首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sokawa et al. suggest that rel- strains of Escherichia coli possess abnormal protein synthesizing machinery, which cannot carry out normal protein synthesis when the supply of amino-acids is limited.  相似文献   

2.
CARBENICILLIN was produced as a new, semi-synthetic penicillin with antibacterial activity against Pseudomonas aeruginosa and some other microorganisms1, but this compound was known to be destroyed by staphylococcal penicillinase2. Newsom et al.3 described the substrate profile of a constitutive β-lactamase from one strain of Pseudomonas aeruginosa and reported the hydrolysis of carbenicillin at a rate higher than benzylpenicillin. When compared with the inducible enzyme described by Sabath et al.4, it differed both in the substrate profile and the ability to hydrolyse carbenicillin. Lack of activity of the inducible enzyme on carbenicillin was also reported by Garber and Friedman5 when studying eight strains of Pseudomonas aeruginosa. Sykes and Richmond6 were able to identify three types of β-lactamases among fifty-six strains of Pseudomonas aeruginosa according to induci-bility, substrate profile and activity on carbenicillin. Type I (Sabath et al.4) was inducible, highly active on cephaloridine and showed no activity on carbenicillin. Types II (Sykes and Richmond7) and III (Newsom et al.3) were constitutive and inactivated carbenicillin at different rates. Only the constitutive enzymes conferred resistance towards carbenicillin. We have investigated the activity on carbenicillin of β-lactamases from strains of Pseudomonas aeruginosa isolated from clinical specimens. Activity on benzylpenicillin and cephaloridine was also studied.  相似文献   

3.
A group of 67 Lactobacillus spp. strains containing Lactobacillus casei/paracasei, Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus plantarum, Lactobacillus rhamnosus and Lactobacillus salivarius species isolated from early childhood caries and identified to the species level in a previous study (?vec et al., Folia Microbiol 54:53–58, 2009) was characterized by automated ribotyping performed by the RiboPrinter® microbial characterization system and by randomly amplified polymorphic DNA fingerprinting (RAPD-PCR) with M13 primer to evaluate these techniques for characterization of lactobacilli associated with dental caries. Ribotyping revealed 55 riboprints among the analysed group. The automatic identification process performed by the RiboPrinter system identified 18 strains to the species level, however cluster analysis divided obtained ribotype patterns into individual clusters mostly corresponding to the species assignment of particular strains. RAPD-PCR fingerprints revealed by the individual Lactobacillus spp. showed higher variability than the ribotype patterns and the fingerprint profiles generated by the analysed species were distributed among one to four clusters. In conclusion, ribotyping is shown to be more convenient for the identification purposes while RAPD-PCR fingerprinting results indicate this method is a better tool for typing of Lactobacillus spp. strains occurring in dental caries.  相似文献   

4.
Photochemically induced dynamic nuclear polarization (photo-CIDNP) has been observed in the homodimeric, type-1 photochemical reaction centers (RCs) of the acidobacterium, Chloracidobacterium (Cab.) thermophilum, by 15N magic-angle spinning (MAS) solid-state NMR under continuous white-light illumination. Three light-induced emissive (negative) signals are detected. In the RCs of Cab. thermophilum, three types of (bacterio)chlorophylls have previously been identified: bacteriochlorophyll a (BChl a), chlorophyll a (Chl a), and Zn-bacteriochlorophyll a′ (Zn-BChl a′) (Tsukatani et al. in J Biol Chem 287:5720–5732, 2012). Based upon experimental and quantum chemical 15N NMR data, we assign the observed signals to a Chl a cofactor. We exclude Zn-BChl because of its measured spectroscopic properties. We conclude that Chl a is the primary electron acceptor, which implies that the primary donor is most likely Zn-BChl a′. Chl a and 81-OH Chl a have been shown to be the primary electron acceptors in green sulfur bacteria and heliobacteria, respectively, and thus a Chl a molecule serves this role in all known homodimeric type-1 RCs.  相似文献   

