首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The mitochondrial phosphoenolpyruvate carboxykinase (GTP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.32), purified from chick embryo liver, was synergistically activated by a combination of Mn2+ and Mg2+ in the oxaloacetate ---- H14CO-3 exchange reaction. Increases in the Mg2+ concentration caused decreases in the K0.5 value of Mn2+ in line with the earlier finding that the enzyme was markedly activated by low Mn2+ (microM) plus high Mg2+ (mM). In the presence of 2.5 mM Mg2+, increases in the Mn2+ level first enhanced the activity of phosphoenolpyruvate carboxykinase, and then suppressed it to the maximal velocity shown in the presence of Mn2+ alone. Kinetic studies showed that high Mn2+ inhibited the activity of Mg2+ noncompetitively, and those of GTP and oxaloacetate uncompetitively. The inhibition constant for oxaloacetate (K'i = 550 microM) was lower than that of Mg2+ (Ki = K'i = 860 microM) or GTP (K'i = 1.6 mM), and was nearly equal to the apparent half-maximal inhibition concentration of Mn2+. These results suggested that Mn2+ can play two roles, of activating and suppressing phosphoenolpyruvate carboxykinase activity in the presence of high Mg2+.  相似文献   

2.
CaATP is shown to function as a substrate for the proton translocating ATPase of chromaffin granule ghosts at concentrations which are comparable to that of MgATP. Using the initial rate of the proton pump activity as the measure (delta pH/delta t), an apparent Km-value of 139 +/- 8 microM was estimated for CaATP and 59 +/- 3 microM for MgATP. The maximal rate was markedly higher with MgATP than with CaATP, partly due to an inhibition of the hydrolytic activity at the higher concentrations of CaATP. The proton pump activity with CaATP was inhibited by N-ethylmaleimide and N,N'-dicyclohexylcarbodiimide at concentrations similar to that found for MgATP. No inhibition was observed with sodium vanadate in the concentration range 0-15 microM. Calmodulin and trifluoperazine had no effect on the overall ATPase activity with CaATP. These findings establish this activity as an intrinsic property of the chromaffin granules, i.e., linked to the H+-ATPase. No evidence was obtained for the presence of a Ca2+-translocating ATPase [Ca2+ + Mg2+)-ATPase) in the chromaffin granules.  相似文献   

3.
The steady-state level of phosphorylated intermediate (EP) of (Mg2+ + Ca2+)-ATPase is influenced by magnesium and calcium concentration in the Ca2+-transporting system of sarcoplasmic reticulum vesicles. At micromolar [Ca2+], the level of EP is increased by Mg2+, depending on its concentration. The effect of Mg2+ is less pronounced at lower Ca2+ concentration. At low [Mg2+], the EP formation increases at millimolar concentrations of Ca2+, suggesting, in accordance with earlier results, that the substrate may also be CaATP instead of MgATP. LaCl3 (1 mM) enhanced the EP formation at low Mg2+ concentration. Surprisingly, 10 microM LaCl3 caused a marked decrease in EP formation at high [Mg2+] and had little or no effect on the level of EP at low Mg2+ concentration. The inducing effect of 1 mM LaCl3 on the EP formation at low [Mg2+] and the inhibitory effect of 10 microM LaCl3 at high Mg2+ concentration draw attention to the involvement of divalent cation-binding sites with different affinity in phosphorylation and to the particular role of Mg2+ in the EP formation and EP decomposition.  相似文献   

4.
Adenylate cyclase was assayed in a sonicated preparation of silkworm pupal fat body. The adenylate cyclase was found mostly in the particulate fraction. The activity depended upon either Mg2+ or Mn2+, and the degree of stimulation by Mn2+ was 2 times greater than that by Mg2+ compared at the saturating concentrations. In the presence of Mg2+, the enzyme was inhibited by both EGTA and high concentrations of Ca2+, showing biphasical response to Ca2+. The enzyme was stimulated several-fold by NaF. The enzyme exhibited typical Michaelis-Menten kinetics and Km values were 0.13 mM for MgATP and 0.086 mM for MnATP.  相似文献   

