首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 91 毫秒
1.
高庆坤  孔娜  宋春芳  周毅 《生物磁学》2014,(4):795-797,782
胰岛移植已经被公认为治疗胰岛素依赖型糖尿病(IMDD)的有效手段,而现如今胰岛移植的最大障碍是移植排斥反应。目前控制胰岛移植的免疫抑制治疗因其对胰岛细胞的毒性作用及长期应用带来的全身并发症而无法在临床推广,诱导移植术后受体的免疫耐受是防止排斥反应的最理想方法。本文综述了诱导免疫耐受的途径及胰岛移植的最新实验进展。随着研究的深入和免疫学的发展,相信在未来的胰岛移植治疗糖尿病领域,移植排斥现象将能得到高效可靠的解决。  相似文献   

2.
有效地控制慢性移植排斥反应和诱导移植免疫耐受是当今移植免疫学研究的热点。基因工程由于在克服移植免疫排斥反应和诱导免疫耐受中具有独特优势而倍受人们关注。然而,在临床应用基因治疗克服移植器官排斥之前,必须确定有效、安全的载体及适宜的靶基因。对该领域的新进展进行了简要综述。  相似文献   

3.
糖尿病是目前困扰人类健康的第三大杀手。胰岛移植作为糖尿病的一种有效方法早已得到公认,但是胰岛供体的缺乏和移植排斥反应的存在限制了胰岛移植的临床应用[1]。胰岛素替代疗法是目前治疗糖尿病最有效的方法。然而这种方法也有许多缺陷。间充质干细胞(mesenchymal stem cell,MSC)具有多向分化潜能的均质性细胞,具有供源丰富、易于获得、有自由供体、避免免疫排斥等优点,因而是较为理想的胰岛B细胞来源[2]。近年来,众多实验研究表明了通过诱导MSC分化为胰岛B细胞治疗糖尿病的可能性。  相似文献   

4.
骨髓间充质干细胞分化为胰岛细胞治疗糖尿病   总被引:1,自引:0,他引:1  
糖尿病已成为严重危害人类健康的疾病之一。目前,移植胰岛治疗糖尿病已初见疗效,但由于胰岛来源匮乏和免疫排斥反应而受阻。骨髓间充质干细胞(bonemarrowmesenchymalstemcells,BMMSCs)取材方便,容易进行体外分离、培养和纯化,且具有跨越分化潜能。若将自体BMMSCs诱导分化为胰岛细胞,可望解决细胞来源和免疫排除问题,实现糖尿病的自体细胞治疗。现对体外诱导BMMSCs分化为胰岛细胞治疗糖尿病的研究进展进行综述,并指出了存在问题和今后的研究方向。  相似文献   

5.
树突状细胞诱导外周免疫耐受的机制   总被引:2,自引:0,他引:2  
树突状细胞既能启动免疫应答,又能诱导免疫耐受。目前对树突状细胞外周耐受方面的研究进展迅速,本文就未成熟树突状细胞、免疫抑制因子处理的树突状细胞及转基因树突状细胞在诱导外周免疫耐受中的作用作一综述,这可能是治疗自身免疫性疾病和移植排斥反应的新途径。  相似文献   

6.
耐受性树突状细胞(tolerogenic dendritic cell, tolDC)在器官移植和自体免疫性疾病中对免疫耐受调节至关重要。与免疫抑制剂相比, tolDC用于治疗移植后排斥反应的副作用较低。此外, tolDC可通过多种途径培养生成,且不同的培养方式具有独特功效。目前, tolDC作为一种诱导器官移植耐受的辅助治疗已在临床试验中广泛应用。本文就tolDC诱导免疫耐受、tolDC的体外诱导培养及其mi RNA调控机制和应用进行综述并提出相关展望,以期为应用tolDC治疗减轻移植后排斥反应的研究提供新思路。  相似文献   

7.
1型糖尿病(T1D)是一种慢性、多因素自身免疫性疾病,在发病过程中,会不断破坏胰岛β细胞,最终导致胰岛素分泌不足, 严重威胁人类健康。目前,根治T1D的主要方法是胰岛移植,即将移植的胰岛替代体内已被疾病破坏的胰岛细胞,以恢复正常血糖。但 是,胰岛移植供体的缺乏和移植免疫排斥反应,给胰岛移植的临床应用带来巨大挑战。近年来,干细胞治疗为T1D提供了一种新疗法, 成为T1D治疗领域新的研究热点,为该病的治疗提供了新思路。综述不同来源干细胞——胚胎干细胞、诱导多能干细胞和成体干细胞用 于治疗T1D的研究进展。  相似文献   

8.
随着医学科学的发展和生物学技术的进步,胰岛细胞移植已经被认为是治疗1型糖尿病的一种有效方法。技术上首先要解决好移植物的来源、提取和储存。同时,将移植物导入体内的技术也在不断发展,介入放射学技术发挥了非常重要的作用。研究发现.移植后受体的高血糖明显降低,并能在较长时期保持在正常水平。但胰岛细胞移植后,同样面临移植排斥反应,而在应用免疫抑制剂后又可能引起肝小静脉病等不良反应。利用磁共振和光学成像对标记后的胰岛细胞进行显像,对移植后的胰岛细胞在活体内进行追踪.了解其分布和存活,对于长期监测其功能、改进移植技术和免疫调节方法也很重要。目前面临的问题终将逐一得到解决.胰岛细胞移植很有希望成为治愈糖尿病的方法。  相似文献   