5.
RpsA, also known as ribosomal protein S1, is an essential protein required for translation initiation of mRNAs when their Shine-Dalgarno sequence is degenerated (Sorensen et al. 1998). In addition, RpsA of Mycobacterium tuberculosis (M. tb) is involved in trans-translation, which is an effective system mediated by tmRNA-SmpB to release stalled ribosomes from mRNA in the presence of rare codons (Keiler 2008). Shi et al. found that POA binds to RpsA of Mtb and disrupts the formation of RpsA–tmRNA complex (Shi et al. 2011) and mutations at the C-terminus of RpsA confer PZA resistance. The previous work reported the pyrazinoic acid-binding domain of RpsA (Yang et al. Mol Microbiol 95:791–803, 2015). However, the HSQC spectra of the isolated S1 domain does not overlap with that of MtRpsA280-438, suggesting that substantial interactions occur between the flexible C-terminus and the S1 domain in MtRpsA .To further study the PZA resistance and how substantial interactions influence/affect protein structure, using heteronuclear NMR spectroscopy, we have completed backbone and side-chain 1H, 15N, 13C chemical shift assignments of MtRpsA280-438 which contains S1 domain and the flexible C-terminus. These NMR resonance assignments provide the framework for detailed characterization of the solution-state protein structure determination, dynamic studies of this domain, as well as NMR-based drug discovery efforts.  相似文献   

6.
Bacillus thuringiensis (Berliner) bears essential characteristics in the control of insect pests, such as its unique mode of action, which confers specificity and selectivity. This study assessed cry gene contents from Bt strains and their entomotoxicity against Diatraea saccharalis (F.) and Diatraea flavipennella (Box) (Lepidoptera: Crambidae). Bioassays with Bt strains were performed against neonates to evaluate their lethal and sublethal activities and were further analyzed by PCR, using primers to identify toxin genes. For D. saccharalis and D. flavipennella, 16 and 18 strains showed over 30% larval mortality in the 7th day, respectively. The LC50 values of strains for D. saccharalis varied from 0.08 × 105 (LIIT-0105) to 4104 × 105 (LIIT-2707) spores + crystals mL?1. For D. flavipennella, the LC50 values of strains varied from 0.40 × 105 (LIIT-2707) to 542 × 105 (LIIT-2109) spores + crystals mL?1. For the LIIT-0105 strain, which was the most toxic to D. saccharalis, the genes cry1Aa, cry1Ab, cry1Ac, cry1B, cry1C, cry1D, cry1F, cry1I, cry2Aa, cry2Ab, cry8, and cry9C were detected, whereas for the strain LIIT-2707, which was the most toxic to D. flavipennella, detected genes were cry1Aa, cry1Ab, cry1Ac, cry1B, cry1D, cry1F, cry1I, cry2Aa, cry2Ab, and cry9. The toxicity data and toxin gene content in these strains of Bt suggest a great variability of activity with potential to be used in the development of novel biopesticides or as source of resistance genes that can be expressed in plants to control pests.  相似文献   

7.
The study evaluates the survivability and storage stability of seven Trichoderma strains belonging to the species: T. harzianum (1), T. atroviride (4), and T. virens (2) after the lyophilization of their solid state cultures on wheat straw. Biomass of Trichoderma strains was freeze-dried with and without the addition of maltodextrin. Furthermore, in order to determine the ability of tested Trichoderma strains to preserve selected technological features, the biosynthesis of extracellular hydrolases (cellulases, xylanases, and polygalacturonases) after a 3-month storage of lyophilizates was investigated. Strains of T. atroviride (except TRS40) and T. harzianum TRS85 showed the highest viability after lyophilization process (up to 100%). After 3 months of storage, T. atroviride TRS14 exhibited the highest stability (95.23%); however, the number of active conidia remained at high level of 106–107 cfu/g for all tested T. atroviride strains and T. harzianum TRS85. Interestingly, after a 3-month storage of lyophilized formulations, most of the tested Trichoderma strains exhibited higher cellulolytic and xylanolytic activities compared to the control, i.e., before freeze-drying process. The highest activities of these enzymes exhibited the following: T. atroviride TRS14–2.37 U/g and T. atroviride TRS25–21.47 U/g, respectively, whereas pectinolytic activity was weak for all tested strains, with the highest value of 0.64 U/g registered for T. virens TRS109.  相似文献   