5.
ATP and the divalent cations Mg2+ and Ca2+ regulated K+ stimulation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum vesicles. Millimolar concentrations of total ATP increased the K+-stimulated ATPase activity of the Ca2+ pump by two mechanisms. First, ATP chelated free Mg2+ and, at low ionized Mg2+ concentrations, K+ was shown to be a potent activator of ATP hydrolysis. In the absence of K+ ionized Mg2+ activated the enzyme half-maximally at approximately 1 mM, whereas in the presence of K+ the concentration of ionized Mg2+ required for half-maximal activation was reduced at least 20-fold. Second MgATP apparently interacted directly with the enzyme at a low affinity nucleotide site to facilitate K+-stimulation. With a saturating concentration of ionized Mg2+, stimulation by K+ was 2-fold, but only when the MgATP concentration was greater than 2 mM. Hill plots showed that K+ increased the concentration of MgATP required for half-maximal enzymic activation approx. 3-fold. Activation of K+-stimulated ATPase activity by Ca2+ was maximal at an ionized Ca2+ concentration of approx. 1 microM. At very high concentrations of either Ca2+ or Mg2+, basal Ca2+-dependent ATPase activity persisted, but the enzymic response to K+ was completely inhibited. The results provide further evidence that the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum has distinct sites for monovalent cations, which in turn interact allosterically with other regulatory sites on the enzyme.  相似文献   

6.
Both phosphointermediate- and vacuolar-type (P- and V-type, respectively) ATPase activities found in cholinergic synaptic vesicles isolated from electric organ are immunoprecipitated by a monoclonal antibody to the SV2 epitope characteristic of synaptic vesicles. The two activities can be distinguished by assay in the absence and presence of vanadate, an inhibitor of the P-type ATPase. Each ATPase has two overlapping activity maxima between pH 5.5 and 9.5 and is inhibited by fluoride and fluorescein isothiocyanate. The P-type ATPase hydrolyzes ATP and dATP best among common nucleotides, and activity is supported well by Mg2+, Mn2+, or Co2+ but not by Ca2+, Cd2+, or Zn2+. It is stimulated by hyposmotic lysis, detergent solubilization, and some mitochondrial uncouplers. Kinetic analysis revealed two Michaelis constants for MgATP of 28 microM and 3.1 mM, and the native enzyme is proposed to be a dimer of 110-kDa subunits. The V-type ATPase hydrolyzes all common nucleoside triphosphates, and Mg2+, Ca2+, Cd2+, Mn2+, and Zn2+ all support activity effectively. Active transport of acetylcholine (ACh) also is supported by various nucleoside triphosphates in the presence of Ca2+ or Mg2+, and the Km for MgATP is 170 microM. The V-type ATPase is stimulated by mitochondrial uncouplers, but only at concentrations significantly above those required to inhibit ACh active uptake. Kinetic analysis of the V-type ATPase revealed two Michaelis constants for MgATP of approximately 26 microM and 2.0 mM. The V-type ATPase and ACh active transport were inhibited by 84 and 160 pmol of bafilomycin A1/mg of vesicle protein, respectively, from which it is estimated that only one or two V-type ATPase proton pumps are present per synaptic vesicle. The presence of presumably contaminating Na+,K(+)-ATPase in the synaptic vesicle preparation is demonstrated.  相似文献   

