首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HeLa cell membranes were studied for the distribution and orientation of the Golgi marker enzyme uridine diphosphate-galactose:beta-D-N-acetylglucosamine beta, 1-4 transferase (GT). Short pulse labeling in the presence of [35S]methionine resulted in two precursor species (Mr = 44,000 and 47,000), present in a microsomal fraction with a density of 1.18 g/ml in sucrose, presumably derived from the rough endoplasmic reticulum. Processing of the N-linked oligosaccharide(s) occurred only after the precursor molecules migrated to lighter density fractions, presumably derived from the Golgi complex. The mature GT molecules (Mr = 54,000) contain O-linked oligosaccharides as shown by beta-elimination of metabolically incorporated [3H]galactose. The O-glycosylation occurred mainly in the light density fractions. The topology of GT was studied on membrane fractions after labeling with [35S]methionine as well as immunocytochemically on ultrathin cryosections at the electron microscope level. Our results indicate that both the antigenic determinants of GT as well as polypeptide chain are present intramembraneously and at the luminal side of the membranes of the Golgi complex and rough endoplasmic reticulum.  相似文献   

2.
Chen C  Colley KJ 《Glycobiology》2000,10(5):531-583
The influence of N-linked glycosylation on the activity and trafficking of membrane associated and soluble forms of the STtyr isoform of the ST6Gal I has been evaluated. We have demonstrated that the enzyme is glycosylated on Asn 146 and Asn 158 and that glycosylation is not required for the endoplasmic reticulum to Golgi transport of the membrane-associated form of the STtyr isoform. In addition, N-linked glycosylation may stabilize the protein but is not absolutely required for catalytic activity in vivo. In contrast, soluble forms of the protein consisting of amino acids 64-403, 89-403, and 97-403 are efficiently secreted and active in their fully glycosylated forms, but retained in the endoplasmic reticulum and inactive in their unglycosylated forms. These results suggest that membrane associated and soluble forms of the STtyr protein have different requirements for N-linked glycosylation. Elimination of the oligosaccharide attached to Asn 158 in the full length STtyr single and double glycosylation mutants generates proteins that are not cleaved and secreted but stably localized in the Golgi, like the STcys isoform of the ST6Gal I. This stable Golgi localization is correlated with the observation that these two mutants are active in in vivo assays but inactive in in vitro assays of membrane lysates. We predict that removal of N-linked oligosaccharides leads to an increased ability of the STtyr protein to self-associate or oligomerize which subsequently allows more stable retention in the Golgi and increased aggregation and inactivity when membranes are lysed in the in vitro activity assays.  相似文献   

3.
Large domains rich in serine and threonine, that are likely to exhibit clusters of O-linked oligosaccharides, have been reported adjacent to the anchor of several cell surface proteins. No such domain is evident in the primary sequence of rat renal gamma-glutamyltranspeptidase. However, papain treatment of the amphipathic enzyme (Triton-purified gamma-glutamyltranspeptidase, T gamma GT), pretreated with galactose oxidase and NaB3H4 (Frielle, T., and Curthoys, N. P. (1983) Biochemistry 22, 5709-5714), yields the hydrophilic enzyme (papain-treated Triton-purified gamma-glutamyltranspeptidase, PT gamma GT) and a labeled peptide which contains both the amino-terminal membrane anchor and the sequence Pro27-Thr28-Thr29-Ser30. Since [3H]galactose was identified in this peptide, the presence of O-linked oligosaccharides was investigated. Carbohydrate analysis is consistent with the presence of two simple O-linked oligosaccharides on T gamma GT and one on PT gamma GT. Lectin blot analysis of T gamma GT and PT gamma GT was carried out after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The small subunits of both T gamma GT and PT gamma GT and the large amphipathic subunit of T gamma GT all react with the peanut agglutinin lectin, but the large subunit of PT gamma GT exhibits no such reactivity. The reactivity with PNA is consistent with the presence of one oligosaccharide with the structure galactose beta 1-3N-acetylgalactosamine alpha 1-Ser/Thr attached to each subunit of T gamma GT. The papain-sensitivity of the oligosaccharide from the larger subunit is consistent with O-glycosylation at the Thr28-Thr29-Ser30 sequence. The results of lectin blot analysis with wheat germ agglutinin imply that the content of N-linked oligosaccharides is unaffected by papain treatment of the transpeptidase. These data represent the first direct evidence for O-glycosylation of a microvillar hydrolase at a site immediately adjacent to the membrane anchor and indicates that even small clusters of Thr and Ser can be O-glycosylated. Isolated O-linked oligosaccharides may have functional significance since single Ser and Thr residues are consistently found near the membrane anchor of many cell surface proteins.  相似文献   

