首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of dietary protein content on the uncoupling proteins (UCP) 1, 2 and 3 expression in a number of tissues of Zucker lean and obese rats was studied. Thirty-day-old male Zucker lean (Fa/?) and obese (fa/fa) rats were fed on hyperproteic (HP, 30% protein), standard (RD, 17% protein) or hypoproteic (LP, 9% protein) diets ad libitum for 30 days. Although dietary protein intake affected the weights of individual muscles in lean and obese animals, these weights were similar. In contrast, huge differences were observed in brown adipose tissue (BAT) and liver weights. Lean rats fed on the LP diet generally increased UCP expression, whereas the HP group had lower values. Obese animals, HP and LP groups showed higher UCP expression in muscles, with slight differences in BAT and lower values for UCP3 in subcutaneous adipose tissue. The mean values of UCP expression in BAT of obese rats were lower than in their lean counterpart, whereas the expression in skeletal muscle was increased. Thus, expression of UCPs can be modified by dietary protein content, in lean and obese rats. A possible thermogenic function of UCP3 in muscle and WAT in obese rats must be taken into account.  相似文献   

2.
During cold exposure, animals upregulate their metabolism and food intake, potentially exposing them to elevated reactive oxygen species (ROS) production and oxidative damage. We investigated whether acute cold (7 +/- 3 degrees C) exposure (1, 10, or 100 h duration) affected protein oxidation and proteasome activity, when compared to warm controls (22 +/- 3 degrees C), in a small mammal model, the short-tailed field vole Microtus agrestis. Protein carbonyls and the chymotrypsin-like proteasome activity were measured in plasma, heart, liver, kidney, small intestine (duodenum), skeletal muscle (gastrocnemius), and brown adipose tissue (BAT). Trypsin-like and peptidyl-glutamyl-like proteasome activities were determined in BAT, liver, and skeletal muscle. Resting metabolic rate increased significantly with duration of cold exposure. In skeletal muscle (SM) and liver, protein carbonyl levels also increased with duration of cold exposure, but this pattern was not repeated in BAT where protein carbonyls were not significantly elevated. Chymotrpsin-like proteasome activity did not differ significantly in any tissue. However, trypsin-like activity in SM and peptidyl-glutamyl-like activity in both skeletal muscle and liver, were reduced during the early phase of cold exposure (1-10 h), correlated with the increased carbonyl levels in these tissues. In contrast there was no reduction in proteasome activity in BAT during the early phase of cold exposure and peptidyl-glutamyl-like activity was significantly increased, correlated with the lack of accumulation of protein carbonyls in this tissue. The upregulation of proteasome activity in BAT may protect this tissue from accumulated oxidative damage to proteins. This protection may be a very important factor in sustaining uncoupled respiration, which underpins nonshivering thermogenesis at cold temperatures.  相似文献   

3.
Streptozotocin (STZ)-induced diabetic animals are vulnerable to cold stress. Uncoupling proteins (UCPs) play an important role in regulating thermogenesis. We investigated the gene expressions of UCPs in brown adipose tissue (BAT), white adipose tissue (WAT), liver and gastrocnemius muscle of STZ-diabetic rats using Northern blot. UCP-1, -2 and -3 mRNA expressions in BAT were all remarkably lower in STZ-diabetic rats than those in control rats. Both UCP-2 and -3 gene expressions in gastrocnemius muscle were substantially elevated in STZ-diabetic rats and insulin treatment restored UCP gene expressions to normal levels. These results suggest that in STZ-diabetic rats, the overexpression of UCP-2 and UCP-3 in skeletal muscle provides a defense against hypothermogenesis caused by decreased UCPs in BAT.  相似文献   

