 3′ G, T or C overhangs. Strand transfer can be restricted to the correctly paired 3′ A overhang by including 0.5 M NaCl in the ligation reaction mixture. The effects of base mismatches and increased ionic strength on the rates of 3′ overhang ligation provide a quantitative picture of the relative contributions of +1 T:A base pairing and electrostatic interactions downstream of the scissile phosphate to the productive binding of an unlinked acceptor DNA to the active site. The results clarify the biochemistry underlying topoisomerase-cloning of PCR products with non-templated 3′ overhangs. 相似文献
4.
S Shuman 《The Journal of biological chemistry》1992,267(24):16755-16758
The ability of a eukaryotic DNA topoisomerase I to catalyze DNA rearrangements was examined in vitro using defined substrates and purified enzyme. Site-specific DNA strand cleavage by vaccinia topoisomerase I across from a nick generated double-strand breaks that could be religated to a heterologous blunt-ended duplex DNA regardless of the sequence of the acceptor molecule. Topoisomerase bound covalently at internal positions could religate the bound strand to an incoming acceptor provided that DNA molecule had sequence homology to the region 3' of the scissile bond. These end-joining reactions suggest two potential modes of topoisomerase-mediated recombination that differ in their requirements for DNA homology. 相似文献
5.
Vaccinia virus DNA polymerase catalyzes duplex-by-duplex DNA joining reactions in vitro and many features of these recombination reactions are reprised in vivo. This can explain the intimate linkage between virus replication and genetic recombination. However, it is unclear why these apparently ordinary polymerases exhibit this unusual catalytic capacity. In this study, we have used different substrates to perform a detailed investigation of the mechanism of duplex-by-duplex recombination catalyzed by vaccinia DNA polymerase. When homologous, blunt-ended linear duplex substrates are incubated with vaccinia polymerase, in the presence of Mg2+ and dNTPs, the appearance of joint molecules is preceded by the exposure of complementary single-stranded sequences by the proofreading exonuclease. These intermediates anneal to form a population of joint molecules containing hybrid regions flanked by nicks, 1–5 nt gaps, and/or short overhangs. The products are relatively resistant to exonuclease (and polymerase) activity and thus accumulate in joining reactions. Surface plasmon resonance (SPR) measurements showed the enzyme has a relative binding affinity favoring blunt-ended duplexes over molecules bearing 3′-recessed gaps. Recombinant duplexes are the least favored ligands. These data suggest that a particular combination of otherwise ordinary enzymatic and DNA-binding properties, enable poxvirus DNA polymerases to promote duplex joining reactions. 相似文献
6.
7.
DNA strand exchange catalyzed by proteins from vaccinia virus-infected cells. 总被引:4,自引:0,他引:4 下载免费PDF全文
Vaccinia virus infection induces expression of a protein which can catalyze joint molecule formation between a single-stranded circular DNA and a homologous linear duplex. The kinetics of appearance of the enzyme parallels that of vaccinia virus DNA polymerase and suggests it is an early viral gene product. Extracts were prepared from vaccinia virus-infected HeLa cells, and the strand exchange assay was used to follow purification of this activity through five chromatographic steps. The most highly purified fraction contained three major polypeptides of 110 +/- 10, 52 +/- 5, and 32 +/- 3 kDa. The purified protein requires Mg2+ for activity, and this requirement cannot be satisfied by Mn2+ or Ca2+. One end of the linear duplex substrate must share homology with the single-stranded circle, although this homology requirement is not very high, as 10% base substitutions had no effect on the overall efficiency of pairing. As with many other eukaryotic strand exchange proteins, there was no requirement for ATP, and ATP analogs were not inhibitors. Electron microscopy was used to show that the joint molecules formed in these reactions were composed of a partially duplex circle of DNA bearing a displaced single-strand and a duplex linear tail. The recovery of these structures shows that the enzyme catalyzes true strand exchange. There is also a unique polarity to the strand exchange reaction. The enzyme pairs the 3' end of the duplex minus strand with the plus-stranded homolog, thus extending hybrid DNA in a 3'-to-5' direction with respect to the minus strand. Which viral gene (if any) encodes the enzyme is not yet known, but analysis of temperature-sensitive mutants shows that activity does not require the D5R gene product. Curiously, v-SEP appears to copurify with vaccinia virus DNA polymerase, although the activities can be partially resolved on phosphocellulose columns. 相似文献
8.
Intra- and intermolecular strand transfer by HeLa DNA topoisomerase I 总被引:27,自引:0,他引:27
B D Halligan J L Davis K A Edwards L F Liu 《The Journal of biological chemistry》1982,257(7):3995-4000
9.