4.
We have studied the synthesis and oligosaccharide processing of the 110,000 dalton form of the epidermal growth factor (EGF) receptor that is secreted into the medium of A-431 cells. Its 90,000 dalton precursor is soluble within the lumen of intracellular membrane vesicles shortly after synthesis, indicating that it lacks a membrane anchor. Analysis of labeled glycopeptides reveals that the glycosylation of the 110,000 dalton, secreted receptor is very similar to that of the 170,000 dalton, plasma membrane receptor. Based on Concanavalin A-Sepharose elution profiles of its glycopeptides, the secreted receptor has both complex and high-mannose N-linked oligosaccharides. Also, like the plasma membrane receptor, the secreted receptor contains N-acetylgalactosamine residues in its complex chains. Not only are major features of oligosaccharide processing of the soluble and membrane-bound forms of the receptor similar, but the kinetics of transport to the cell exterior is the same for each. These data indicate that the glycosylation pattern and kinetics of cellular transport of the EGF receptor are determined by factors other than the sequence of its cytoplasmic and transmembrane domains.  相似文献   

5.
The compound alpha-D-mannopyranosylmethyl-p-nitrophenyltriazene (alpha-ManMNT) has been tested for its effect on four alpha-D-mannosidase activities present in rat liver. When p-nitrophenyl alpha-D-mannopyranoside was used as a substrate, preincubation of enzyme with 1.0 mM alpha-ManMNT inhibited soluble alpha-D-mannosidase by 90%, lysosomal alpha-D-mannosidase by approx. 60%, and had virtually no effect on Golgi mannosidase II. Golgi mannosidase I removal of the four alpha-1,2-linked D-mannoses from the common Man9GlcNAc2 oligosaccharide structure formed during N-linked glycoprotein biosynthesis was also blocked by treatment of the Golgi fraction with this compound. Mannosyltriazene inhibition of the three susceptible hepatic alpha-D-mannosidases was largely irreversible. alpha-ManMNT should therefore be useful for studying oligosaccharide processing and possibly for determining the turnover time of the inhibited alpha-D-mannosidases.  相似文献   

6.
《The Journal of cell biology》1984,98(5):1720-1729
1- Deoxynojirimycin is a specific inhibitor of glucosidases I and II, the first enzymes that process N-linked oligosaccharides after their transfer to polypeptides in the rough endoplasmic reticulum. In a pulse- chase experiment, 1- deoxynojirimycin greatly reduced the rate of secretion of alpha 1-antitrypsin and alpha 1-antichymotrypsin by human hepatoma HepG2 cells, but had marginal effects on secretion of the glycoproteins C3 and transferrin, or of albumin. As judged by equilibrium gradient centrifugation, 1- deoxynojirimycin caused alpha 1- antitrypsin and alpha 1-antichymotrypsin to accumulate in the rough endoplasmic reticulum. The oligosaccharides on cell-associated alpha 1- antitrypsin and alpha 1-antichymotrypsin synthesized in the presence of 1- deoxynojirimycin , remained sensitive to Endoglycosidase H and most likely had the structure Glu1- 3Man9GlcNAc2 . Tunicamycin, an antibiotic that inhibits addition of N-linked oligosaccharide units to glycoproteins, had a similar differential effect on secretion of these proteins. Swainsonine , an inhibitor of the Golgi enzyme alpha- mannosidase II, had no effect on the rates of protein secretion, although the proteins were in this case secreted with an abnormal N- linked, partially complex, oligosaccharide. We conclude that the movement of alpha 1-antitrypsin and alpha 1-antichymotrypsin from the rough endoplasmic reticulum to the Golgi requires that the N-linked oligosaccharides be processed to at least the Man9GlcNAc2 form; possibly this oligosaccharide forms part of the recognition site of a transport receptor for certain secretory proteins.  相似文献   

