首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immune responses by mice to heterologous insulins are controlled by H-2 linked Ir genes. In studies to determine the mechanisms responsible for nonresponsiveness, we found that although pork insulin failed to stimulate antibody or proliferative responses in H-2b mice, it did prime T cells that can express helper activity in adoptive recipient mice. This helper activity was insulin-specific in both elicitation and expression. In studies presented in this paper, we have extended this analysis to the response patterns of helper T cells stimulated by sheep, horse, and rat insulins in mice bearing different H-2 haplotypes. The results demonstrate that nonresponder forms of insulin, including rat insulin, prime T cells in H-2b and H-2d, but not H-2k, mice. These results suggest that regulation of nonresponsiveness to insulin appears to be through different pathways in mice bearing different H-2 haplotypes.  相似文献   

2.
The role of insulin-specific helper and suppressor T cells in the H-2-linked genetic control of antibody responses to heterologous insulins was examined in vitro. These data demonstrate that pork insulin stimulates both primed helper T cells and dominant suppressor T cells in all nonresponder strains tested. Thus, the nonresponder phenotype is attributed to the activation of specific suppressor T cells rather than to an absence of helper T cell activity. Examination of the antigenic cross-reactivity patterns of pork insulin-primed helper and suppressor T cells in various strains demonstrates that fine specificity of the helper T cells differs from that of the suppressor T cells and that the patterns of antigenic cross-reactivity of these subpopulations are controlled by the H-2 gene complex. Furthermore, in a given strain of mice variants of insulin that stimulate helper T cells that cross-react with mouse insulin also stimulate dominant suppressor T cells that cross-react with mouse insulin. Such variants of insulin are perceived as nonimmunogenic. These observations raise the possibility that nonresponsiveness that is controlled by H-2 linked genes results from the activation of regulatory mechanisms involved in maintaining self-tolerance.  相似文献   

3.
Immune responses to GAT are controlled by H-2-linked Ir genes; soluble GAT stimulates antibody responses in responder mice (H-2b) but not in nonresponder mice (H-2q). In nonresponder mice, soluble GAT stimulates suppressor T cells that preempt function of helper T cells. After immunization with soluble GAT, spleen cells from (responder x nonresponder: H-2b X H-2q)F1 mice develop antibody responses to responder H-2b GAT-M phi but not to nonresponder H-2q GAT-M phi. This failure of immune F1 spleen cells to respond is due to an active suppressor T cell mechanism that is activated by H-2q, but not H-2b, GAT-M phi and involves two regulatory T cell subsets. Suppressor-inducer T cells are immune radiosensitive Lyt-1 +2-, I-A-, I-J+, Qa-1+ cells. Suppressor-effector T cells can be derived from virgin or immune spleens and are radiosensitive Lyt-1-2+, I-A-, I-J+, Qa-1+ cells. This suppressor mechanism can suppress responses of virgin or immune F1 helper T cells and B cells. Helper T cells specific for H-2b GAT-M phi are easily detected in F1 mice after immunization with soluble GAT; helper T cells specific for H-2q GAT-M phi are demonstrated after elimination of the suppressor-inducer and -effector cells. These helper T cells are radioresistant Lyt-1+2-, I-A+, I-J-, Qa-1- cells. These data indicate that the Ir gene defect in responses to GAT is not due to a failure of nonresponder M phi to present GAT and most likely is not due to a defective T cell repertoire, because the relevant helper T cells are primed in F1 mice by soluble GAT and can be demonstrated when suppressor cells are removed. These data are discussed in the context of mechanisms for expression of Ir gene function in responses to GAT, especially the balance between stimulation of helper vs suppressor T cells.  相似文献   