Ping Xie 《European biophysics journal : EBJ》2010,39(8):1251-1259
DNA topoisomerase II is a homodimeric molecular machine that uses ATP hydrolysis to untangle DNA by passing one double-stranded
DNA duplex (T-segment) through another double-stranded duplex (G-segment). However, despite extensive studies, the dynamics
of ATP-dependent T-transport is still not very clear. Here, based on the proposal that transport of the T-segment through
the transiently cleaved G-segment and the opened C-gate of the enzyme is via a free diffusion mechanism, the dynamics of T-transport
are studied theoretically. Our results show that, to complete passage of the strand with nearly 100% efficiency, the C-gate
is required to open by a width that is only slightly larger than the width of DNA duplex and for a time shorter than 100 μs
in the presence of several k
B
T binding affinities of the T-segment for the B′ domains. The results are implied by our understanding of the opening and closing
dynamics of the C-gate. Moreover, the dependence of chemomechanical coupling efficiency on degrees of DNA supercoiling by
gyrases can also be explained by using our results. On the basis of these theoretical results and previous experimental data,
a modified two-gate model for chemomechanical coupling of the topoisomerase II enzyme is proposed. 相似文献
10.
Complexes formed by vaccinia topoisomerase I on plasmid DNA were visualized by electron microscopy. The enzyme formed intramolecular loop structures in which non-contiguous DNA segments were synapsed within filamentous protein stems. At high enzyme concentrations the DNA appeared to be zipped up within the protein filaments such that the duplex was folded back on itself. Formation of loops and filaments was also observed with an active site mutant, Topo-Phe274. Binding of Topo-Phe274 to relaxed DNA circles in solution introduced torsional strain, which, after relaxation by catalytic amounts of wild-type topo-isomerase, resulted in acquisition of negative supercoils. We surmise that the topoisomerase-DNA complex is a plectonemic supercoil in which the two duplexes encompassed by the protein filaments are interwound in a right handed helix. We suggest that topoisomerase-mediated DNA synapsis plays a role in viral recombination and in packaging of the 200 kbp vaccinia genome during virus assembly. 相似文献
11.
Analysis of vaccinia topoisomerase mutants that are impaired in DNA relaxation has allowed the identification of amino acid residues required for the transesterification step of catalysis. Missense mutations of wild-type residues Gly-132----Asp and Arg-223----Gln rendered the protein inert in formation of the covalent enzyme-DNA complex and hence completely inactive in DNA relaxation. Mutations of Thr-147----Ile and Gly-132----Ser caused severe defects in covalent adduct formation that correlated with the extent of inhibition of relaxation. None of these point mutations had an effect on noncovalent DNA binding sufficient to account for the defect in relaxation. Deletion of amino- or carboxyl-terminal portions of the polypeptide abrogated noncovalent DNA binding. Two distinct topoisomerase-DNA complexes were resolved by native gel electrophoresis. One complex, which was unique to those proteins competent in covalent adduct formation, contained topoisomerase bound to the 5'-portion of the incised DNA strand. The 3'-segment of the cleaved strand had dissociated spontaneously. This complex was isolated and shown to catalyze transfer of the covalently bound DNA to a heterologous acceptor oligonucleotide, thereby proving that the covalent adduct between protein and duplex DNA is a true intermediate in strand breakage and reunion. The role of the active site region of eukaryotic topoisomerase in determining sensitivity or resistance to camptothecin was examined by converting the active site region of the resistant vaccinia enzyme (SKRAY274) to that of the drug-sensitive yeast enzyme (SKINY). The SKINY mutation did not alter the resistance of the vaccinia enzyme to the cleavage-enhancing effects of camptothecin. 相似文献
12.
Y C Tse-Dinh 《The Journal of biological chemistry》1986,261(23):10931-10935
DNA topoisomerases have been shown to cleave DNA phosphodiester bond and simultaneously become linked to the DNA at the cleavage site via a phosphotyrosine linkage (Tse, Y.-C., Kirkegaard, K., and Wang, J. C. (1980) J. Biol. Chem. 255, 5560-5565). For prokaryotic DNA topoisomerases, this is observed only when denaturant or protease is added to the topoisomerase-DNA incubation mixture. Previous attempts to reform DNA phosphodiester bonds from the covalent protein-DNA complex have been unsuccessful. Using oligonucleotides as substrates, the cleavage reaction of Escherichia coli DNA topoisomerase I occurs spontaneously (Tse-Dinh, Y.-C., McCarron, B. G. H., Arentzen, R., and Chowdhry, V. (1983) Nucleic Acids Res. 11, 8691-8701). Upon reaction with oligo(dA) labeled with 32P using terminal transferase and [alpha-32P]dATP, the enzyme becomes covalently linked to the 32P-labeled oligonucleotide. This 32P label can then be transferred to the 3'-OH end of a linear or nicked duplex DNA molecule subsequently added to the reaction mixture. This phosphodiester bond rejoining reaction can occur at a recessed, blunt, or protruding 3'-end of double-stranded DNA. It requires magnesium ions. These observations suggest that the covalent protein-DNA complex is a true intermediate during topoisomerization. Implications on the structure of prokaryotic type I DNA topoisomerases as compared to their eukaryotic counterparts are discussed. 相似文献
13.