8.
Chen et al. have proved conclusively that lac repressor and RNA polymerase bind independently to wild type lac DNA in vitro. To explain the lacp s mutation, which causes competitive binding between repressor and polymerase, they suggest that a new promoter site has been created near the lac operator.  相似文献   

9.
Twenty four rhizobial strains were isolated from root nodules of Melilotus, Medicago and Trigonella plants growing wild in soils throughout Egypt. The nearly complete 16S rRNA gene sequence from each strain showed that 12 strains (50 %) were closely related to the Ensifer meliloti LMG6133T type strain with identity values higher than 99.0 %, that 9 (37.5 %) strains were more than 99 % identical to the E. medicae WSM419T type strain, and that 3 (12.5 %) strains showed 100 % identity with the type strain of N. huautlense S02T. Accordingly, the diversity of rhizobial strains nodulating wild Melilotus, Medicago and Trigonella species in Egypt is marked by predominance of two genetic types, E. meliloti and E. medicae, although the frequency of isolation was slightly higher in E. meliloti. Sequencing of the symbiotic nodC gene from selected Medicago and Melilotus strains revealed that they were all similar to those of the E. meliloti LMG6133T and E. medicae WSM419T type strains, respectively. Similarly, nodC sequences of strains identified as members of the genus Neorhizobium were more than 99 % identical to that of N. galegae symbiovar officinalis HAMBI 114.  相似文献   

10.
In recent years, several strains capable of degrading 1,4-dioxane have been isolated from the genera Pseudonocardia and Rhodococcus. This study was conducted to evaluate the 1,4-dioxane degradation potential of phylogenetically diverse strains in these genera. The abilities to degrade 1,4-dioxane as a sole carbon and energy source and co-metabolically with tetrahydrofuran (THF) were evaluated for 13 Pseudonocardia and 12 Rhodococcus species. Pseudonocardia dioxanivorans JCM 13855T, which is a 1,4-dioxane degrading bacterium also known as P. dioxanivorans CB1190, and Rhodococcus aetherivorans JCM 14343T could degrade 1,4-dioxane as the sole carbon and energy source. In addition to these two strains, ten Pseudonocardia strains could degrade THF, but no Rhodococcus strains could degrade THF. Of the ten Pseudonocardia strains, Pseudonocardia acacia JCM 16707T and Pseudonocardia asaccharolytica JCM 10410T degraded 1,4-dioxane co-metabolically with THF. These results indicated that 1,4-dioxane degradation potential, including degradation for growth and by co-metabolism with THF, is possessed by selected strains of Pseudonocardia and Rhodococcus, although THF degradation potential appeared to be widely distributed in Pseudonocardia. Analysis of soluble di-iron monooxygenase (SDIMO) α-subunit genes in THF and/or 1,4-dioxane degrading strains revealed that not only THF and 1,4-dioxane monooxygenases but also propane monooxygenase-like SDIMOs can be involved in 1,4-dioxane degradation.  相似文献   