4.
The immune response to insulin is regulated by MHC class II genes. Immune response (Ir) gene-linked low responsiveness to protein Ags can be mediated by the low affinity of potential antigenic determinants for MHC molecules (determinant selection) or by the influence of MHC on the functional T cell repertoire. Strong evidence exists that determinant selection plays a key role in epitope immunodominance and Ir gene-linked unresponsiveness. However, the actual measurement of relative MHC-binding affinities of all potential peptides derived from well-characterized model Ags under Ir gene regulation has been very limited. We chose to take advantage of the simplicity of the structure of insulin to study the mechanism of Ir gene control in H-2b mice, which respond to beef insulin (BINS) but not pork insulin (PINS). Peptides from these proteins, including the immunodominant A(1-14) determinant, were observed to have similar affinities for purified IAb in binding experiments. Functional and biochemical experiments suggested that PINS and BINS are processed with similar efficiency. The T cell response to synthetic pork A(1-14) was considerably weaker than the response to the BINS peptide. We conclude that the poor immunogenicity of PINS in H-2b mice is a consequence of the T cell repertoire rather than differences in processing and presentation.  相似文献   

5.
Cell-mediated and humoral immune responses to heterologous insulins in mice are controlled by H-2 linked, dominant, immune response (Ir) genes. For example, mice bearing the H-2d haplotype develop T cell proliferative responses and produce antibody after injection with porcine insulin, whereas mice bearing other H-2 haplotypes do not. Data presented in this communication demonstrate that homozygous and heterozygous H-2d mice produce insulin-binding antibodies when immunized with porcine insulin or proinsulin. Some (H-2b,k,s) insulin-nonresponder mice produce insulin-binding antibodies after injection of proinsulin, whereas other insulin-nonresponder strains (H-2q) do not. All strains, except homozygous H-2q mice, produce antibodies specific for proinsulin, suggesting that the response to porcine proinsulin is also controlled by H-2-linked Ir genes. More importantly, F1 hybrids between insulin-nonresponder C57BL/10 (H-2b) and DBA/1 (H-2q) produce no insulin-binding antibodies when injected with proinsulin, despite the fact that proinsulin-binding antibodies are produced by these mice.  相似文献   

6.
Murine antibody responses to heterologous insulins are under H-2-linked immune response (Ir) gene control. We have found that the immune response to insulin in adjuvant can be inhibited by prior i.v. injection of soluble insulin. The effect of i.v. injection of insulin is antigen-specific and dose-dependent and requires the same doses of insulin that are immunogenic if administered with adjuvant. In addition, the inhibitory effect of soluble insulin is dependent upon the route of injection; if soluble insulin is injected i.p., the subsequent response to insulin in adjuvant is augmented rather than inhibited. Unresponsiveness requires at least 4 days after i.v. injection to develop and once induced, it is maintained for 4 wk or more. Unresponsiveness is caused by T cell, but not B cell, tolerance, and we have been unable to demonstrate any role for suppressor T cells in this unresponsiveness. More importantly, analysis of the ability of numerous insulin variants to induce unresponsiveness in several H-2k and H-2b strains of mice has demonstrated that only the variants that were immunogenic in a given strain when administered with adjuvant were able to cause tolerance. This report is, to our knowledge, the first describing that induction of helper T cell tolerance, like the induction of immunity, is controlled by H-2-linked Ir genes.  相似文献   

7.
Murine T cell proliferative and antibody responses to the multi-determinant protein bovine serum albumin (BSA) are controlled by Ir genes mapping within the H-2 gene complex. Strains possessing the H-2k, H-2a, and H-2d haplotypes are classified as high responders to BSA. In contrast, H-2b strains are low responders to BSA. Genetic mapping experiments employing strains with recombinant H-2 haplotypes indicate that both T cell proliferative and antibody responses are at least in part regulated by genes within the I-A subregion. Studies on the inhibition of T cell proliferation by monoclonal anti-Ia antibodies are consistent with the assignment of an Ir gene for BSA to the I-A subregion and strongly suggest a role for genes within the I-E/C subregions as well. The MHC-mediated control of antibody responses did not affect the affinity or the isotype of the antibody produced. The relative quantities of antibody specific for each of the three domains of BSA appears to be regulated by H-2-linked BSA Ir genes, and domain III antigenic determinants were found to be dominant in the responses of low-responder mice and in the early response of high-responder mice. This domain III epitope dominance essentially disappears by the tertiary response of high-responder mice.  相似文献   