7.
In order to characterize the phosphoenzymes (EPs) formed from MgATP and CaATP as substrates, the effects of Mg2+ and Ca2+ outside SR vesicles on the hydrolysis rates of EPs were examined by using purified and unpurified Ca-ATPases of sarcoplasmic reticulum (SR) at low [gamma-32P]ATP (4-10 microM), 0.1 M KCl, pH 7.0, and 0 degrees C. When the phosphorylation reaction was stopped by adding an excess of EDTA over Ca and Mg, two components of EP, EPfast (rate constant, kfast = 15-20 min-1), and EPslow (kslow = 0.3-0.4 min-1), were recognized in the time course of EP decomposition. These two rates did not depend on the Ca2+ or Mg2+ concentration in the medium during the phosphorylation reaction, although the proportions of EPfast and EPslow essentially depended on the concentrations of MgATP and CaATP in the phosphorylation reaction medium. The proportion of EPfast increased with increasing [MgATP]/[CaATP] in the medium, whereas that of EPslow decreased. The rate of EPslow hydrolysis in the presence of excess EDTA was basically the same as that of EP formed from CaATP. These results suggest that EPfast and EPslow are derived from MgATP and CaATP, respectively, and EPfast is a reaction intermediate with Mg bound at the substrate site (MgEP), while the main EPslow is a reaction intermediate with Ca bound at the substrate site (CaEP) which is readily converted to metal-free EP by EDTA addition (Shigekawa et al., (1983) J. Biol. Chem. 258, 8698-8707). Mg2+ added outside SR vesicles stimulated the conversion of CaEP to MgEP and inhibited the hydrolysis of MgEP in the relatively high concentration range (K(Mg) = 7.9 mM). Ca2+ added outside SR vesicles stimulated the conversion of MgEP to CaEP and inhibited the conversion of CaEP to MgEP by Mg2+ addition. The Ca2+ outside SR vesicles did not essentially affect the hydrolysis of MgEP. These results suggest that the interconversion between MgEP and CaEP takes place during the reaction by exchange of the divalent cation on the substrate site. The following scheme is proposed. (formula: see text)  相似文献   

8.
R M Gaion  G Krishna 《Life sciences》1982,31(6):551-556
Rat fat cell plasma membrane preparations were used to study the effect of Mn2+, Mg2+, Ca2+ on guanylate cyclase activity. Among these three cations, Mn2+ was the most effective in activating the enzyme; Mg2+ and Ca2+ were 23% and 10% respectively as effective as Mn2+ in activating the enzyme. Low concentrations of Ca2+ (1 microM) increased the rate of cGMP formation at MgGTP concentrations ranging from 0.3 to 2 mM. This effect was less at higher concentrations of Ca2+ and was independent of the presence of excess Mg2+. Ca2+ (100 microM) had only a marginal stimulatory effect on the MnGTP-dependent enzyme.  相似文献   

9.
10.
Substrate specificity of the erythrocyte Ca2+-ATPase   总被引:2,自引:0,他引:2  
In the absence of Mg2+, the observed activity of the erythrocyte plasma membrane Ca2+-ATPase is due to the hydrolysis of CaATP at a low rate. In the presence of Mg2+, the activity of the enzyme is much higher, but it is inhibited by high levels of free Mg2+. This inhibition appears to be due to competition of Mg2+ and Ca2+ for a site on the enzyme, rather than for ATP.  相似文献   

11.
This study reports on the divalent metal ion specificity for phosphorylase kinase autophosphorylation and, in particular, provides a comparison between the efficacy of Mg2+ and Mn2+ in this role. As well as requiring Ca2+ plus divalent metal ion-ATP2- as substrate, both phosphorylase kinase autoactivation and phosphorylase conversion are additionally modulated by divalent cations. However, these reactions are affected differently by different ions. Phosphorylase kinase-catalyzed phosphorylase conversion is maximally enhanced by a 4- to 10-fold lower concentration of Mg2+ than is autocatalysis and, whereas both reactions are stimulated by Mg2+, autophosphorylation is activated by Mn2+, Co2+, and Ni2+ while phosphorylase a formation is inhibited. This difference may be due to an effect of free Mn2+ on phosphorylase rather than the inability of phosphorylase kinase to use MnATP as a substrate when catalyzing phosphorylase conversion since Mn2+, when added at a level which minimally decreases [MgATP], greatly inhibits phosphorylase phosphorylation. The interactions of Mn2+ with phosphorylase kinase are different from those of Mg2+. Not only are the effects of these ions on phosphorylase activation opposite, but they also provoke different patterns of subunit phosphorylation during phosphorylase kinase autocatalysis. With Mn2+, the time lag of phosphorylation of both the alpha and beta subunits of phosphorylase kinase in autocatalysis is diminished in comparison to what is observed with Mg2+, and the beta subunit is only phosphorylated to a maximum of 1 mol/mol of subunit. With both Mg2+ and Mn2+ the alpha subunit is phosphorylated to a level in excess of 3 mol/mol, a level similar to that obtained for beta subunit phosphorylation in the presence of Mg2+. The support of autophosphorylation by both Co2+ and Ni2+ has characteristics similar to those observed with Mn2+. Although Mn2+ stimulation of autophosphorylation occurs at levels much higher than normal physiological levels, the possible potential of phosphorylase kinase autophosphorylation as a control mechanism is illustrated by the 80- to 100-fold activation that occurs in the presence of Mn2+, a level far in excess of the enzyme activity change normally seen with covalent modification. Autophosphorylation of phosphorylase kinase demonstrates a Km for Mg X ATP2- of 27.7 microM and a Ka for Mg2+ of 3.1 mM. The reaction mechanism of autophosphorylation is intramolecular. This latter observation may indicate that phosphorylase kinase autocatalysis could be of potential physiological relevance and could occur with equal facility in cells containing either constitutively high or low levels of this enzyme.  相似文献   