11.
Three novel bacterial strains (UCM-2T, UCM-G28T, and UCM-G35T) were obtained while isolating soil bacteria for the development of antibiotics. Cells of these strains were Gram-negative, non-spore forming, motile by means of a single flagellum, and rod shaped. In all strains, the predominant isoprenoid quinone was ubiquinone-8 (Q-8). Cells contained C16:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c), summed feature 8 (C18:1ω7c and/or C18:1ω6c), and C17:0 cyclo as the major fatty acids, and C10:0 3-OH as the major hydroxy fatty acid. The polar lipid profiles of the three novel strains were dominated by diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol. The genomic DNA G + C contents of strains UCM-2T, UCM-G28T, and UCMG35T were 67.5, 65.9, and 66.4 mol%, respectively. Phylogenetic analyses based on 16S rRNA sequences showed that strain UCM-2T was most closely related to Variovorax soli NBRC 106424T, whereas strains UCM-G28T and UCM-G35T were most similar to Variovorax ginsengisoli Gsoil 3165T. Values indicating DNA-DNA hybridization between the novel isolates and closely related species in the genus Variovorax were lower than the 70% cut-off point. These phenotypic, chemotaxonomic, and phylogenetic data indicate that the three isolates should be classified as new members of the genus Variovorax, for which the names Variovorax ureilyticus sp. nov., Variovorax rhizosphaerae sp. nov., and Variovorax robiniae sp. nov. are proposed. The type strains are UCM-2T (= KACC 18899T = NBRC 112306T), UCMG28T (= KACC 18900T = NBRC 112307T), and UCM-G35T (= KACC 18901T = NBRC 112308T), respectively.  相似文献   

12.
Prions are proteins that under the same conditions can exist in two or more conformations, and at least one of the conformations has infectious properties. The prionization of a protein is typically accompanied by its functional inactivation due to sequestration of monomers by the prion aggregates. The most of prions has been identified in the yeast Saccharomyces cerevisiae. One of them is [SWI +], a prion isoform of the Swi1 protein, which is a component of the evolutionarily conserved chromatin remodeling complex SWI/SNF. Earlier, it was shown that the prionization of [SWI +] induces a nonsense suppression, which leads to weak growth of the [SWI +] strains containing mutant variants of the SUP35 gene and the nonsense allele ade1-14 UGA on selective medium without adenine. This effect occurs because of [SWI +] induction that causes a decrease in the amount of the SUP45 mRNA. Strains carrying the SWI1 deletion exhibit significantly higher suppression of the ade1-14 UGA nonsense mutation than the [SWI +] strains. In the present study, we identified genes whose expression is altered in the background of the SWI1 deletion using RNA sequencing. We found that the ade1-14 UGA suppression in the swi1Δ strains is caused by an increase in the expression of this mutant allele of the ADE1 gene. At the same time, the SUP45 expression level in the swi1Δ strains does not significantly differ from the expression level of this gene in the [swi ] strains. Thus, we have shown that the phenotypic effects of Swi1 prionization and deletion are mediated by different molecular mechanisms. Based on these data, we have concluded that the prionization of proteins is not only unequal to their inactivation, but also can lead to the acquisition of novel phenotypic effects and functions.  相似文献   

13.
In E. coli, glyA encodes for serine hydroxymethyltransferase (SHMT), which converts L-serine to glycine. When engineering L-serine-producing strains, it is therefore favorable to inactivate glyA to prevent L-serine degradation. However, most glyA knockout strains exhibit slow cell growth because of the resulting lack of glycine and C1 units. To overcome this problem, we overexpressed the gcvTHP genes of the glycine cleavage system (GCV), to increase the C1 supply before glyA was knocked out. Subsequently, the kbl and tdh genes were overexpressed to provide additional glycine via the L-threonine degradation pathway, thus restoring normal cell growth independent of glycine addition. Finally, the plasmid pPK10 was introduced to overexpress pgk, serA Δ197 , serC and serB, and the resulting strain E4G2 (pPK10) accumulated 266.3 mg/L of L-serine in a semi-defined medium without adding glycine, which was 3.18-fold higher than the production achieved by the control strain E3 (pPK10). This strategy can accordingly be applied to disrupt the L-serine degradation pathway in industrial production strains without causing negative side-effects, ultimately making L-serine production more efficient.  相似文献   