S Shuman 《The Journal of biological chemistry》1991,266(17):11372-11379
Purified vaccinia virus DNA topoisomerase I forms a cleavable complex with duplex DNA at a conserved sequence element 5'(C/T)CCTTdecreases in the incised DNA strand. DNase I footprint studies show that vaccinia topoisomerase protects the region around the site of covalent adduct formation from nuclease digestion. On the cleaved DNA strand, the protected region extends from +13 to -13 (+1 being the site of cleavage). On the noncleaved strand, the protected region extends from +13 to -9. Similar nuclease protection is observed for a mutant topoisomerase (containing a Tyr ---- Phe substitution at the active site amino acid 274) that is catalytically inert and does not form the covalent intermediate. Thus, vaccinia topoisomerase is a specific DNA binding protein independent of its competence in transesterification. By studying the cleavage of a series of 12-mer DNA duplexes in which the position of the CCCTTdecreases motif within the substrate is systematically phased, the "minimal" substrate for cleavage has been defined; cleavage requires six nucleotides upstream of the cleavage site and two nucleotides downstream of the site. An analysis of the cleavage of oligomer substrates mutated singly in the CCCTT sequence reveals a hierarchy of mutational effects based on position within the pentamer motif and the nature of the sequence alteration. 相似文献
14.
15.
DNA strand transfer catalyzed by the 5'-3' exonuclease domain of Escherichia coli DNA polymerase I. 下载免费PDF全文
A protein which promotes DNA strand transfer between linear double-stranded M13mp19 DNA and single-stranded viral M13mp19 DNA has been isolated from recA- E.coli. The protein is DNA polymerase I. Strand transfer activity residues in the small fragment encoding the 5'-3' exonuclease and can be detected using a recombinant protein comprising the first 324 amino acids encoded by polA. Either the recombinant 5'-3' exonuclease or intact DNA polymerase I can catalyze joint molecule formation, in reactions requiring only Mg2+ and homologous DNA substrates. Both kinds of reactions are unaffected by added ATP. Electron microscopy shows that the joint molecules formed in these reactions bear displaced single strands and therefore this reaction is not simply promoted by annealing of exonuclease-gapped molecules. The pairing reaction is also polar and displaces the 5'-end of the non-complementary strand, extending the heteroduplex joint in a 5'-3' direction relative to the displaced strand. Thus strand transfer occurs with the same polarity as nick translation. These results show that E.coli, like many eukaryotes, possesses a protein which can promote ATP-independent strand-transfer reactions and raises questions concerning the possible biological role of this function. 相似文献
16.
Specific DNA cleavage and binding by vaccinia virus DNA topoisomerase I 总被引:12,自引:0,他引:12
Cleavage of a defined linear duplex DNA by vaccinia virus DNA topoisomerase I was found to occur nonrandomly and infrequently. Approximately 12 sites of strand scission were detected within the 5372 nucleotides of pUC19 DNA. These sites could be classified as having higher or lower affinity for topoisomerase based on the following criteria. Higher affinity sites were cleaved at low enzyme concentration, were less sensitive to competition, and were most refractory to religation promoted by salt, divalent cations, and elevated temperature. Cleavage at lower affinity sites required higher enzyme concentration and was more sensitive to competition and induced religation. Cleavage site selection correlated with a pentameric sequence motif (C/T)CCTT immediately preceding the site of strand scission. Noncovalent DNA binding by topoisomerase predominated over covalent adduct formation, as revealed by nitrocellulose filter-binding studies. The noncovalent binding affinity of vaccinia topoisomerase for particular subsegments of pUC19 DNA correlated with the strength and/or the number of DNA cleavage sites contained therein. Thus, cleavage site selection is likely to be dictated by specific noncovalent DNA-protein interactions. This was supported by the demonstration that a mutant vaccinia topoisomerase (containing a Tyr----Phe substitution at the active site) that was catalytically inert and did not form the covalent intermediate, nevertheless bound DNA with similar affinity and site selectivity as the wild-type enzyme. Noncovalent binding is therefore independent of competence in transesterification. It is construed that the vaccinia topoisomerase is considerably more stringent in its cleavage and binding specificity for duplex DNA than are the cellular type I enzymes. 相似文献
17.