8.
Murine antibody responses to heterologous insulins are under H-2-linked immune response (Ir) gene control. We previously demonstrated that the immune response to insulin in Freund's complete adjuvant (CFA) can be specifically inhibited by prior injection of soluble insulin i.v. Unresponsiveness requires at least 4 days after i.v. injection to develop, and once induced, it lasts 4 wk or more. Unresponsiveness is caused by T cell, but not B cell, tolerance; furthermore, we have been unable to demonstrate any role for suppressor T cells in this unresponsiveness. The following experiments examine the nature of the T cell tolerance induced by i.v. injection of insulin, and the data suggest that helper T cells were not clonally deleted by this procedure. The functional activity of the tolerized T cells can be rescued by stimulation with insulin covalently complexed to the type 1 T-independent (TI-1) antigen, Brucella abortus. This observation suggests that tolerance induced by soluble insulin is due to clonal anergy rather than clonal deletion of helper T cells; thus, this system could provide a model for determining the cellular events involved in tolerance induction and reversal in helper T cells.  相似文献   

9.
Murine antibody responses to heterologous insulins are controlled by MHC-linked immune response genes. Although nonresponder mice fail to make antibody when injected with nonimmunogenic variants of insulin, we have recently shown that nonimmunogenic variants stimulate radioresistant, Lyt- 1+2- helper T cells that support secondary antibody responses. However, the helper activity can not be detected unless dominant, radiosensitive Lyt-1-2+, I-J+ suppressor T cells are removed. In this paper we report that extracts of primed Lyt-2+ suppressor T cells contain insulin-specific suppressor factors (TsF) that are capable of replacing the activity of suppressor T cells in vitro. The activity of these factors is restricted by MHC-linked genes that map to the I-J region, and immunoadsorption studies indicated that they bind antigen and bear I-J-encoded determinants. Insulin-specific TsF consists of at least two chains, one-bearing I-J and the other the antigen-binding site. Furthermore, mixing of isolated chains from different strains of mice indicates that the antigenic specificity is determined by the antigen-binding chain and the MHC restriction by the H-2 haplotype of the source of the non-antigen-binding, I-J+ chain. Moreover, mixtures containing antigen-binding chain from allogeneic cell donors and I-J+ chain from responder cell donors have activity in cultures containing responder lymphocytes. This suggests that preferential activation of suppressor T cells, rather than differential sensitivity to suppression, results in the nonresponder phenotype to insulin.  相似文献   

10.
Helper T cells specific for N-iodoacetyl-N'-(5-sulfonic 1-naphthyl) ethylene diamine (I-AED) were generated in (C56BL/6 X C3H/He)F1 mice by immunization with I-AED-modified syngeneic cells (AED-self). The requirements for activation of hapten-induced helper cells were investigated. The results demonstrated that activation of AED and trinitrophenyl- (TNP) helper cells was strictly hapten specific. In addition, F1 AEd-helpers could be activated efficiently by either I-AED-modified H-2b or H-2k self components to enhance the anti-AED self-CTL responses. This contrasts with the previous findings demonstrating the failure of TNP-H-2b self to activate F1 TNP-helper cells. After AED-helpers were activated, they were capable of augmenting sensitization of cytotoxic T cells (CTL) against TNP-self. These results indicate that although the activation of hapten-reactive helper cells is antigen (hapten)-specific, the subsequent helper activity, as determined by augmentation of CTL responses against another hapten, is antigen nonspecific. Since helper function was antigen nonspecific, F1 AED-helper cells activated by AED-H-2b or AED-H-2k self were tested for their ability to augment the F1 and anti-TNP-H-2b CTL response. The results indicate that the Ir gene defect in the ability of F1 spleen cells to respond to TNP-H-2b self could not be corrected by these helper cells. These results are discussed in the light of Ir gene controlled differences in the activation of AED and TNP-helper cells and possible models for augmenting CTL responses against various antigens in strains that generate marginal helper activity to TNP-self.  相似文献   

