首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effects of ozone or sulfur dioxide on antioxidant enzymes were investigated in Arabidopsis thaliana. Plants were fumigated with 0.1–0.15 ppm ozone or sulfur dioxide up to about 1 week in an environment-controlled chamber. Both pollutants increased the activities of ascorbate peroxidase and guaiacol per-oxidase in leaves, but had little effect on the activities of superoxide dismutase, catalase, monodehydroascorbate reductase, dehydroascorbate reductase or glutathione reductase. Ozone was more effective than sulfur dioxide in increasing the activities of the peroxidases. Ascorbate peroxidase activity increased 1.8-fold without a lag period during fumigation with 0.1 ppm ozone, while guaiacol peroxidase activity increased 4.4-fold with a 1-day lag. Expression of the APX1 gene encoding cytosolic ascorbate peroxidase was further investigated. Its protein levels in leaves exposed to 0.1 ppm ozone for 4 or 8 days were 1.5-fold higher than in controls. Both ozone and sulfur dioxide elevated APX1 mRNA levels in leaves at 4 and 7 days, whereas at 1 day only ozone was effective. The induction of APX1 mRNA levels by ozone (3.4- to 4.1-fold) was more prominent than that by sulfur dioxide (1.6-to 2.6-fold). The APX1 mRNA level increased by day and decreased by night. Exposure of plants to 0.1 ppm ozone enhanced the APX1 mRNA level within 3 h, which showed a diurnal rhythm similar to that of the control. These results demonstrate that near-ambient concentrations of ozone as well as similar concentrations of sulfur dioxide can induce APX1 gene expression in A. thaliana.Environmental Biology Division  相似文献   

3.
Antioxidative enzymes in seedlings of Nelumbo nucifera germinated under water   总被引:12,自引:0,他引:12  
Dry seeds of anoxia-tolerant lotus ( Nelumbo nucifera Gaertn= Nelumbium speciosum Willd.) have green shoots with plastids containing chlorophyll, so photosynthesis starts even in seedlings germinated under water, namely hypoxia. Here we investigated antioxidative enzyme changes in N. nucifera seedlings responding to oxygen deficiency. The activity of superoxide dismutase (SOD; EC 1.15.1.1), dehydroascorbate reductase (DHAR; EC 1.8.5.1) and glutathione reductase (GR; EC 1.6.4.2) were lower in seedlings germinated under water (submerged condition) in darkness (SD seedlings) than those found in seedlings germinated in air and darkness (AD seedlings). In contrast, ascorbate peroxidase (APX; EC 1.11.1.11) activity was higher in SD seedlings and the activity of catalase (EC 1.11.1.6) and monodehydroascorbate reductase (MDAR; EC 1.6.5.4) in SD seedlings was nearly the same as in AD seedlings. When SD seedlings were exposed to air, the activity of SOD, DHAR and GR increased, while the activity of catalase and MDAR decreased. Seven electrophoretically distinct SOD isozymes were detectable in N. nucifera . The levels of plastidic Cu,Zn-SODs and Fe-SOD in SD seedlings were comparable with those found in AD seedlings, which may reflect the maintenance of green plastids in SD seedlings as well as in AD seedlings. These results were substantially different from those previously found in rice seedlings germinated under water.  相似文献   

4.
Meharenna YT  Oertel P  Bhaskar B  Poulos TL 《Biochemistry》2008,47(39):10324-10332
Cytochrome c peroxidase (CCP) and ascorbate peroxidase (APX) have very similar structures, and yet neither CCP nor APX exhibits each other's activities with respect to reducing substrates. APX has a unique substrate binding site near the heme propionates where ascorbate H-bonds with a surface Arg and one heme propionate (Sharp et al. (2003) Nat. Struct. Biol. 10, 303-307). The corresponding region in CCP has a much longer surface loop, and the critical Arg residue that is required for ascorbate binding in APX is Asn in CCP. In order to convert CCP into an APX, the ascorbate-binding loop and critical arginine were engineered into CCP to give the CCP2APX mutant. The mutant crystal structure shows that the engineered site is nearly identical to that found in APX. While wild-type CCP shows no APX activity, CCP2APX catalyzes the peroxidation of ascorbate at a rate of approximately 12 min (-1), indicating that the engineered ascorbate-binding loop can bind ascorbate.  相似文献   

