首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
Direct evidence for the possible loss of photosystem II (PS II) activity in chloroplasts of Vigna sinensis L. cv. Walp after ultraviolet-B (UV-B, 280–320 nm) radiation treatment was provided by polyacrylamide gel electrophoretic analysis of PS II polypeptides. A 30 min UV-B treatment of chloroplasts caused a 50% loss of PS II activity. The artificial electron donor. Mn2+ failed to restore UV-B radiation induced loss of PS II activity, while diphenyl carbazide (DPC) and NH2OH only partially restored activity. Such a loss in PS II activity was found to be primarily due to a loss of 23 and 33 kDa extrinsic polypeptides. UV-B treatment induced the synthesis of a few polypeptides and a 29 kDa light-harvesting chlorophyll protein.  相似文献   

2.
Tropical regions receive the highest level of global solar ultraviolet (UV) radiation especially UV-B (280-320 nm). The average daily dose of the UV-B radiation in Madurai, South India (10°N) is 10 kJ m-2. This is approximately 50% more than the average daily UV-B radiation in many European countries. A field study was conducted using selective filters to remove either the UV-B (< 320 nm) or UV-B/A (<400 nm) of the solar spectrum, and the effects were followed inCyamopsis tetragonoloba, Vigna mungo, andVigna radiata to determine their sensitivity to UV. When compared to ambient radiation, exclusion of solar UV-B increased the seedling height, leaf area, fresh weight and dry weight and the crop yield by 50% in the case ofCyamopsis, and the extent of such increase was slightly less under UV-B/A exclusion. InV. mungo a significant reduction was seen in solar UV excluded plants whileV. radiata was found to be unaffected.  相似文献   

3.
AIMS: To assess the effects of solar UV-B radiation on phyllosphere bacteria of tea leaves in relation to blister blight disease in the field. METHODS AND RESULTS: The effects of UV-B radiation on the phyllosphere microbiology of tea (Camellia sinensis) were studied in contrasting wet and dry seasons at a tropical site. Wavelength-selective filters were used to separate the effects of UV-B from those of other factors. Bacterial populations were quantified in relation to the incidence of blister blight disease. Attenuation of UV-B increased the survival of Xanthomonas sp. when populations were not water limited, and increased the incidence of blister blight, but had no effect on Corynebacterium aquaticum. CONCLUSIONS: The effects of solar UV-B on phyllosphere bacteria were substantial but depended on both species and interactions with other environmental variables. Xanthomonas sp. was more sensitive to UV-B than C. aquaticum, but this did not result in differences in population density under high radiation conditions (dry season), but only in the wet season when other factors were not limiting. SIGNIFICANCE AND IMPACT OF THE STUDY: The role of UV-B on leaf surface microbiology in the tropics is marked but depends on other conditions, and the contrasting UV-B responses of different organisms can be masked by other limiting factors.  相似文献   

4.
Cowpea ( Vigna unguiculata L. Walp.) seedlings (3-day-old) were subjected to 4 kinds of experimental treatments: (1) control without exposure to any stress (−D-UV), (2) moderate water stress with no UV-B irradiation (+D-UV), (3) no water stress but to UV-B radiation (−D+UV). and (4)moderate water stress and exposure to UV-B (+D+UV). UV-B and drought stress in the combined form elicited beneficial effects on the morphological and growth characteristics, and a few additive inhibitory effects in some functional processes. An increase in the specific leaf weight (SLW) was observed in the combination of stresses, which could be a defence mechanism against UV-B. The combination of stresses promoted the synthesis of anthocyanins and phenolic compounds. The responses of plants to the combination of stresses indicate that during simultaneous exposure of plants to multiple stresses, one form of stress could minimize the damage by the other. The enhancement of superoxide dismutase (SOD) and catalase activities appear to serve as acclimation mechanisms to scavenge the toxic, free radicals of oxygen produced under stress conditions. However, the inhibition in nitrate metabolism was greater in the combined stresses than in either of the stresses imposed separately. The results of this study illustrate that the interaction of stresses during simultaneous multiple stress conditions brings out certain beneficial effects.  相似文献   