12.
LaATP is shown to be an effective inhibitor of the calcium ATPase of sarcoplasmic reticulum because the binding of LaATP to cE.Ca2 results in the formation of lanthanum phosphoenzyme, which decays slowly. Steady-state activity of the calcium ATPase in leaky sarcoplasmic reticulum vesicles is inhibited 50% by 0.16 microM LaCl3 (15 nM free La3+, 21 nM LaATP) in the presence of 25 microM Ca2+ and 49 microM MgATP (5 mM MgSO4, 100 mM KCl, 40 mM 4-morpholinepropanesulfonic acid, pH 7.0, 25 degrees C). However, 50% inhibition of the uptake of 45Ca and phosphorylation by [gamma-32P]ATP in a single turnover experiment requires 100 microM LaCl3 (28 microM free La3+) in the presence of 25 microM Ca2+; this inhibition is reversed by calcium but inhibition of steady-state turnover is not. Therefore, binding of La3+ to the cytoplasmic calcium transport site is not responsible for the inhibition of steady-state ATPase activity. The addition of 6.7 microM LaCl3 (1.1 microM free La3+) has no effect on the rate of dephosphorylation of phosphoenzyme formed from MgATP and enzyme in leaky vesicles, while 6.7 mM CaCl2 slows the rate of phosphoenzyme hydrolysis as expected; 6.7 microM LaCl3 and 6.7 mM CaCl2 cause 95 and 98% inhibition of steady-state ATPase activity, respectively. This shows that inhibition of ATPase activity in the steady state is not caused by binding of La3+ to the intravesicular calcium transport site of the phosphoenzyme. Inhibition of ATPase activity by 2 microM LaCl3 (0.16 microM free La3+, 0.31 microM LaATP) requires greater than 5 s, which corresponds to approximately 50 turnovers, to reach a steady-state level of greater than or equal to 80% inhibition. Inhibition by La3+ is fully reversed by the addition of 0.55 mM CaCl2 and 0.50 mM EGTA; this reactivation is slow with t1/2 approximately 9 s. Two forms of phosphoenzyme are present in reactions that are partially inhibited by La3+: phosphoenzyme with Mg2+ at the catalytic site and phosphoenzyme with La3+ at the catalytic site, which undergo hydrolysis with observed rate constants of greater than 4 and 0.05 s-1, respectively. We conclude, therefore, that La3+ inhibits steady-state ATPase activity under these conditions by replacing Mg2+ as the catalytic ion for phosphoryl transfer. The slow development of inhibition corresponds to the accumulation of lanthanum phosphoenzyme. Initially, most of the enzyme catalyzes MgATP hydrolysis, but the fraction of enzyme with La3+ bound to the catalytic site gradually increases because lanthanum phosphoenzyme undergoes hydrolysis much more slowly than does magnesium phosphoenzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
A rat liver plasma membrane fraction showed an ATP-dependent uptake of Ca2+ which was released by the ionophore A23187. This activity represents a plasma membrane component and is not due to microsomal contamination. The Ca2+ transport displayed several properties which were different from those of the high-affinity Ca2+-ATPase previously observed in these membranes (Lotersztajn et al. (1981) J. Biol. Chem. 256, 11209-11215; Birch-Machin, M.A. and Dawson, A.P. (1986) Biochim. Biophys. Acta 855, 277-285). These observations have shown that Ca2+-ATPase does not require added Mg2+ whereas we have demonstrated that, in the same membrane preparation, Ca2+ uptake required millimolar concentrations of added Mg2+. The Ca2+-ATPase has a broad specificity for the nucleotides ATP, GTP, UTP and ITP while Ca2+ uptake remains specific for ATP. Ca2+ uptake also displayed different affinities for free Ca2+ and MgATP compared to Ca2+-ATPase activity, with apparent Km values of 0.25 microM Ca2+, 0.15 mM MgATP and 1.0 microM Ca2+, 4 microM MgATP respectively. The apparent maximum rate of Ca2+ uptake was about 150-fold less than Ca2+-ATPase activity. These features suggest that the high-affinity Ca2+-ATPase is not the enzymic expression of the ATP-dependent Ca2+ transport mechanism.  相似文献   