4.
3,5-diiodo-l-thyronine (T2), a thyroid hormone derivative, is capable of increasing energy expenditure, as well as preventing high fat diet-induced overweight and related metabolic dysfunction. Most studies to date on T2 have been carried out on liver and skeletal muscle. Considering the role of brown adipose tissue (BAT) in energy and metabolic homeostasis, we explored whether T2 could activate BAT thermogenesis. Using euthyroid, hypothyroid, and T2-treated hypothyroid rats (all maintained at thermoneutrality) in morphological and functional studies, we found that hypothyroidism suppresses the maximal oxidative capacity of BAT and thermogenesis, as revealed by reduced mitochondrial content and respiration, enlarged cells and lipid droplets, and increased number of unilocular cells within the tissue. In vivo administration of T2 to hypothyroid rats activated BAT thermogenesis and increased the sympathetic innervation and vascularization of tissue. Likewise, T2 increased BAT oxidative capacity in vitro when added to BAT homogenates from hypothyroid rats. In vivo administration of T2 to hypothyroid rats enhanced mitochondrial respiration. Moreover, UCP1 seems to be a molecular determinant underlying the effect of T2 on mitochondrial thermogenesis. In fact, inhibition of mitochondrial respiration by GDP and its reactivation by fatty acids were greater in mitochondria from T2-treated hypothyroid rats than untreated hypothyroid rats. In vivo administration of T2 led to an increase in PGC-1α protein levels in nuclei (transient) and mitochondria (longer lasting), suggesting a coordinate effect of T2 in these organelles that ultimately promotes net activation of mitochondrial biogenesis and BAT thermogenesis. The effect of T2 on PGC-1α is similar to that elicited by triiodothyronine. As a whole, the data reported here indicate T2 is a thyroid hormone derivative able to activate BAT thermogenesis.  相似文献   

5.
A previous study from our laboratory showed that maternal food restriction (MFR) delays thermoregulation in newborn rats. In neonates brown adipose tissue (BAT) is essential for thermogenesis due to the presence of uncoupling proteins (UCPs). The aim of this study was to evaluate the influence of MFR on the UCPs mRNA and protein expression in BAT and skeletal muscle (SM) of the newborn rat. Female Wistar EPM-1 control rats (CON) received chow ad libitum during pregnancy, whereas food-restricted dams (RES) received 50% of the amount ingested by CON. Fifteen hours after birth, the litters were weighed and sacrificed. Blood was collected for hormonal analysis. BAT and SM were used for determination of UCPs mRNA and protein expression, and Ca2+-ATPase sarcoplasmic reticulum (SERCA1). RES pups showed a significant reduction in body weight and fat content at birth. MFR caused a significant increase in the expression of UCP1 and UCP2 in BAT, without changes in UCP3 and SERCA1 expression in BAT and SM. No differences between groups were found for leptin, T4 and glucose levels. RES pups showed increased insulin and decreased T3 levels. The delay in development of thermoregulation previously described in RES animals appears not to result from impairment in thermogenesis, but from an increase in heat loss, since MFR caused low birth weight in pups, leading to greater surface/volume ratio. The higher expression of UCP1 and UCP2 in BAT suggests a compensatory mechanism to increased thermogenesis.  相似文献   

6.
Insulin receptor (IR) gene expression at the mRNA level was investigated in hindlimb skeletal muscle, epididymal adipose tissue and in the liver of rats exposed to prolonged in vivo administration of deoxycorticosterone acetate (DOCA). Following treatment, plasma insulin levels were reduced while glucose levels increased compared to values in control rats. DOCA-treated animals showed an increase in blood pressure and a reduction in body weight. This treatment also induced hypokalemia and decreased plasma protein levels. Sodium levels were unaffected. Moreover, no differences in DNA and protein content or in the indicator of cell size (protein/DNA) were observed in the skeletal muscle or adipose tissue of animals. In contrast, there was a clear increase in the protein and DNA contents of the liver with no change in the indicator of cell size. Northern blot assays revealed 2 major IR mRNA species of approximately 9.5 and 7.5 Kb in the 3 tissues from control animals. DOCA treatment induced no change in the levels of either RNA species in skeletal muscle. However, a decrease of approximately 22% was detected in the levels of both species in adipose tissue whereas the liver showed an increase of 64%. These results provide the first evidence for an in vivo tissue-specific modulation of IR mRNA levels under experimental conditions of mineralocorticoid excess.  相似文献   