11.
The ability to generate proliferative and helper T lymphocyte responses in mice was compared by using the 14 amino acid peptide, human fibrinopeptide B (hFPB). Lymph node or peritoneal exudate T cells from mice immunized with hFPB were assessed for in vitro proliferation to soluble hFPB as determined by the uptake of 3H-thymidine. The T cell proliferative response to hFPB was found to be under MHC-linked Ir gene control; mice possessing the H-2a,k haplotypes were responders, whereas H-2b,d,q,s mice were nonresponders. The influence of non-H-2 genes on these responses was not investigated, so exclusive regulation by H-2 is provisional. The absence of a detectable lymph node and peritoneal exudate T cell proliferative response persisted in H-2b,d,q,s mice after immunization and boosting with several doses of hFPB. In addition, the capacity to produce a T cell proliferative response was inherited in an autosomal dominant manner and gene(s) controlling responsiveness to hFPB mapped to the I-A subregion of the H-2 complex. To measure peptide-specific helper T cell activity, an in vitro microculture assay in which hFPB-primed lymph node T cells and normal spleen B cells and macrophages were used was developed measuring anti-fluorescein isothiocyanate (FITC) IgM and IgG plaque-forming cell (PFC) responses after culture with FITC-conjugated peptide. Immunization of B10.BR, C57BL/10, B10.D2, and B6AF mice with hFPB primed for significant helper T cell activity as assessed by the ability to augment a primary in vitro IgM response to FITC. The normal B cell IgM responses were completely dependent on hFPB-primed T cells and required that hapten (FITC) and carrier (peptide) be linked. In addition, immunization with FITC-conjugated peptide elicited positive in vivo PFC responses to FITC in B10.BR and C57BL/10 mice, indicating similar genetic control of helper activity in both the intact animals and the in vitro microcultures. Thus, B10.BR mice show both T help and T proliferative responses to hFPB, whereas C57BL/10 mice show only T help and no T proliferative responses. In contrast to B10.BR mice, C3H and CBA mice immunized with hFPB were completely unresponsive when assayed for helper T cell activity in vitro despite their ability to generate positive lymph node T cell proliferative responses. These results indicate responsiveness to hFPB by T helper and proliferating cells is different and is under separate genetic control.  相似文献   

12.
The genetic control of the murine T cell proliferative response to insulin was examined. It was found for two responder strains of mice that each recognizes a different determinant on the insulin molecule. H-2b mice recognize a determinant in the A chain loop of insulin whereas H-2d mice recognize a determinant that resides in the B chain, possibly in the last eight amino acids. Using H-2 recombinant strains of mice, the location of Ir gene control of the response to both determinants was mapped to the K region and/or I-A subregion of H-2. The possibility of non-MHC regulation of MHC-controlled immune responses is suggested by studies of recombinant inbred strains of mice.  相似文献   

13.
The target cells for H-2b T lymphocytes mediating a negative allogeneic effect in vitro were analyzed by using carrier-specific helper T cell lines of H-2b, H-2d, or F1 origin and hapten-primed T-depleted spleen cells also expressing one or both of these haplotypes. The helper T cell lines were shown to be carrier specific and H-2b or H-2d restricted. Most importantly, the lines derived from H-2b homozygous mice were devoid of alloreactivity against H-2d and vice versa. Titration of naive H-2b T lymphocytes to the indicator cultures resulted in suppression of the secondary anti-DNP response of the indicator cells whenever the B cells expressed H-2d antigens. The lack of suppression observed in mixtures in which only the helper T cell lines expressed H-2d antigens was not reversed by the increased addition of naive H-2bxd cells, indicating that an insufficient amount of H-2d antigens present on the low number of helper T cells used did not account for this finding. Moreover, the polyclonal plaque-forming cell responses of F1 spleen cells to LPS were also suppressed by naive parental T cells. From these findings it is concluded that the suppressor T cells directly recognize and inhibit allogeneic B cells without the involvement of helper T cells. In addition, it was shown that the suppression of secondary anti-hapten responses by naive allogeneic T cells is blocked by monoclonal anti-Lyt-2 antibody added at the onset of culture. Addition late in culture had no effect, pointing to a functional role of the Lyt-2-bearing structure at an early stage of the suppressive events resulting in the negative allogeneic effect.  相似文献   