14.
The involvement of Mg2+ ions in the reaction catalysed by phosphofructokinase from Trypanosoma brucei was studied. The true substrate for the enzyme was shown to be the MgATP2-complex, and free Mg2+ ions are also required for enzyme activity. At concentrations of MgATP2- of 2.92 mM and greater, and a fructose 6-phosphate concentration of 1 mM and in the presence of EDTA as a Mg2+ buffer, the Km value for Mg2+ was determined to be 294 +/- 18 microM. Neither MgATP nor free ATP is an inhibitor of the enzyme, although apparent inhibition by the latter can be observed as a consequence of the decrease in free Mg2+ by chelation.  相似文献   

15.
The activity of chicken liver mevalonate 5-diphosphate decarboxylase was measured over a wide range of Mg2+ and ATP concentrations. It was found that free ATP activated the enzyme, whereas free Mg2+ had no effect on the enzyme activity. Computed analyses of free species concentrations and pH studies indicated that MgATP2- is the true substrate. The relative efficiencies of Mg2+, Mn2+, Cd2+, and Zn2+ as activating metal ions were evaluated in terms of V/Km for the corresponding (metal-ATP)2- complexes, and the relative ratios were: Mn2+ 100, Cd2+ 37, Mg2+ 14, Zn2+ 1.7. Inhibitory effects were demonstrated for all free divalent cations tested, except for Mg2+, and were in the order Zn2+ greater than Cd2+ greater than Mn2+.  相似文献   

16.
The ribonucleotide reductase (ribonucleoside-diphosphate reductase; EC 1.17.4.1) induced by herpes simplex virus type 2 infection of serum-starved BHK-21 cells was purified to provide a preparation practically free of both eucaryotic ribonucleotide reductase and contaminating enzymes that could significantly deplete the substrates. Certain key properties of the herpes simplex virus type 2 ribonucleotide reductase were examined to define the extent to which it resembled the herpes simplex virus type 1 ribonucleotide reductase. The herpes simplex virus type 2 ribonucleotide reductase was inhibited by ATP and MgCl2 but only weakly inhibited by the ATP X Mg complex. Deoxynucleoside triphosphates were at best only weak inhibitors of this enzyme. ADP was a competitive inhibitor (K'i, 11 microM) of CDP reduction (K'm, 0.5 microM), and CDP was a competitive inhibitor (K'i, 0.4 microM) of ADP reduction (K'm, 8 microM). These key properties closely resemble those observed for similarly purified herpes simplex virus type 1 ribonucleotide reductase and serve to distinguish these virally induced enzymes from other ribonucleotide reductases.  相似文献   

17.
Properties of rat heart adenosine kinase.   总被引:3,自引:0,他引:3       下载免费PDF全文
Adenosine kinase was purified 870-fold from rat heart by a combination of gel filtration and affinity chromatography. The preparation was free of purine-metabolizing enzymes that could interfere in the assay of the kinase. A study of the properties of the purified enzyme showed that it is activated by Na+ and K+, it possesses a broad pH optimum between 6 and 8, MgATP is the nucleotide substrate, free Mg2+ is an inhibitor with respect to both MgATP and adenosine, and the enzyme is subject to substrate inhibition by adenosine. The severity of this inhibition increases as the concentration of free Mg2+ increase. The Km for MgATP was calculated to be 0.8 mM and that for adenosine, at likely physiological concentrations of MgATP and free MgCl2, was about 0.2 microM. In vivo the enzyme is likely to be saturated with both MgATP and adenosine. Indeed, the adenosine concentration in rat heart in vivo is probably sufficient to cause substrate inhibition, and this would be increased by an increase in free Mg2+ concentration. Changes in the concentrations of adenosine and free Mg2+ may play a role in modifying the activity of the enzyme in vivo.  相似文献   