5.
A second cytosolic ascorbate peroxidase (cAPX; EC 1.11.1.11) gene from Arabidopsis thaliana has been characterised. This second gene (designated APX1b) maps to linkage group 3 and potentially encodes a cAPX as closely related to that from other dicotyledonous species as to the other member of this gene family (Kubo et al, 1993, FEBS Lett 315: 313–317; here designated APX1a), which maps to linkage group 1. In contrast, the lack of sequence similarity in non-coding regions of the genes implies that they are differentially regulated. Under non-stressed conditions only APX1a is expressed. APX1b was identified during low-stringency probing using a cDNA coding for pea cAPX which, in turn, was recovered from a cDNA library by immunoscreening with an antiserum raised against tea plastidial APX (pAPX). No pAPX cDNAs were recovered, despite the antiserum displaying specificity for pAPX in Western blots.Abbreviations ATG methionine translation initiation codon - bp base pair - cAPX cytosolic ascorbate peroxidase - pAPX plastidial ascorbate peroxidase - RFLP restriction fragment length polymorphism Accession numbers: The APX1b sequence is in the EMBL database under accession number X80036M.S. gratefully acknowledges the support from the Junta Nacional de Investigaçâo Cientifica e Tecnológia, Portugal (grant number BD/394/90-IE). This work was supported by the Biotechnological and Biological Sciences Research Council through a grant-in-aid to the John Innes Centre.  相似文献   

6.
7.
The function of ascorbate oxidase in tobacco   总被引:28,自引:0,他引:28  
  相似文献   

8.
The Arabidopsis gene APX3 that encodes a putative peroxisomal membrane-bound ascorbate peroxidase was expressed in transgenic tobacco plants. APX3-expressing lines had substantial levels of APX3 mRNA and protein. The H2O2 can be converted to more reactive toxic molecules, e.g. .OH, if it is not quickly removed from plant cells. The expression of APX3 in tobacco could protect leaves from oxidative stress damage caused by aminotriazole which inhibits catalase activity that is found mainly in glyoxysomes and peroxisomes and leads to accumulation of H2O2 in those organelles. However, these plants did not show increased protection from oxidative damage caused by paraquat which leads to the production of reactive oxygen species in chloroplasts. Therefore, protection provided by the expression of APX3 seems to be specific against oxidative stress originated from peroxisomes, not from chloroplasts, which is consistent with the hypothesis that APX3 is a peroxisomal membrane-bound antioxidant enzyme.  相似文献   

9.
为理解荷花Nelumbo nucifera花器官转录组表达情况,分别选取不同花型的代表品种‘洪湖红莲’Nelumbo nucifera ‘Honghu Honglian’(单瓣)、‘唐招提寺莲’N. nucifera ‘Tangzhaotisi Lian’(重瓣)和‘千瓣莲’N. nucifera ‘Qianban Lian’(千瓣及全重瓣)的花蕾为材料分离mRNA,利用SMART技术合成双链cDNA,经限制性内切酶SfiI酶切后回收去掉接头和500 bp以下片段的cDNA。将cDNA与pUC19载体连接,构建荷花花蕾cDNA文库。经检测,该文库容量为1.12 × 106 pfu·mL-1,插入片段大小集中在500~2000 bp,重组率为95%。该文库的成功构建为荷花花蕾期转录组数据的开发及其花器官发育相关基因的功能研究奠定了分子基础。  相似文献   

10.
Ascorbate peroxidase (APX) is a crucial, haeme-containing enzyme of the ascorbate glutathione cycle that detoxifies reactive oxygen species in plants by catalyzing the conversion of hydrogen peroxide to water using ascorbate as a specific electron donor. Different APX isoforms are present in discrete subcellular compartments in rice and their expression is stress regulated. We revealed the homology model of OsAPX1 protein using the crystal structure of soybean GmAPX1 (PDB ID: 2XIF) as template by Modeller 9.12. The resultant OsAPX1 model structure was refined by PROCHECK, ProSA, Verify3D and RMSD that indicated the model structure is reliable with 83 % amino acid sequence identity with template, RMSD (1.4 Å), Verify3D (86.06 %), Zscores (-8.44) and Ramachandran plot analysis showed that conformations for 94.6% of amino acid residues are within the most favoured regions. Investigation revealed two conserved signatures for haeme ligand binding and peroxidase activity in the alpha helical region that may play a significant role during stress.  相似文献   