14.
H-2(b) mice produce insulin-specific antibody when injected with bovine but not porcine or human insulin. Nevertheless, CD4(+) T cells have been cloned from C57BL/6 mice primed with porcine, human, and bovine insulin. Here we tested the hypothesis that CD4(+) T cells from C57BL/6 mice primed with porcine or human insulin are functionally distinct from those primed with bovine insulin. Our results show that variants of insulin that stimulate antibody responses induced Th2 clones, whereas variants of insulin that fail to stimulate antibody induced Th0 clones. Th0 clones triggered delayed-type hypersensitivity (DTH) in adoptive recipients, whereas Th2 clones did not. Insulin variants that primed Th0 clones also directly primed for DTH responses, while variants that activated Th2 clones did not. Thus, induction of Th2 clones correlated with the ability of mice to make antibody responses to insulin while development of Th0 clones correlated with DTH responses and the failure to produce antibody.  相似文献   

15.
Two types of insulin-reactive T cell hybridomas expressing TCR-alpha beta were derived from nonresponder H-2b mice immunized with pork insulin. One type had characteristics of conventional class II-restricted Th cells. These CD4+ CD8- I-Ab-restricted T cells recognized a self determinant, present within the insulin B-chain. This determinant was distinct from the immunodominant A-chain loop determinant that is recognized by the majority of T cells induced after immunization with normally immunogenic beef insulin. Our results suggest that this determinant is readily generated during immunologic processing of insulins, including nonimmunogenic pork insulin and self insulin. A second type of T cell lacking CD4 and CD8 recognized a distinct B-chain determinant of insulin in a class II-dependent, but MHC unrestricted, fashion. These cells may represent a novel subpopulation which has bypassed conventional selection during development in the thymus.  相似文献   

16.
The potential immunogenicity of insulin B chain in beef insulin low-responder H-2k,a and high-responder H-2b,d mice was examined using lymph node proliferation assays. Oxidized B chain was immunogenic in H-2k,a, but not H-2b,d, mice. The T cell population recognized a determinant in OX-B chain associated with I-Ak. These cells did not respond to intact insulin, suggesting that the B chain determinant was not available to I-Ak during immunologic processing of insulin. Responses were observed in H-2k and H-2d, but not H-2b, after immunization with reduced and carboxyamidomethylated-insulin which contains equimolar A chain and B chain. These responses were I-A-restricted and heterogeneous, with reactivity to A chain and B chain determinants. In each case, little or no cross-reactivity was observed between RCAM-insulin and intact insulin. Furthermore, T cell populations induced in H-2k mice selectively recognized OX-B chain or RCAM-B chain, which differ in chemical modification of the thiols of Cys B7 and Cys B19. Similarly, RCAM-BINS-immune T cells from H-2d did not react to OX-B chain. These results indicate that derivatization of the cysteine thiols, through disulfide bonds, oxidation, or carboxyamidomethylation, radically affects T cell recognition of insulin B chain.  相似文献   

17.
Considerable information concerning the serology and biochemistry of antigen-specific, T cell-derived suppressor factors has been obtained with the use of T cell hybridomas as a source of homogeneous material. Similarly, knowledge of helper T cell products and receptors is accumulating from studies of helper T cell clones and hybridomas. Our strategy for studying the mechanisms by which suppressor factors inhibit responses was to determine whether monoclonal suppressor factors could inhibit antibody responses specific for L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) in cultures containing unprimed splenic B cells, macrophages, and GAT-specific T cell clones as a source of helper activity. The MHC-restricted, two chain suppressor factors, GAT-TsF2, inhibited these responses if the helper T cell clones and suppressor factor were derived from H-2-compatible mice. Furthermore, responses were inhibited by briefly pulsing T cell clones with GAT-TsF2 in the presence of GAT, indicating that suppressor factors need not be present continuously. In addition, helper T cell clones adsorbed syngeneic, but not allogeneic, GAT-TsF2 in the presence of GAT. Adsorption also requires a shared antigenic specificity between the H-2b-derived helper T cells and TsF2 factor. Thus, helper T cells can serve as the cellular target of antigen-specific, MHC-restricted GAT-TsF2, and cloned helper T cells can be used as a homogeneous target population for analysis of the molecular mechanisms of T cell suppression.  相似文献   