5.
Sugar beet ( Beta vulgaris L.) plants injected with Cercospora beticota Sace. as well as non-infected plants were grown under visible light with or without ultraviolet-B (UV-B, 280–320 nm) radiation for 40 days. An interaction between UV-B radiation and Cercospora leaf spot disease was observed, resulting in a large reduction in leaf chlorophyll content, dry weight of leaf laminae, petioles and storage roots. Lipid peraxidation in leaves also increased the most under the combined treatments. This was also true for ultraweak luminescence from both adaxial and abaxial leaf surfaces. However, no correlation between lipid peroxidation and ultraweak luminescence was observed. Ultraviolet-B radiation given alone appeared to have either a stimulating effect, giving an increase in dry weight of laminae and reducing lipid peroxidation, or no effect. This lack of effect was seen in the absence of change in dry weight of storage roots and chlorophyll content relative to controls. The :study demonstrated a harmful interaction between UV-B radiation and Cercospom leaf spot disease on sugar beet.  相似文献   

6.
Impact of solar ultraviolet-B radiation (290-320 nm) upon marine microalgae   总被引:1,自引:0,他引:1  
For years scientists and laymen alike have casually noted the impact of solar ultraviolet radiation upon the non-human component of the biosphere. It was not until recently, when human activities were thought to threaten the protective stratospheric ozone shield, that researchers undertook intensive studies into the biological stress caused by the previously neglected short-wavelength edge of the global solar spectrum. Stratospheric ozone functions effectively as an ultraviolet screen by filtering out solar radiation in the 220–320 nm waveband as it penetrates through the atmosphere, thus allowing only small amounts of the longer wavelengths of radiation in this waveband to leak through to the surface of the earth. Although this ultraviolet radiation (UV-B radiation, 290–320 nm) comprises only a small fraction (less than 1%) of the total solar spectrum, it can have a major impact on biological systems due to its actinic nature. Many organic molecules, most notably DNA and proteins, absorb UV-B radiation which can initiate photochemical reactions. It is life's ability, or lack thereof, to cope with enhanced levels of solar UV-B radiation that has generated the concern over the potential depletion of stratospheric ozone. The defense mechanisms that serve to protect both plants and animals from current levels of UV-B radiation are quite varied. Whether these mechanisms will suffice for marine microalgae under conditions of enhanced levels of UV-B radiation is the subject of this review.  相似文献   

7.
UV-B辐射增强对水稻生长发育及其产量形成的影响   总被引:31,自引:2,他引:31  
在盆载条件下,研究UV-B辐射(280-320nm)增强对3个不同类型水稻品种(组合)的生长发育及其产量构成的影响。结果表明,UV-B辐射增强明显抑制水稻生长,使株高变矮、分蘖数减少、叶面积和干物质量下降,但其抑制程度依品种、水稻所处的生长阶段的不同而不同;株高在苗期下降幅度最大,为9.4%-12.2%,干物质量在分蘖期下降幅度最大,地下部和地上部干物质量分别下降45.3%-59.8%、54.9%-59.0%,增强的UV-B辐射使水稻主茎不同叶位的出叶时间延迟,生育期延长,汕优63、南川、IR65600-85的抽穗时间分别比对照延迟2d、3d和7d,成熟期分别推迟3d、4d和9d,UV-B辐射增强明显降低水稻叶片的叶绿素和类胡萝卜素含量,叶片叶绿素a荧光诱导动力学参数Fv、Fv/Fm、Fv/Fo下降,与对照相比,汕优6.3、南川、IR65600-85叶片的净光合速率分别下降了11.9%、12.8%、29.7%,UV-B辐射增强使水稻每株有效穗、每穗总粒数、结实率、千粒重下降,最终导致水稻籽粒产量下降25.2%-31.1%。  相似文献   