7.
Brown adipose tissue (BAT) thermogenesis is an uncoupled ATPase-independent thermogenic mechanism. Ion transport by the Na,K pump is an ATPase- dependent thermogenic mechanism. Both have been proposed as mechanisms of altered energy expenditure during states of dietary energy surfeit and deficit. Our aim was to study these mechanisms during diet-induced obesity and weight loss. Over 36 weeks rats were fed lard- or tallow-based diets (63% energy as fat), or a control diet (12% energy as fat). During periods of restriction rats were fed 50% of the energy intake of controls in the form of a control diet. Several components of thermogenic response increased in rats eating high fat diets and decreased following dietary restriction. BAT activation occurred, particularly with a lard-based diet, as indicated by increased GDP binding and uncoupling protein (UCP) content. Na,K pump activity in thymocytes increased with the feeding of both high fat diets at some time points. Plasma T3 level increased in rats eating the lard-based diet and decreased with dietary restriction regardless of previous diet. Resting metabolic rate (RMR) of the animals was unchanged despite increases in these thermogenic components and was decreased in all groups following dietary restriction. Our results indicate a lack of any major role for activated BAT thermogenesis in mitigating the extent of the obesity induced by the high fat diets. The reasons for the differences in response to the two different sources of saturated fat, lard, and tallow, are not clear.  相似文献   

8.
Chronic injections (once daily for 10-14 days) of triiodothyronine (T3) stimulated oxygen consumption by 50 and 15% in anaesthetized, control (24 degrees C), and cold-adapted (5 degrees C) rats, respectively, compared with euthyroid controls. Tissue blood flow, determined from the distribution of radioactive microspheres, was unaffected by T3 treatment in skeletal muscle, scrotum, brain, bone, skin, diaphragm, and brown adipose tissue (BAT) of rats housed at 24 degrees C, but was decreased in spleen (53% of control) and significantly increased in three white adipose tissue depots (average 267% increase) and liver (56%). Blood flow to epididymal fat and leg muscle of cold-adapted rats was increased by T3 treatment (100 and 138% increases, respectively), but other tissues were unaffected. Blood oxygen extraction and oxygen consumption in vivo by interscapular BAT was increased in hyperthyroid rats compared with euthyroid controls, but was reduced by T3 treatment in cold-adapted animals. These data show that BAT makes only a minor contribution (7%) to thyroid thermogenesis, but suggest that kidney, liver, gut, and particularly white adipose tissue may be involved.  相似文献   

9.
The heparin-releasable LP lipase activity of BAT (brown adipose tissue), and the TG (triglyceride) content of plasma were determined in normal and hypothyroid rats during early post-natal development. The TG content of plasma increased sharply after the onset of suckling and decreased during the weaning period in normal rats, while it stayed at a high level in hypothyroid rats. LP lipase activity was maximal during the perinatal period and decreased later, being practically undetectable in one month old control animals; in contrast, LP lipase activity was still present in cretin rats at this age. The effects of several forms of treatment were also tested in weaned rats: a high-fat diet was not able to maintain the high LP lipase activity of suckling rats, but the activity was high if the animals were bred at a cold temperature. Thyroxine injections had no effect. These results are discussed in terms of the possible factors regulating the LP lipase activity in BAT.  相似文献   

10.
When rats were exposed to a cold environment (4 degrees C) for 10 days, tissue glucose utilization was increased in brown adipose tissue (BAT), a tissue specified for non-shivering thermogenesis, but not in skeletal muscle. Cold exposure also caused an increase in the amount of GLUT4, an isoform of glucose transporters expressed in insulin-sensitive tissues, in parallel with an increased cellular level of GLUT4 mRNA. In contrast to BAT, no significant effect of cold exposure was found in skeletal muscle. The results suggest the cold-induced increase in glucose utilization by BAT is attributable, at least in part, to the increased expression of GLUT4.  相似文献   