14.
Genome skimming was performed, using Illumina sequence reads, in order to obtain a detailed comparative picture of the repetitive component of the genome of Populus species. Read sets of seven Populus and two Salix species (as outgroups) were subjected to clustering using RepeatExplorer (Novák et al. BMC Bioinformatics 11:378 2010). The repetitive portion of the genome ranged from 33.8 in Populus nigra to 46.5% in Populus tremuloides. The large majority of repetitive sequences were long terminal repeat-retrotransposons. Gypsy elements were over-represented compared to Copia ones, with a mean ratio Gypsy to Copia of 6.7:1. Satellite DNAs showed a mean genome proportion of 2.2%. DNA transposons and ribosomal DNA showed genome proportions of 1.8 and 1.9%, respectively. The other repeat types accounted for less of 1% each. Long terminal repeat-retrotransposons were further characterized, identifying the lineage to which they belong and studying the proliferation times of each lineage in the different species. The most abundant lineage was Athila, which showed large differences among species. Concerning Copia lineages, similar transpositional profiles were observed among all the analysed species; by contrast, differences in transpositional peaks of Gypsy lineages were found. The genome proportions of repeats were compared in the seven species, and a phylogenetic tree was built, showing species separation according to the botanical section to which the species belongs, although significant differences could be found within sections, possibly related to the different geographical origin of the species. Overall, the data indicate that the repetitive component of the genome in the poplar genus is still rapidly evolving.  相似文献   

15.
Strains pyc13T and ZGT13 were isolated from Lake Pengyan and Lake Zigetang on Tibetan Plateau, respectively. Both strains were Gram-negative, catalase- and oxidase-positive, aerobic, rod-shaped, nonmotile, and nonflagellated bacteria. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains pyc13T and ZGT13 belong to the genus Halomonas, with Halomonas alkalicola 56-L4-10aEnT as their closest neighbor, showing 97.4% 16S rRNA gene sequence similarity. The predominant respiratory quinone of both strains was Q-9, with Q-8 as a minor component. The major fatty acids of both strains were C18:1ω6c/C18:1ω7c, C16:1ω6c/C16:1ω7c, C16:0, and C12:0 3OH. The polar lipids of both strains consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, glycolipid, phospholipids of unknown structure containing glucosamine, and unidentified phospholipids. The DNA G + C content of pyc13T and ZGT13 were 62.6 and 63.4 mol%, respectively. The DNA-DNA hybridization values of strain pyc13T were 34, 41, 61, 35, and 35% with the reference strains H. alkalicola 56-L4-10aEnT, H. sediminicola CPS11T, H. mongoliensis Z-7009T, H. ventosae Al12T, and H. fontilapidosi 5CRT, respectively. Phenotypic, biochemical, genotypic, and DNA-DNA hybridization data showed that strains pyc13T and ZGT13 represent a new species within the genus Halomonas, for which the name H. tibetensis sp. nov. is proposed. The type strain is pyc13T (= CGMCC 1.15949T = KCTC 52660T).  相似文献   

16.
Molecular cloning of the DIP1 gene located in the 20A4-5 region has been performed from the following strains with the flamenco phenotype: flam SS (SS) and flam MS (MS) characterized by a high transposition rate of retrotransposon gypsy (mdg4), flam py + (P) carrying the insertion of a construction based on the P element into the region of the flamenco gene, and flamenco +. The results of restriction analysis and sequencing cloned DNA fragments has shown that strains flam SS , flam MS considerably differ from flam py + (P), and flamenco + in the structure of DIP1. Strains flam SS and flam MS have no DraI restriction site at position 1765 in the coding region of the gene, specifically, in the domain determining the signal of the nuclear localization of the DIP1 protein. This mutation has been found to consist in a nucleotide substitution in the recognition site of DraI restriction endonuclease, which is transformed from TTTAAA into TTTAAG and, hence, is not recognized by the enzyme. This substitution changes codon AAA into AAG and is translationally insignificant, because both triplets encode the same amino acid, lysine. The DIP1 gene of strains flam SS and flam MS has been found to contain a 182-bp insertion denoted IdSS (insertion in DIP1 strain SS); it is located in the second intron of the gene. The IdSS sequence is part of the open reading frame encoding the putative transposase of the mobile genetic element HB1 belonging to the Tc1/mariner family. This insertion is presumed to disturb the conformations of DNA and the chromosome, in particular, by forming loops, which alters the expression of DIP1 and, probably, neighboring genes. In strains flamenco + and flam py + (P), the IdSS insertion within the HB1 sequence is deleted. The deletion encompasses five C-terminal amino acid residues of the conserved domain and the entire C-terminal region of the putative HB1 transposase. The obtained data suggest that DIP1 is involved in the control of gypsy transpositions either directly or through interaction with other elements of the genome.  相似文献   