8.
紫外线-B辐射对植物DNA及蛋白质的影响   总被引:5,自引:0,他引:5  
大气平流层中的臭氧衰减,导致太阳辐射中的紫外辐射量有明显的增加,其中UV-B辐射对植物会产生不同程度的影响。分子生态学理论认为,UV-B辐射对植物造成的损伤,首先伤害植物的生物大分子,即进行光化学修饰。本文就臭氧衰减对生态环境和植物的影响途径进行了讨论,重点论述了UV-B辐射对植物蛋白质合成的抑制和DNA的损伤修复途径。并应用分子生物学技术研究植物对UV-B辐射的抗性机理和DNA修复技术的前景进行了展望。  相似文献   

9.
Field studies were conducted to determine the potential for alterations in ion leakage and the intraspecific variation in ion leakage sensitivity of 20 wild sugarcane clones (Saccharum spontaneum L.) to enhanced ultraviolet-B (UV-B, 280–315nm) radiation in two consecutive years. The clones were collected from original sites with different altitude (from 0 to 1650 m) and latitude (from 18–37 °N). The supplemental UV-B radiation was 5.00 kJ m−2, simulating a depletion of 20 % stratospheric ozone. Across all clones tested in the present study, a significant change (P<0.01 or 0.05) in ion leakage for 11 in tillering, 14 in elongation and 15 in flowering in 2003, and for 9 in tillering, 5 in elongation and 5 in floweing in 2004 were observed. In general, intraspecific responses of ion leakage of wild sugarcane clones to enhanced UV-B radiation existed under field conditions for two consecutive years, although intraspecific difference in 2003 was more obvious than that in 2004. Wild sugarcane clones originating from lower latitude or high elevation were not necessarily the more tolerant to enhanced UV-B radiation.  相似文献   

10.
The effects of increased ultraviolet‐B (UV‐B) radiation on the growth, mycorrhizas and mineral nutrition of silver birch (Betula pendula Roth) seedlings were studied in greenhouse conditions. Seedlings—planted in a birch‐forest top soil and sand substrate—were grown without additional nutrient supply. Ultraviolet treatment started immediately after the seedlings emerged and the daily integrated biologically effective UV‐B irradiance on the UV‐B‐treated plants was equivalent to a 25% depletion of stratospheric ozone under clear sky conditions. Visible symptoms of UV‐B damage or nutrient deficiency were not observed throughout the experiment. Seedling height and dry weight (DW) (measured after 58 days and 76 days of treatment) were not affected by increased UV‐B. However, a significant shift in DW allocation toward roots resulted in a lower shoot/root ratio and leaf area ratio in UV‐B‐treated plants compared to control plants. At the first harvest (after 58 days of treatment), the percentage of various mycorrhizal morphotypes and the number of short roots per unit of root length or weight were not affected by increased UV‐B despite significantly increased DW allocation toward roots. Subtle reduction in the allocation of nitrogen (N) to leaves and increased allocation of phosphorus (P) to roots may suggest cumulative effects that could affect the plant performance over the long‐term.  相似文献   

11.
We conducted three experiments to examine the influence of ultraviolet-B radiation (UV-B; 280–320 nm) exposure on reproduction in Brassica rapa (Brassicaceae). Plants were grown in a greenhouse under three biologically effective UV-B levels that simulated either an ambient stratospheric ozone level (control), 16% (“low enhanced”), or 32% (“high enhanced”) ozone depletion levels at Morgantown, WV, USA in mid-March. In the first experiment, we examined whether UV-B level during plant growth influenced in vivo pollen production and viability, and flower production. Pollen production and viability per flower were reduced by ≈50% under both enhanced UV-B levels relative to ambient controls. While plants under high-enhanced UV-B produced over 40% more flowers than plants under the two lower UV-B treatments, whole-plant production of viable pollen was reduced under high-enhanced UV-B to 17% of that of ambient controls. Whole-plant production of viable pollen was reduced under low-enhanced UV-B to 34% of ambient controls. In the second experiment, we collected pollen from plants under the three UV-B levels and examined whether source-plant UV-B exposure influenced in vitro pollen germination and viability. Pollen from plants under both enhanced-UV-B treatments had initially lower germination and viability than pollen from the ambient level. After in vitro exposure to the high-enhanced UV-B levels for 6 h, viability of the pollen from plants grown under ambient UV-B was reduced from 65 to 18%. In contrast, viability of the pollen from plants grown under both enhanced UV-B treatments was reduced to a much lesser extent: only from ≈43 to 22%. Thus, ambient source-plant pollen was more sensitive to enhanced UV-B exposure. In the third experiment, we used pollen collected from source plants under the three UV-B levels to fertilize plants growing under ambient-UV-B levels, and assessed subsequent seed production and germination. Seed abortion rates were higher in plants pollinated with pollen from the enhanced UV-B treatments, than from ambient UV-B. Despite this, seed yield (number and mass) per plant was similar, regardless of the UV-B exposure of their pollen source. Our findings demonstrate that enhanced UV-B levels associated with springtime ozone depletion events have the capacity to substantially reduce viable pollen production, and could ultimately reduce reproductive success of B. rapa.  相似文献   