7.
Kell, a 93 kDa type II membrane glycoprotein, and XK, a 444 amino acid multi-pass membrane protein, are blood group proteins that exist as a disulfide-bonded complex on human red cells. The mechanism of Kell/XK assembly was studied in transfected COS cells co-expressing Kell and XK proteins. Time course studies combined with endonuclease-H treatment and cell fractionation showed that Kell and XK are assembled in the endoplasmic reticulum. At later times the Kell component of the complex was not cleaved by endonuclease-H, indicating N-linked oligosaccharide processing and transport of the complex to a Golgi and/or a post-Golgi cell fraction. Surface-labeling of transfected COS cells, expressing both Kell and XK, demonstrated that the Kell/XK complex travels to the plasma membrane. XK expressed in the absence of Kell was also transported to the cell surface indicating that linkage of Kell and XK is not obligatory for cell surface expression.  相似文献   

8.
The imino sugar N-butyldeoxynojirimycin inhibits the N-linked oligosaccharide processing enzymes α-glucosidases I and II, and the ceramide specific glucosyltransferase which catalyses the first step in glucosphingolipid biosynthesis. We have studied the effects of this compound on the ultrastructure of HL-60 cells to identify novel activities of this compound. Treatment of HL-60 cells with this imino sugar results in several morphological changes within the cell, none of which result in cytotoxicity. The plasma membrane stains heavily with potassium ferrocyanide within 30 min following addition of the compound to the medium, and there is then a time dependent involvement of all other intracellular membranes. Secretory granules become enlarged and lose their dense core morphology and appear either empty and vacuolated or have low density contents. However, the most striking effect of NB-DNJ treatment is on the Golgi apparatus. The Golgi exhibits a time-dependent change from typical Golgi morphology to a structure almost completely devoid of cisternae and consisting predominantly of vesicles. All the observed changes are fully reversible on withdrawal of the compound.  相似文献   

9.
Biogenesis of the somatogenic receptor in rat liver   总被引:1,自引:0,他引:1  
Certain structural characteristics, in particular the type of oligosaccharide chains associated with the rat liver somatogenic (GH) receptors, were studied in different isolated organelles involved in receptor biosynthesis, maturation, and binding, with the use of ligand-affinity cross-linking, incubation with various oligosaccharide chain-cleaving enzymes, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In an endoplasmic reticulum-enriched fraction, a somatogenic receptor with Mr 33,000, after correction for bound ligand (assuming a 1:1 binding ratio of ligand to receptor) was found to contain N-linked high mannose oligosaccharide chain(s). In an intermediate density fraction, enriched in cis-Golgi, a major receptor of Mr 43,000 was found to contain N-linked complex type of oligosaccharide chains. In a low density membrane fraction, containing trans-Golgi complex membranes and endocytic vesicles, three receptors of Mr 95,000, 55,000, and 43,000 were found. These three receptors contain N-linked complex-type oligosaccharide chains. Neuraminidase treatment resulted in a decrease of the Mr 95,000 and 43,000 receptors to Mr 81,000 and 39,000, respectively. Two specific somatogenic receptors of Mr 95,000 and 43,000 containing N-linked complex type of oligosaccharides were found in an isolated plasma membrane-enriched fraction. When isolated hepatocytes were analyzed, the Mr 95,000 receptor was found to be the major labeled species. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis (first dimension nonreducing and the second dimension reducing conditions), showed that the Mr 43,000 receptor is contained within the Mr 95,000 receptor. The data suggest that the Mr 33,000 receptor found in endoplasmic reticulum constitutes a precursor to the Mr 43,000 receptor and that the Mr 43,000 receptor is complexed with an unknown subunit during transport through the Golgi complex to form an Mr 95,000 receptor present on the cell surface.  相似文献   