11.
12.
Panchuk II  Zentgraf U  Volkov RA 《Planta》2005,222(5):926-932
Oxygen-free radicals are thought to play an essential role in senescence. Therefore, the expression patterns of the small gene family encoding the H2O2 scavenging enzymes ascorbate peroxidase (APX; EC 1.11.1.11) were analyzed during senescence of Arabidopsis thaliana (L.) Heinh. Applying real-time RT-PCR, the mRNA levels were quantified for three cytosolic (APX1, APX2, APX6), two chloroplastic types (stromal sAPX, thylakoid tAPX), and three microsomal (APX3, APX4, APX5) isoforms identified in the genome of Arabidopsis. The genes of chloroplastic thylakoid-bound tAPX and the microsomal APX4 exhibit a strong age-related decrease of mRNA level in leaves derived from one rosette as well as in leaves derived from plants of different ages. In contrast to the tAPX, the mRNA of sAPX was only reduced in old leaves of old plants. The microsomal APX3 and APX5, and the cytosolic APX1, APX2, and APX6 did not show remarkable age-related changes in mRNA levels. The data show that expression of the individual APX genes is differentially regulated during senescence indicating possible functional specialization of respective isoenzymes. The hydrogen peroxide levels seem to be controlled very precisely in different cell compartments during plant development.  相似文献   

13.
The peroxisomal isoform of ascorbate peroxidase (APX) is a novel membrane isoform that functions in the regeneration of NAD(+) and protection against toxic reactive oxygen species. The intracellular localization and sorting of peroxisomal APX were examined both in vivo and in vitro. Epitope-tagged peroxisomal APX, which was expressed transiently in tobacco BY-2 cells, localized to a reticular/circular network that resembled endoplasmic reticulum (ER; 3,3'-dihexyloxacarbocyanine iodide-stained membranes) and to peroxisomes. The reticular network did not colocalize with other organelle marker proteins, including three ER reticuloplasmins. However, in vitro, peroxisomal APX inserted post-translationally into the ER but not into other purified organelle membranes (including peroxisomal membranes). Insertion into the ER depended on the presence of molecular chaperones and ATP. These results suggest that regions of the ER serve as a possible intermediate in the sorting pathway of peroxisomal APX. Insight into this hypothesis was obtained from in vivo experiments with brefeldin A (BFA), a toxin that blocks vesicle-mediated protein export from ER. A transiently expressed chloramphenicol acetyltransferase-peroxisomal APX (CAT-pAPX) fusion protein accumulated only in the reticular/circular network in BFA-treated cells; after subsequent removal of BFA from these cells, the CAT-pAPX was distributed to preexisting peroxisomes. Thus, plant peroxisomal APX, a representative enzymatic peroxisomal membrane protein, is sorted to peroxisomes through an indirect pathway involving a preperoxisomal compartment with characteristics of a distinct subdomain of the ER, possibly a peroxisomal ER subdomain.  相似文献   

14.
Ascorbate metabolism in harvested broccoli   总被引:2,自引:0,他引:2  
  相似文献   

15.
为探讨中国绿水螅(Hydra sinensis)抗坏血酸过氧化物酶(Ascorbate peroxidase, APX)基因的起源及功能, 研究采用RACE方法克隆了中国绿水螅APX基因的全长cDNA序列。该cDNA序列总长1357 bp, 包括5′非编码区107 bp, 3′非编码区146 bp及开放阅读框(Open reading frame, ORF) 1104 bp, 共编码367个氨基酸, 预测蛋白质分子量为40.79 kD。BLAST结果表明中国绿水螅APX蛋白同源序列绝大部分来自植物界; 通过最大似然法(Maximum-likelihood)和贝叶斯分析(Bayesian inference)进行的系统发生分析显示植物界及动物界物种的APX序列各自形成单系群。把APX基因ORF全长序列克隆到原核表达质粒pET-GST中, 重组质粒转化E. coli BL21 (DE3)菌株, IPTG诱导后成功表达重组融合蛋白GST-APX, 再使用纯化的重组蛋白免疫新西兰兔制备多克隆抗体用于APX蛋白的免疫印迹分析(Western blotting assay, WB)。在不同光照时长梯度(光强度2000 lx, 每天分别光照0、4h、8h、12h、16h、20h及24h)下培养中国绿水螅30d, 实时定量PCR (Quantitative real-time PCR, qPCR)及WB检测结果均表明光照时间较长时(每天光照12h以上)绿水螅APX表达呈现一定程度的上调。在长时间光辐射下水螅体内共生绿藻连续进行光合作用所累积的大量活性氧能够扩散到水螅细胞内, 此时水螅体内表达上调的APX可能参与清除其细胞内的活性氧。  相似文献   