12.
In the southeast of the Qinghai–Tibetan Plateau of China, dragon spruce (Picea asperata) is a key species and widely used in reforestation processes in the area. The paper mainly studied the effects of ultraviolet-B (UV-B) on growth, physiology and nitrogen nutrition of 3- and 6-year-old dragon spruce seedlings. The experimental design included ambient UV-B (control) and enhanced UV-B (+UV-B, a 30% increase). Enhanced UV-B significantly decreased growth, needle and root nitrogen concentration, needle nitrate reductase activity and increased UV-B absorbing compounds and malondialdehyde (MDA) content of two old dragon spruce seedlings. Glutamine synthetase activity was not affected by enhanced UV-B in two old dragon spruce seedlings. On the other hand, different old seedlings also exhibited different physiological responses to enhanced UV-B radiation. Chlorophyll content, carotenoids content and soluble protein content in 3-year-old seedlings significantly reduced by enhanced UV-B, but those in 6-year-old seedlings were not affected by enhanced UV-B. Proline content of 6-year-old seedlings were increased by enhanced UV-B. Compared with the 3-year-old seedlings, the 6-year-old seedlings showed lower reduction of growth and MDA content, and accumulated more proline and UV-B absorbing compounds for protecting seedlings under enhanced UV-B. The results implicated that 3-year-old seedlings were more sensitivity to enhanced UV-B than 6-year-old seedlings.  相似文献   

13.
14.
Recent studies in our laboratory have demonstrated that mechanical strain alters many facets of keratinocyte biology including proliferation, protein synthesis, and morphology. IL-1 is known to play an important role in the autocrine regulation of these basic cellular properties under basal and stimulated conditions. However, it is not known whether IL-1 plays a role in strain-induced alteration of keratinocyte biology. Thus, the objective of this study was to test the hypothesis that cyclic strain stimulates IL-1 expression and that strain-induced changes in keratinocyte function is regulated by IL-1. To test this hypothesis, we examined the effect of cyclic strain (10% average deformation) on keratinocyte IL-1 gene expression and the effect of neutralizing antibodies of IL-1α and IL-1β on strain-induced changes in keratinocyte proliferation, morphology, and orientation. Northern blot analyses demonstrated that steady state levels of IL-1α and β mRNA were elevated by 4 h, peaked at 12 h of cyclic strain (IL-1α, 304 ± 14.2%; IL-1β, 212 ± 5.6% increase vs. static controls) and decreased gradually by 24 h. IL-1 antibodies (IL-1α, 0.01 μg/ml; IL-1β, 0.01 μg/ml) significantly blocked strain-induced keratinocyte proliferation as well as the basal rate of proliferation. In contrast, IL-1 antibodies (IL-1α, 0.01 μg/ml; IL-1β, 0.1 μg/ml) had no effect on strain-induced morphological changes such as elongation and alignment. We conclude that mechanical strain induces IL-1 mRNA expression in keratinocytes. The role of IL-1 in mediating strain-induced changes in keratinocyte biology remains to be determined but appears to be independent of morphological changes. J. Cell. Biochem. 69:95–103, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号