10.
Studies on N-linked oligosaccharide processing in the mouse lymphoma glucosidase II-deficient mutant cell line (PHAR2.7) as well as the parent BW5147 cells indicated that the former maintain their capacity to synthesize complex carbohydrate units through the use of the deglucosylation mechanism provided by endomannosidase. The in vivo activity of this enzyme was evident in the mutant cells from their production of substantial amounts of glucosylated mannose saccharides, predominantly Glc2Man; moreover, in the presence of 1-deoxymannojirimycin or kifunensine to prevent processing by mannosidase I, N-linked Man8GlcNAc2 was observed entirely in the form of the characteristic isomer in which the terminal mannose of the alpha 1,3-linked branch is missing (isomer A). In contrast, parent lymphoma cells, as well as HepG2 cells in the presence of 1-deoxymannojirimycin accumulated Man9GlcNAc2 as the primary deglucosylated N-linked oligosaccharide and contained only about 16% of their Man8GlcNAc2 as isomer A. In the presence of the glucosidase inhibitor castanospermine the mutant released Glc3Man instead of Glc2Man, and the parent cells converted their deglucosylation machinery to the endomannosidase route. Despite the mutant's capacity to accommodate a large traffic through this pathway no increase in the in vitro determined endomannosidase activity was evident. The exclusive utilization of endomannosidase by the mutant for the deglucosylation of its predominant N-linked Glc2Man9GlcNAc2 permitted an exploration of the in vivo site of this enzyme's action. Pulse-chase studies utilizing sucrose-D2O density gradient centrifugation indicated that the Glc2Man9GlcNAc2 to Man8GlcNAc2 conversion is a relatively late event that is temporally separated from the endoplasmic reticulum-situated processing of Glc3Man9GlcNAc2 to Glc2Man9GlcNAc2 and in contrast to the latter takes place in the Golgi compartment.  相似文献   

11.
We have engineered two Chinese hamster ovary cell lines secreting different recombinant glycoproteins to express high levels of human beta1,4-galactosyltransferase (GT, E.C. 2.4.1.38) and/or alpha2, 3-sialyltransferase (ST, E.C. 2.4.99.6). N-linked oligosaccharide structures synthesized by cells overexpressing the glycosyltransferases showed greater homogeneity compared with control cell lines. When GT was overexpressed, oligosaccharides terminating with GlcNAc were significantly reduced compared with controls, whereas overexpression of ST resulted in sialylation of >/=90% of available branches. As expected, GT overexpression resulted in reduction of oligosaccharides terminating with GlcNAc, whereas overexpression of ST resulted in sialylation of >/=90% of available branches. The more highly sialylated glycoproteins had a significantly longer mean residence time in a rabbit model of pharmacokinetics. These experiments demonstrate the feasibility of genetically engineering cell lines to produce therapeutics with desired glycosylation patterns.  相似文献   

12.
Intestinal brush border enzyme glycoproteins are transported to the microvillar membrane at different rates in the differentiated intestinal cell line Caco-2. This asynchronism is due to at least two rate-limiting events, a pre- and an intra-Golgi step (Stieger B., Matter, K., Baur, B., Bucher, K., H?chli, M., and Hauri, H.P. (1988) J. Cell Biol. 106, 1853-1861). A possible cause for the asynchronous protein transport might be differential trimming of N-linked oligosaccharide side chains. The effects of two trimming inhibitors on the intracellular transport of sucrase-isomaltase, a slowly migrating hydrolase, and dipeptidylpeptidase IV, a rapidly migrating hydrolase, are described. 1-Deoxymannojirimycin, an inhibitor of Golgi alpha-mannosidase I, had no influence on the rate of appearance of these hydrolases in the brush border membrane as assessed by subcellular fractionation. In the presence of N-methyl-1-deoxynojirimycin, an inhibitor of glucosidase I, 30-40% of the newly synthesized molecules appeared at the cell surface, and half-time for appearance of this pool was identical to that found in control cells. The reduced maximal transport to the cell surface observed with N-methyl-1-deoxynojirimycin may suggest that proper glycosylation is necessary for an efficient transport from the Golgi apparatus to the microvillar membrane. Inhibition of glucosidase I does not prevent the acquisition of endoglycosidase H resistance. Furthermore, evidence is presented that the processing in the presence of N-methyl-1-deoxynojirimycin leads to glycosylated endoglycosidase H-resistant glycoproteins.  相似文献   