16.
Tobacco leaves of plants with enhanced glutathione reductase activity (GR46-27, Nicotiana tabacum L. cv. Samsun) or with autoregulated senescence-induced production of cytokinins (PSAG12-IPT, N. tabacum L. cv. Wisconsin) were studied during the course of leaf development and senescence by measuring photosynthesis, chlorophyll and protein content, the antioxidants ascorbate, glutathione and α -tocopherol as well as the antioxidative enzymes ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2) and superoxide dismutase (SOD, EC 1.15.1.1). The photosynthetic rate, as well as the chlorophyll and protein content, dropped with increasing leaf age after having reached a maximum at the end of the exponential growth phase. The concentrations of the water-soluble antioxidants ascorbate and glutathione fell continuously with age, whereas the concentration of the lipophilic α -tocopherol increased. The activities of the antioxidative enzymes APX, GR and SOD reached their maximum at the beginning of leaf development, but were reduced in senescing leaves. The age-dependent course of the measured leaf parameters in GR46-27 leaves was similar to the one in wild-type leaves, with the exception of an overall enhanced GR activity. In contrast, in old leaves of PSAG12-IPT plants, which possess a much higher life span, the chlorophyll and protein content, the photosynthetic rate, the antioxidant concentrations of ascorbate and glutathione as well as the activities of the antioxidative enzymes were higher than in wild-type leaves. The results show that the capacity of the antioxidative system to scavenge radicals is sufficiently balanced with the plant metabolism, and its decline with increasing age is not the cause, but a consequence of senescence and ageing in plants.  相似文献   

17.
18.
19.
20.
The present work describes the intrachloroplast localization and the changes that took place in the thylakoid and stroma-located superoxide dismutases (SOD, EC 1.15.1.1) and ascorbate peroxidases (APX, EC 1.11.1.11), in response to long-term NaCl stress in Pisum sativum L. cv. Puget plants. Native PAGE using high chloroplast protein concentrations pointed to the presence of the two main Fe-SODs, together with CuZn-SODs, both in thylakoids and in the stroma. Western blot and immunogold labelling using the antibodies against chloroplastic Fe-SOD from Nuphar luteum also confirmed the chloroplastic localization of a Fe-SOD. Thylakoidal Fe-SOD activity was induced by a NaCl concentration as low as 70 mM, while CuZn-SOD was induced at 90 mM, although in severe stress conditions (110 mM) both activities were similar to the levels at 90 mM NaCl. NaCl stress also induced stromatic Fe-SOD and CuZn-SOD activities, although these inductions only started at higher NaCl concentration (90 mM) and were significant at 110 mM NaCl. The increase in activity of both Fe-SODs was matched by an increase in Fe-SOD protein. Chloroplastic APX isoenzymes behaved differently in thylakoids and stroma in response to NaCl. A significant increase of stromal APX occurred at 70 mM, whereas the thylakoidal APX activity was significantly and progressively lost in response to NaCl stress (70-110 mM). A significant increase in the H2O2 content of chloroplasts during stress and a reduction in the ascorbate level at 90 mM NaCl also took place, although the oxidized ascorbate pool at the highest NaCl concentration did not show significant changes. These results suggest that the loss of thylakoidal APX may be an important factor in the increase in chloroplastic H2O2, which also results from the increased thylakoid and stroma-located Fe-SOD and CuZn-SOD activities. This H2O2 may be involved in the induction of stromal APX. The up-regulation of the above enzymes in the described stress conditions would contribute to the adaptation of cv. Puget plants to moderate NaCl stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号