17.
Jayson GC et al. remarked in Lancet that nearly 100% of mucinous ovarian cancer cases have Kras mutation as well as a high frequency of Her2 amplification. Using the Abbott PathVysion Her2 DNA Probe Kit and Kras mutant-enriched PCR Kits (FemtoPath®), 21 samples of primary ovarian mucinous cystadenocarcinomas from Taiwanese patients were examined to determine the status of Her2 amplification and Kras mutations. Our results showed the Her2 amplification rates were 33.33%, while the Kras mutation rates were 61.90%. We present here our results in order to enlighten the readership that the ~100% Kras mutant frequency and the high Her2 amplification rate reported by Jayson et al. may be too exaggerated to be applicable into all populations. Additionally, we report another 2 novel Kras mutations (A11V, V14I).  相似文献   

18.
19.
Two new bacterial strains designated as Ant6T and Ant18 were isolated from the muscle of a fish which had been caught in the Antarctic Ocean. Both strains are Gram-stain-positive, catalase positive, oxidase negative, aerobic, and coccoid bacteria. Phylogenetic analysis based on the 16S rRNA gene sequences of strains Ant6T and Ant18 revealed that the strains Ant6T and Ant18 belong to the genus Deinococcus in the family Deinococcaceae in the class Deinococci. The highest degrees of sequence similarities of strains Ant6T and Ant18 were found with Deinococcus alpinitundrae LMG 24283T by 96.4% and 96.8%, respectively. Strain Ant6T exhibited a high level of DNA- DNA hybridization values with strain Ant18 (82 ± 0.6%). Chemotaxonomic data revealed that the predominant fatty acids were C17: 0 cyclo, 16:0, and feature 3 (C16:1ω6c/ω7c) for both strains. A complex polar lipid profile consisted of major amounts of unknown phosphoglycolipids (PGL) and unknown aminophospholipid (APL). Based on the phylogenetic, phenotypic, and chemotaxonomic data, strains Ant6T (=KEMB 9004-169T =JCM 31434T) and Ant18 (=KEMB 9004-170) should be classified as a new species, for which the name Deinococcus rubellus sp. nov. is proposed.  相似文献   

20.
The citrus fruit borer, Ecdytolopha aurantiana (Lima, 1927) (Lepidoptera: Tortricidae), is responsible for major losses to the citrus industry because it causes rot and drop of fruits. The current study aimed to select and characterize Bacillus thuringiensis (Berliner, 1911) strains toxic to E. aurantiana. For this purpose, 47 B. thuringiensis strains were evaluated in selective bioassays using first instar larvae of E. aurantiana. The lethal concentration (LC50) of the most toxic strains was estimated, and the strains were characterized by morphological, biochemical, and molecular methods. Of the 47 strains tested, 10 caused mortality above 85% and showed mean lethal concentrations between 1.05E+7 and 1.54E+8 spores mL?1. The lowest LC50 values were obtained for the HD-1 standard strain and the BR145, BR83, BR52, and BR09 strains. The protein profile showed the presence of Cry proteins of 60, 65, 70, 80, and 130 kDa. The molecular characterization showed the presence of cry1, cry2, cry3, and cry11 genes. The morphological analysis identified three different crystalline inclusions: bipyramidal, round, and cuboidal. The cry1 and cry2 genes were the most frequent among the B. thuringiensis strains evaluated and encode Cry proteins toxic to insects of the order Lepidoptera, which agree with the toxicity results obtained by the selective bioassays against E. aurantiana. The results showed four different B. thuringiensis strains toxic to E. aurantiana at the same level as the HD-1 standard strain, and these strains have biotechnological potential for E. aurantiana control through the production of transgenic plants or the formulation of biopesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号