13.
The yeast specific alpha-mannosidase which converts Man9GlcNAc to a single isomer of Man8GlcNAc is involved in N-linked oligosaccharide processing in the endoplasmic reticulum (ER). Sequence analysis of the structural gene for this enzyme suggested that it is a type II transmembrane protein (Camirand et al., 1991). To firmly establish its membrane topology, the gene was transcribed in vitro and translation was performed in a reticulocyte lysate with and without dog pancreas microsomal membranes. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of [35S]methionine-labelled products showed that the largest band formed corresponded in size to the 63 kDa peptide expected from the alpha-mannosidase gene product. It was transformed into a 4 kDa larger endoglycosidase H-sensitive band in the presence of microsomal membranes. This glycosylated translation product was completely protected from proteinase K digestion in the absence of detergent. These results demonstrate that the yeast ER alpha-mannosidase is a type II membrane protein, like Golgi enzymes involved in N-linked glycosylation.  相似文献   

14.
alpha-mannosidases I and II (Man I and II) are resident enzymes of the Golgi complex involved in oligosaccharide processing during N-linked glycoprotein biosynthesis that are widely considered to be markers of the cis- and medial-Golgi compartments, respectively. We have investigated the distribution of these enzymes in several cell types by immunofluorescence and immunoelectron microscopy. Man II was most commonly found in medial- and/or trans- cisternae but showed cell type- dependent variations in intra-Golgi distribution. It was variously localized to either medial (NRK and CHO cells), both medial and trans (pancreatic acinar cells, enterocytes), or trans- (goblet cells) cisternae, or distributed across the entire Golgi stack (hepatocytes and some enterocytes). The distribution of Man I largely coincided with that of Man II in that it was detected primarily in medial- and trans- cisternae. It also showed cell type dependent variations in its intra- Golgi distribution. Man I and Man II were also detected within secretory granules and at the cell surface of some cell types (enterocytes, pancreatic acinar cells, goblet cells). In the case of Man II, cell surface staining was shown not to be due to antibody cross- reactivity with oligosaccharide epitopes. These results indicate that the distribution of Man I and Man II within the Golgi stack of a given cell type overlaps considerably, and their distribution from one cell type to another is more variable and less compartmentalized than previously assumed.  相似文献   

15.
The isolation of Golgi membranes from suspension-cultured cellsof rice (Oryza sativa L.) was attempted by linear glycerol densitygradient centrifugation. When "burst" membranes in the pelletobtaind after differential centrifugation at 100,000 ? g weresuspended in 20% (w/w) glycerol in 50 mM malate-NaOH (pH 6.0)and loaded onto a linear density gradient of glycerol, whichextended from 30 to 80% (w/w) in 1 mM EDTA in 50 mM glycylglycine-NaOH(pH 7.5), IDPase, a marker enzyme for Golgi membranes, was separatedfrom other membrane markers on the glycerol gradient. In addition,UDPase and GDPase activities overlapped with the peak fractionof IDPase activity. Furthermore, membrane glycoproteins in eachfraction were characterized by lectin-peroxidase staining. ConcanavalinA and lentil lectin, which have the ability to bind to the high-mannosetype of oligosaccharide, bound to glycoproteins distributedin ER membrane fractions, while wheat germ lectin, castor beanlectin, peanut lectin, and Ulex europaeus lectin-I which recognizethe complex type and/or the mucin type of oligosaccharides interactedwith glycoproteins in the Golgi membrane fractions but not withthose in the ER membrane. These results strongly suggest thatthe oligosaccharide structures of glycoproteins in the ER membraneare of the high-mannose type, whereas glycoproteins in the Golgimembrane have modified N-linked and/or O-linked oligosaccharidechains. (Received November 9, 1988; Accepted October 17, 1989)  相似文献   