11.
The effect of exercise on the protein metabolism in skeletal muscles (gastrocnemius and soleus), liver and small intestine was investigated in rats. Treadmill treatment for 7 d resulted in atrophy of the liver and small intestine, which was associated with a reduction in protein content. The rates of protein synthesis in the liver and small intestine were significantly suppressed in rats subjected to exercise. The change in protein synthesis in the visceral organs was mediated by the change in RNA activity (protein synthesis per unit RNA) but not by the change in RNA concentration. The tissue weight and the rate of protein synthesis in the gastrocnemius and soleus muscles were not affected by exercise. The results suggest that these changes in protein synthesis in the liver and small intestine may explain, at least partly, the atrophy of these organs which was observed after 7 d of exercise.  相似文献   

12.
The effect of exercise on the protein metabolism in skeletal muscles (gastrocnemius and soleus), liver and small intestine was investigated in rats. Treadmill treatment for 7 d resulted in atrophy of the liver and small intestine, which was associated with a reduction in protein content. The rates of protein synthesis in the liver and small intestine were significantly suppressed in rats subjected to exercise. The change in protein synthesis in the visceral organs was mediated by the change in RNA activity (protein synthesis per unit RNA) but not by the change in RNA concentration. The tissue weight and the rate of protein synthesis in the gastrocnemius and soleus muscles were not affected by exercise. The results suggest that these changes in protein synthesis in the liver and small intestine may explain, at least partly, the atrophy of these organs which was observed after 7 d of exercise.  相似文献   

13.
Fatty-acid synthesis has been measured in vivo with3H2O in cafeteria-fed rats exhibiting diet-induced thermogenesis. Synthesis was decreased in brown adipose tissue, the liver, white adipose tissue, and the carcass of the cafeteria-fed animals compared to rats fed the normal stock diet. Whole-body synthesis was also decreased in the cafeteria-fed group. Diet-induced thermogenesis, in contrast to cold-induced non-shivering thermogenesis does not lead to increased fatty-acid synthesis and this is presumably due to the inhibitory effects on lipogenesis of the high dietary fat intake characteristic of cafeteria diets. The results also indicate that the energy cost of body fat deposition in cafeteria-fed rats is lower than in animals fed a low-fat/high-carbohydrate stock diet.  相似文献   

14.
(1)Protein synthesis and content have been studied in skeletal muscle, liver, foetuses and placentas of pregnant rats given a protein-deficient diet. Changes which occurred during the anabolic and subsequent catabolic phases of pregnancy are compared with those in well-fed pregnant and in protein-deficient non-pregnant rats. (2) The normal increase in liver protein did not occur during pregnancy in the protein-deficient group. (3) Protein deficiency affected protein content of the placenta earlier and more severely than that of the foetus. (4) Rates of protein synthesis in liver, placentas and foetuses were enhanced above control values by protein deficiency. (5)_Muscle protein increased normally during the anabolic phase of pregnancy but fell during the catabolic phase, unlike values for weel-fed animals. (6) Muscle protein synthesis rates rose by similar amounts in well-fed and protein-deficient animals during the anabolic phase of pregnancy. The fall to starting values during the catabolic phase was sharper and earlier in protein-deficient animals, which could reduce demands on the body amino acid pool by an amount equivalent to over 50% of the needs for protein deposition in foetuses and placentas. Thus, changes in muscle protein synthesis in both anabolic and catabolic phases of pregnancy may afford some protection to foetal protein synthesis.  相似文献   