Oxidative DNA damage is involved in mutagenesis, carcinogenesis, aging, radiation effects, and the action of several anticancer drugs. Accumulated evidence indicates that iron may play an important role in those processes. We studied the in vitro effect of low concentrations of Fe(II) alone or Fe(III) in the presence of reducing agents on supercoiled plasmid DNA. The assay, based on the relaxation and linearization of supercoiled DNA, is simple yet sensitive and quantitative. Iron mediated the production of single and double strand breaks in supercoiled DNA. Iron chelators, free radical scavengers, and enzymes of the oxygen reduction pathways modulated the DNA damage. Fe(III)-nitrilotriacetate (NTA) plus either H2O2, L-ascorbate, or L-cysteine produced single and double strand breaks as a function of reductant concentration. A combination of 0.1 microM Fe(III)-NTA and 100 microM L-ascorbate induced detectable DNA strand breaks after 30 min at 24 degrees C. Whereas superoxide dismutase was inhibitory only in systems containing H2O2 as reductant, catalase inhibited DNA breakage in all the iron-mediated systems studied. The effect of scavengers and enzymes indicates that H2O2 and .OH are involved in the DNA damaging process. These reactions may account for the toxicity and carcinogenicity associated with iron overload. 相似文献
18.
19.
Vaccinia topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a pentapyrimidine target site 5'-CCCTTp downward arrow in duplex DNA. Here we present experiments that illuminate the contributions of specific nucleosides and phosphates to site affinity and transesterification. We find that the -1 phosphate and -2 nucleoside on the scissile strand (5'-CCCTTp / NpN) enhance the rate of transesterification by factors of 40 and 25, respectively, whereas the DNA segment downstream of the -2 nucleotide makes no significant kinetic contribution. Placement of a 5'-phosphate/3'-OH nick at position +2, +3, +4, or +5 within the CCCTT element results in a 5-10-fold reduction in the affinity of topoisomerase binding to DNA. A nick at the +2 phosphate also slows the rate of transesterification by approximately 500-fold. This finding, together with earlier studies of the effects of position-specific base and sugar modifications, points to the +2 Tp nucleotide as being the most critical element of the CCCTT target site other than the scissile phosphate itself. On the noncleaved strand, the segment downstream of the 3'-GGGAA element contributes minimally to the rate of transesterification provided that the substrate is otherwise fully base-paired within the 5'-CCCTT target site. By studying the effects of single nucleotide gaps and missing phosphate nicks within the 3'-GGGAA sequence, we find that the +1 and +2 adenosine nucleosides enhance the rate of transesterification by 20- and 1,000-fold respectively and that the +5 phosphate (3'-GpGGAA) is also important for cleavage. Cumulative functional analyses of the vaccinia topoisomerase-DNA interface are discussed in light of newly available structures for the vaccinia and human type IB enzymes. 相似文献
20.
Site-specific DNA cleavage by vaccinia virus DNA topoisomerase I. Role of nucleotide sequence and DNA secondary structure. 总被引:3,自引:0,他引:3
S Shuman 《The Journal of biological chemistry》1991,266(3):1796-1803
Cleavage of linear duplex DNA by purified vaccinia virus DNA topoisomerase I occurs at a conserved sequence element (5'-C/T)CCTT decreases) in the incised DNA strand. Oligonucleotides spanning the high affinity cleavage site CCCTT at nucleotide 2457 in pUC19 DNA are cleaved efficiently in vitro, but only when hybridized to a complementary DNA molecule. As few as 6 nucleotides proximal to the cleavage site and 6 nucleotides downstream of the site are sufficient to support exclusive cleavage at the high affinity site (position +1). Single nucleotide substitutions within the consensus pentamer have deleterious effects on the equilibria of the topoisomerase binding and DNA cleavage reactions. The effects of base mismatch within the pentamer are more dramatic than are the effects of mutations that preserve base complementarity. Competition experiments indicate that topoisomerase binds preferentially to DNA sites containing the wild-type pentamer element. Single-stranded DNA containing the sequence CCCTT in the cleaved stand is a more effective competitor than is single-stranded DNA containing the complementary sequence in the noncleaved strand. 相似文献