18.
Preincubation of sea urchin sperm guanylate cyclase at 35, 37, 40, or 43 degrees resultedin inactivation. Various metals were able to protect guanylate cyclase against heat inactivation. Estimated binary enzyme-metal dissociation constants for Mn2+, Fe2+, La3+, Ca2+, Ba2+, Mg2+, Co2+, and Ni2+ were 123, 361, 5.5, 692, 984, 335, 79, and 47 muM, respectively. Extrapolated rates of enzyme denaturation in the presence of saturating concentrations of metal divided by the rates of enzyme denaturation in the absence of metal gave values of 0.13, 0.08, minus 0.1, 0.30, 0.59, 0.66, 0.28, and 0.42 for Mn2+, Fe2+, La3+, Ca2+, Ba2+, Mg2+, Co2+, and Ni2+, respectively. GTP, MgGTP, and SrGTP protected the enzyme only slightly against heat inactivation, but CaGTP and MnGTP protected substantially. Neither CaGTP nor MnGTP protected maximally, however, unless the metal concentration exceeded that of GTP. At fixed free Mn2+ or free Ca2+ concentrations, protection curves as a function of MnGTP or CaGTP appeared to be sigmoidal, suggesting multiple nucleotide binding sites. MnATP also protected against heat, but CaATP was virtually ineffective. Sea urchin sperm guanylate cyclase was inactivated by N-ethylmaleimide; CaGTP and MnATP were effective protectants with estimated binary enzyme-Me2+ nucleoside triphosphate dissociation constants of 40 and 170 muM, respectively. MnGTP protected only slightly or not at all against N-ethylmaleimide. These results suggest that: (a) sea urchin sperm guanylate cyclase binds free metal, (b) the binding of free metal is required for protection by nucleotides, and (c) the enzyme contains multiple nucleotide binding sites.  相似文献   

19.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

20.
cGMP mediates vertebrate phototransduction by directly gating cationic channels on the plasma membrane of the photoreceptor outer segment. This second messenger is produced by a guanylate cyclase and hydrolyzed by a light-activated cGMP-phosphodiesterase. Both of these enzyme activities are Ca2+ sensitive, the guanylate cyclase activity being inhibited and the light-activated phosphodiesterase being enhanced by Ca2+. Changes in these activities due to a light-induced decrease in intracellular Ca2+ are involved in the adaptation of photoreceptors to background light. We describe here experiments to characterize the guanylate cyclase activity and its modulation by Ca2+ using a truncated rod outer segment preparation, in order to evaluate the enzyme's role in light adaptation. The outer segment of a tiger salamander rod was drawn into a suction pipette to allow recording of membrane current, and the remainder of the cell was sheared off with a probe to allow internal dialysis. The cGMP-gated channels on the surface membrane were used to monitor conversion of GTP, supplied from the bath, into cGMP by the guanylate cyclase in the outer segment. At nominal 0 Ca2+, the cyclase activity had a Km of 250 microM MgGTP and a Vmax of 25 microM cGMP s-1 in the presence of 1.6 mM free Mg2+; in the presence of 0.5 mM free Mg2+, the Km was 310 microM MgGTP and the Vmax was 17 microM cGMP s-1. The stimulation by Mg2+ had an EC50 of 0.2 mM Mg2+ for MgGTP at 0.5 mM. Ca2+ inhibited the cyclase activity. In a K+ intracellular solution, with 0.5 mM free Mg2+ and 2.0 mM GTP, the cyclase activity was 13 microM cGMP s-1 at nominal 0 Ca2+; Ca2+ decreased this activity with a IC50 of approximately 90 nM and a Hill coefficient of approximately 2.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号