15.
Adenylate cyclase activity was determined in membranes of liver, muscle, white adipose tissue, and brown adipose tissue (BAT) of lean (Fa/) and obese (fa/fa) Zucker rats. Responses were monitored following beta-adrenergic receptor stimulation and addition of GTP, GTP gamma S, or forskolin. beta-Adrenergic responses in liver, white adipose tissue, and BAT were lower in obese than in lean animals. No such difference was observed in muscle membranes. Production of cAMP after addition of guanine nucleotides was lower in liver and white adipose tissue membranes from obese rats compared with their lean littermates. Synthesis of cAMP in muscle membranes of obese animals after addition of GTP was either not different, or slightly higher, than that observed in muscle membranes from lean animals. Furthermore, production of cAMP after forskolin addition to muscle membranes of obese rats was significantly higher than that observed from lean rats under the same conditions. Interestingly, BAT membranes of obese rats were significantly more sensitive to guanine nucleotide activation than those of lean animals. The results confirm recent findings indicating inferior function of G proteins in liver plasma membranes of obese Zucker rats, and extend this observation to adipose tissue. The present results further suggest that the "nonreceptor" components (e.g., G proteins) responsible for the activation of adenylate cyclase in BAT membranes of obese rats are more responsive to stimulation than those of lean animals. Such sensitivity may be related to and perhaps compensate for the reduced thermogenic activity in the obese Zucker rat during the development of obesity.  相似文献   

16.
达乌尔黄鼠产热的季节性变化   总被引:4,自引:2,他引:4  
达乌尔黄鼠(Citellusdauricus)的产热表现出明显的季节性变化。在非冬眠期,静止代谢率(RMR)和非颤抖性产热(NST)于春季最高,秋季次之,夏季最低。冬眠期,RMR降到极低水平,只为春季的3.0%。肝脏的线粒体蛋白含量、线粒体呼吸和细胞色素C氧化酶活力在秋季显著高于其它各季。褐色脂肪组织(BAT)的重量、线粒体蛋白含量、细胞色素C氧化酶活力和α-磷酸甘油氧化酶活力,在夏季处于一年中的最低水平,到了冬季这些指标达到一年中的最高水平。在非冬眠季节BAT产热能力升高时,NST能力也相应升高,这表明BAT产热能力的增强是NST能力提高的部分机制。达乌尔黄鼠血清T_4含量在年周期中没有明显改变,冬眠时血清T_3含量显著高于其它各季。  相似文献   

17.
Uncoupling protein (UCP) 1 (UCP1) catalyzes a proton leak in brown adipose tissue (BAT) mitochondria that results in nonshivering thermogenesis (NST), but the extent to which UCP homologs mediate NST in other tissues is controversial. To clarify the role of UCP3 in mediating NST in a hibernating species, we measured Ucp3 expression in skeletal muscle of arctic ground squirrels in one of three activity states (not hibernating, not hibernating and fasted for 48 h, or hibernating) and housed at 5 degrees C or -10 degrees C. We then compared Ucp3 mRNA levels in skeletal muscle with Ucp1 mRNA and UCP1 protein levels in BAT in the same animals. Ucp1 mRNA and UCP1 protein levels were increased on cold exposure and decreased with fasting, with the highest UCP1 levels in thermogenic hibernators. In contrast, Ucp3 mRNA levels were not affected by temperature but were increased 10-fold during fasting and >3-fold during hibernation. UCP3 protein levels were increased nearly fivefold in skeletal muscle mitochondria isolated from fasted squirrels compared with nonhibernators, but proton leak kinetics in the presence of BSA were unchanged. Proton leak in BAT mitochondria also did not differ between fed and fasted animals but did show classical inhibition by the purine nucleotide GDP. Levels of nonesterified fatty acids were highest during hibernation, and tissue temperatures during hibernation were related to Ucp1, but not Ucp3, expression. Taken together, these results do not support a role for UCP3 as a physiologically relevant mediator of NST in muscle.  相似文献   