18.
H-2k mice generate a secondary in vitro cytotoxic T lymphocyte response to Sendai virus 20- to 100-fold weaker than those of other haplotypes tested (H-2b,d,q,s). This immune response defect maps to both H-2K and H-2D. H-2k x H-2d F1 mice (responder x nonresponder) only lyse targets that have the d allele at H-2K and/or H-2D. H-2k targets are equally lysable with anti-Sendai antibody. Furthermore, H-2k mice demonstrate normal antibody and T cell proliferation responses to Sendai virus. The Ir gene defect therefore appears to be limited to the generation of the cytotoxic T lymphocytes.  相似文献   

19.
We have examined mechanisms of tolerance to circulating self-proteins in mice that are transgenic for human insulin. Normal, nontransgenic mice develop serum antibody responses when injected with human insulin in CFA; syngeneic transgenic mice do not. B cell responsiveness was assessed by immunizing with human insulin coupled to a T-independent Ag, Brucella abortus. No differences were found in the numbers of insulin-specific splenic plaque-forming cells between transgenic and nontransgenic mice suggesting that insulin-specific B cells are not tolerant in transgenic mice. Similarly, APC from transgenic and nontransgenic mice display no differences in their ability to process and present human insulin to human insulin-specific T cells in vitro. However, marked differences were detected between transgenic and nontransgenic T cells. Lymph node T cells from transgenic mice primed with human insulin provided no detectable helper activity for secondary antibody responses to human insulin whereas, lymph node T cells from nontransgenic mice did. Nevertheless, lymph node T cells from transgenic mice developed significant proliferative responses to human insulin. Lymph node T cells obtained from transgenic and nontransgenic mice were fused to BW5147 and human insulin-specific T cell hybridomas were generated. The fact that human insulin-specific T cell hybridomas were obtained from the transgenic mice suggests that these T cells were not clonally deleted. In addition, APC from transgenic mice did not stimulate human insulin-specific hybridomas from normal mice in the absence of exogenous insulin. We suggest that T cells specific for human insulin are not deleted in the thymus of transgenic mice because APC in the thymus do not bear the requisite levels of endogenous human insulin/Ia complexes. Therefore, we conclude that tolerance in the transgenic mice is preserved by peripheral mechanisms.  相似文献   

20.
Mice of the inbred strains SJL (H-2s) and AKR (H-2k) are "non-responders" and "low-responders," respectively, in terms of their capacity to develop antibody responses of the IgE class when immunized with conventional proteins and hapten-protein conjugates under conditions optimal for eliciting IgE responses in "high-responder" mice, such as BALB/c (H-2d), to these same antigens. For example, BALB/c mice preimmunized with ASC and then challenged 7 days later with DNP-ASC develop peak augmented primary IgE anti-DNP antibody responses of 320 PCA units, whereas SJL and AKR mice develop responses which are 16-fold and 4-fold lower, respectively. However, pretreatment of the latter two strains with appropriate doses of either x-irradiation (150 R), cyclophosphamide (100 mg/kg) or ALS (150 mul) before carrier-preimmunization strikingly enhances the magnitude of IgE antibody responses in such mice to levels as high as 64-fold above those of untreated control mice of the same strains. Evidence obtained in these experiments indicates that the capacity of such maneuvers to to convert poor IgE responders to high responder status reflects elimination of nonantigen-specific suppressor T lymphocytes which are naturally present and normally function to suppress or "dampen" the IgE antibody response in a relatively selective manner. It appears that these cells modulate IgE responses by acting at least at two distinct points: 1) The most effective activity seems to be at the level of induction of carrier-specific helper T cells; 2) A second locus of inhibitory activity is more distal in the response, either impeding helper T cell-B cell cooperative interactions or suppressing B cell differentiation and/or function directly. Taken collectively, these observations demonstrate that the state of poor responsiveness of the SJL and AKR strains for the IgE antibody class is not a reflection of a genetic inability to develop IgE responses but rather a manifestation of a genetic capability to actively inhibit IgE antibody synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号