16.
The biosynthesis and oligosaccharide structure of the human complement regulatory glycoprotein decay-accelerating factor (DAF) were studied in erythrocytes and cell lines. Initial information relative to carbohydrate moieties of DAF was obtained by enzymatic digestions. The 74,000 Mr erythrocyte DAF was lowered 3000 by endoglycosidase F, whereas endoglycosidase H had no effect, indicating one N-linked complex-type unit. Treatment with endo-alpha-N-acetylgalactosaminidase to remove O-linked oligosaccharides resulted in a 48,000 Mr molecule (67% of the Mr shift being due to sialic acid), which decreased to 45,000 Mr after sequential endoglycosidase F treatment. To additionally define the oligosaccharide structure and identify precursors in biosynthetic pathways, DAF was studied in the HL-60 cell line differentiated by vitamin D toward monocytes. Pulse-chase experiments with [35S]methionine revealed a precursor species of 43,000 Mr that underwent an early post-translational modification to a 46,000 Mr intermediate, and subsequently was chased into a mature species of 80,000 Mr that aligned with 125I surface-labeled DAF from these cells. All three forms of DAF were approximately 3000 lower in Mr in the presence of tunicamycin. The two lower Mr DAF species were sensitive to endoglycosidases F and H but not to neuraminidase or endo-alpha-N-acetylgalactosaminidase. In summary, DAF is synthesized as a 43,000 Mr precursor species containing one N-linked high-mannose unit. Before entering the central region of the Golgi, it is converted to a 46,000 Mr species by an as yet unknown post-translational modification. The 46,000 Mr form is converted to the 74,000 Mr (erythrocyte) or 80,000 Mr (leukocyte) membrane form of DAF by the addition of multiple, sialylated O-linked oligosaccharide chains (responsible for the large electrophoretic mobility shift) and conversion of the single N-linked high-mannose unit to a complex-type structure. The cell-specific Mr variation between red and white blood cells arises during this post-translational modification from the 46,000 Mr biosynthetic intermediate to the mature DAF species expressed on the cell surface.  相似文献   

17.
Mammals express multiple cytochromes P450 simultaneously in a variety of tissues, including the liver, kidney, lung, adrenal, gonads, brain, and most others. For cytochromes P450 that are expressed in many tissues or cell types, the tissue/cell type-specific expression might be associated with their special physiological roles. Several cytochrome P450 enzymes are found not only in different cell types and tissues, but also in different subcellular compartments. Generally, all mammalian cytochrome P450 enzymes are membrane bound. The two major groups are represented by microsomal cytochromes P450 that reside in the endoplasmic reticulum, and mitochondrial cytochromes P450, that reside in the inner mitochondrial membrane. However, the outer nuclear membrane, different Golgi compartments, peroxisomes and the plasma membrane are also sites where cytochromes P450 were observed. For example, CYP51 is an ER enzyme in majority of tissues but in male germ cells it trafficks through the Golgi to acrosome, where it is stabilized for several weeks. Surprisingly, in brains of heme synthesis deficient mice, a soluble form of CYP1A1 was detected whose activity has been restored by the addition of heme. In the majority of cases each cytochrome P450 enzyme resides in a single subcellular compartment in a certain cell, however, examples of simultaneous localization in different subcellular compartments have also been described, such as endoplasmic reticulum, Golgi and plasma membrane for CYP2E1. This review will focus on the physiological importance of mammalian cytochrome P450 expression and localization in different tissues or cell types and subcellular compartments.  相似文献   