18.
Raw or extruded pea (Pisum sativum, cv. Ballet) diets with or without supplementary amino acids were fed for 15 days to young growing rats and the effects on tissue weights, liver and muscle protein metabolism and hormone levels monitored. Body weight gain, liver and gastrocnemius muscle weights and protein contents were reduced and some key hormones altered when rats were fed unsupplemented raw pea diets. This appeared to be a result of amino acid deficiencies in the diet, the action of antinutritional factors and the refractory nature of the reserve proteins and other seed components. However, this did not in itself improve the nutritional performance of the rats due to the overriding effects of the amino acid deficiencies in the pea diets. After supplementation, extruded peas supported much higher rates of growth and skeletal muscle deposition than did supplemented raw peas. Despite this, the weight gains remained less than achieved on a high quality control diet. Protein synthesis and degradation rates in skeletal muscles and total protein contents were similar to control values. The lower growth rate did not appear to be due to impaired deposition of skeletal muscle. Deposition of other body components, possibly lipids, may have been lowered by supplemented extruded pea diets. Liver protein levels were reduced in rats fed supplemented raw peas and blood corticosterone was elevated. In conclusion, extrusion treatment of peas in combination with amino acid supplementation appeared to abolish the negative effects of peas on skeletal muscle deposition.  相似文献   

19.
The role of insulin in norepinephrine turnover (NE) and thermogenesis in brown adipose tissue (BAT) after acute cold-exposure was studied using streptozocin (STZ)-induced diabetic rats. NE turnover was estimated by the NE synthesis inhibition technique with alpha-methyl-p-tyrosine. BAT thermogenesis was estimated by measuring mitochondrial guanosine-5'-diphosphate (GDP), cytochrome oxidase activity and mitochondrial oxygen consumption in BAT at an ambient temperature of 22 degrees C and during a six-hour cold-exposure at 4 degrees C. In insulin-deficient diabetic rats, the NE turnover, mitochondrial GDP binding, cytochrome oxidase activity and mitochondrial oxygen consumption in BAT at 22 degrees C were significantly reduced, compared with those of control rats. Treatment of STZ-induced diabetic rats with insulin prevented a decrease in NE turnover and BAT thermogenesis. Acute cold-exposure increased the NE turnover of BAT in insulin-deficient diabetic rats. The BAT thermogenic response to acute cold-exposure, however, did not occur in insulin-deficient diabetic rats. These results suggest that insulin is not essential in potentiating NE turnover in BAT after acute cold-exposure, but is required for cold-induced thermogenesis.  相似文献   

20.

Objective:

Protein leverage plays a role in driving increased energy intakes that may promote weight gain. The influence of the protein to carbohydrate ratio (P:C) in diets of C57BL/6J mice on total energy intake, fat storage, and thermogenesis was investigated.

Design and Methods:

Male mice (9 weeks old) were provided ad libitum access to one of five isocaloric diets that differed in P:C. Food intake was recorded for 12 weeks. After 16 weeks, white adipose tissue (WAT) and brown adipose tissue (BAT) deposits were dissected, weighed, and the expression levels of key metabolic regulators were determined in BAT. In a separate cohort, body surface temperature was measured in response to 25 diets differing in protein, fat, and carbohydrate content.

Results:

Mice on low P:C diets (9:72 and 17:64) had greater total energy intake and increased WAT and BAT stores. Body surface temperature increased with total energy intake and with protein, fat, and carbohydrate, making similar contributions per kJ ingested. Expression of three key regulators of thermogenesis were downregulated in BAT in mice on the lowest P:C diet.

Conclusions:

Low‐protein diets induced sustained hyperphagia and a generalized expansion of fat stores. Increased body surface temperature on low P:C diets was consistent with diet‐induced thermogenesis (DIT) as a means to dissipate excess ingested energy on such diets, although this was not sufficient to prevent development of increased adiposity. Whether BAT was involved in DIT is not clear. Increased BAT mass on low P:C diets might suggest so, but patterns of thermogenic gene expression do not support a role for BAT in DIT, although they might reflect failure of thermogenic function with prolonged exposure to a low P:C diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号