18.
Mammals express multiple cytochromes P450 simultaneously in a variety of tissues, including the liver, kidney, lung, adrenal, gonads, brain, and most others. For cytochromes P450 that are expressed in many tissues or cell types, the tissue/cell type-specific expression might be associated with their special physiological roles. Several cytochrome P450 enzymes are found not only in different cell types and tissues, but also in different subcellular compartments. Generally, all mammalian cytochrome P450 enzymes are membrane bound. The two major groups are represented by microsomal cytochromes P450 that reside in the endoplasmic reticulum, and mitochondrial cytochromes P450, that reside in the inner mitochondrial membrane. However, the outer nuclear membrane, different Golgi compartments, peroxisomes and the plasma membrane are also sites where cytochromes P450 were observed. For example, CYP51 is an ER enzyme in majority of tissues but in male germ cells it trafficks through the Golgi to acrosome, where it is stabilized for several weeks. Surprisingly, in brains of heme synthesis deficient mice, a soluble form of CYP1A1 was detected whose activity has been restored by the addition of heme. In the majority of cases each cytochrome P450 enzyme resides in a single subcellular compartment in a certain cell, however, examples of simultaneous localization in different subcellular compartments have also been described, such as endoplasmic reticulum, Golgi and plasma membrane for CYP2E1. This review will focus on the physiological importance of mammalian cytochrome P450 expression and localization in different tissues or cell types and subcellular compartments.  相似文献   

19.
Malignant transformation of fibroblast and epithelial cells is accompanied by increased beta 1-6 N-acetylglucosaminyltransferase V (GlcNAc-TV) activity, a Golgi N-linked oligosaccharide processing enzyme. Herein, we report that expression of GlcNAc-TV in Mv1Lu cells, an immortalized lung epithelial cell line results in loss of contact- inhibition of cell growth, an effect that was blocked by swainsonine, an inhibitor of Golgi processing enzyme alpha-mannosidase II. In serum- deprived and high density monolayer cultures, the GlcNAc-TV transfectants formed foci, maintained microfilaments characteristic of proliferating cells, and also experienced accelerated cell death by apoptosis. Injection of the GlcNAc-TV transfectants into nude mice produced a 50% incidence of benign tumors, and progressively growing tumors in 2:12 mice with a latency of 6 mo, while no growth was observed in mice injected with control cells. In short term adhesion assays, the GlcNAc-TV expressing cells were less adhesive on surfaces coated with fibronectin and collagen type IV, but no changes were observed in levels of cell surface alpha 5 beta 1 or alpha v beta 3 integrins. The larger apparent molecular weights of the LAMP-2 glycoprotein and integrin glycoproteins alpha 5, alpha v and beta 1 in the transfected cells indicates that their oligosaccharide chains are substrates for GlcNAc-TV. The results suggest that beta 1-6GlcNAc branching of N-linked oligosaccharides contributes directly to relaxed growth controls and reduce substratum adhesion in premalignant epithelial cells.  相似文献   

20.
The McDonough strain of feline sarcoma virus encodes a polyprotein that is cotranslationally glycosylated and proteolytically cleaved to yield transforming glycoproteins specified by the viral oncogene v-fms. The major form of the glycoprotein (gp120fms) contains endoglycosidase H-sensitive, N-linked oligosaccharide chains lacking fucose and sialic acid, characteristic of glycoproteins in the endoplasmic reticulum. Kinetic and steady-state measurements showed that most gp120fms molecules were not converted to mature forms containing complex carbohydrate moieties. Fixed-cell immunofluorescence confirmed that the majority of v-fms-coded antigens were internally sequestered in transformed cells. Dual-antibody fluorescence performed with antibodies to intermediate filaments (IFs) showed that the IFs of transformed cells were rearranged, and their distribution coincided with that of v-fms-coded antigens. No specific disruption of actin cables was observed. The v-fms gene products cofractionated with IFs isolated from virus-transformed cells and reassociated with IFs self-assembled in vitro. A minor population of v-fms-coded molecules (gp140fms) acquired endoglycosidase H-resistant, N-linked oligosaccharide chains containing fucose and sialic acid residues, characteristic of molecules processed in the Golgi complex. Some gp140fms molecules were detected at the plasma membrane and were radiolabeled by lactoperoxidase-catalyzed iodination of live transformed cells. We suggest that v-fms-coded molecules are translated as integral transmembrane glycoproteins, most of which are inhibited in transport through the Golgi complex to the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号