9.
器官移植免疫排斥反应是一多分子、多细胞参与的复杂免疫应答过程.传统研究主要集中于适应性免疫细胞如T,B细胞在急性移植排斥反应中的作用.近年来,随着对天然免疫细胞亚群、功能及其异质性认识的不断深入,人们发现,除天然免疫细胞在移植免疫应答中的抗原提呈功能及炎性反应以外,其可以发挥直接效应功能,参与移植物的排斥.天然免疫细胞亚群在移植免疫排斥与耐受中的不同作用近来受到重视.本文对天然免疫细胞在急性器官移植免疫排斥和免疫耐受诱导过程中的作用作一简要综述.  相似文献   

10.
胰腺或胰岛细胞移植是目前治疗Ⅰ型糖尿病和部分Ⅱ型糖尿病效果最理想的方法,但因来源组织短缺及需要终生服用免疫抑制剂等问题限制了它的广泛应用.利用胰腺或胰腺外的多能干细胞产生胰岛样细胞有望克服上述问题而用于治疗糖尿病.本文就将干细胞诱导分化为胰岛样细胞中所用的重要的转录因子和可溶性诱导因子及其作用以及胰岛素分泌细胞的来源做一综述.  相似文献   

11.
Islet transplantation holds renewed promise as a cure for type I diabetes mellitus. Results of recent clinical trials have shown remarkable success, and have reignited universal optimism for this procedure. In spite of this success, the need for life-long immunosuppression of the recipient still limits islet transplantation to patients with poorly controlled diabetes or to those requiring kidney transplantation. It is obvious that the achievement of immunological tolerance would broaden the indication for islet transplantation to a much larger cohort of patients with type I diabetes mellitus, most likely preventing long-term complications and contributing to a much improved quality of life. Increased understanding of the basic mechanisms of tolerance induction has resulted in the implementation of numerous experimental approaches to achieve long-term survival of islet grafts in the absence of chronic immunosuppression. In this brief review we will attempt to summarize the current status of research and knowledge.  相似文献   

12.
Islet cell transplantation has therapeutic potential to treat type 1 diabetes,which is characterized by autoimmune destruction of insulin-producing pancreatic isletβcells.It represents a minimal invasive approach forβcell replacement,but long-term blood control is still largely unachievable.This phenomenon can be attributed to the lack of islet vasculature and hypoxic environment in the immediate post-transplantation period that contributes to the acute loss of islets by ischemia.Moreover,graft failures continue to occur because of immunological rejection,despite the use of potent immunosuppressive agents.Mesenchymal stem cells(MSCs)have the potential to enhance islet transplantation by suppressing inflammatory damage and immune mediated rejection.In this review we discuss the impact of MSCs on islet transplantation and focus on the potential role of MSCs in protecting islet grafts from early graft failure and from autoimmune attack.  相似文献   

13.
Islet transplantation in human diabetes at present is confronted with two major obstacles: isolation of a sufficient number of islets and islet graft rejection. "Tissue banking" would enable islet pooling from various donors and offers furthermore the advantage of in vitro manipulations in order to reduce islet immunogenicity. Recently we have reported successful cryopreservation and subsequent transplantation of porcine islets (Bretzel, Beule, Sch?fer, Schneider, Pfeiffer and Federlin 1979). These preliminary data deal with cryopreservation and transplantation of isolated rat islets and cryopreservation of isolated human islets.  相似文献   

14.
Islet transplantation has considerable potential as a cure for diabetes. However, the difficulties that arise from inflammation and the immunological rejection of transplants must be addressed for islet transplantation to be successful. Alpha 1-antitrypsin (AAT) inhibits the damage on β cells caused by inflammatory reactions and promotes β-cell survival and proliferation. This protein also induces specific immune tolerance to transplanted β cells. However, whether the expression of AAT in β cells themselves could eliminate or decrease immunological rejection of transplants is not clear. Therefore, we established a β cell line (NIT-hAAT) that stably expresses human AAT. Interestingly, in a cytotoxic T lymphocyte (CTL)-killing assay, we found that hAAT reduced apoptosis and inflammatory cytokine production in NIT-1 cells and regulated the Th1/Th2 cytokine balance in vitro. In vivo transplantation of NIT-hAAT cells into mice with diabetes showed hAAT inhibited immunological rejection for a short period of time and increased the survival of transplanted β cells. This study demonstrated that hAAT generated remarkable immunoprotective and immunoregulation effects in a model of β cell islet transplantation for diabetes model.  相似文献   

15.
For most patients with type I diabetes, insulin therapy and glucose monitoring are sufficient to maintain glycemic control. However, hypoglycemia is a potentially lethal side effect of insulin treatment in patients who are glycemically labile or have hypoglycemia-associated autonomic failure [1]. For those patients, an alternative therapy is beta cell replacement via pancreas or islet transplantation. Pancreas transplants using cadaveric donor organs reduce insulin dependence but carry risks involved in major surgery and chronic immunosuppression. Islet transplantation, in which islets are isolated from donor pancreases and intravenously infused, require no surgery and can utilize islets isolated from pancreases unsuitable for whole organ transplantation. However, islet transplantation also requires immunosuppression, and standard steroid regimens may be toxic to beta cells [2]. The 2000 Edmonton Trial demonstrated the first long-term successful islet transplantation by using a glucocorticoid-free immunosuppressive regimen (sirolimus and tacrolimus). The Clinical Islet Transplantation (CIT) Consortium seeks to improve upon the Edmonton Protocol by using anti-thymocyte globulin (ATG) and TNFα antagonist (etanercept). The trials currently in progress, in addition to research efforts to find new sources of islet cells, reflect enormous potential for islet transplantation in treatment of type I diabetes.  相似文献   

16.
实验动物胰岛细胞的分离纯化   总被引:2,自引:0,他引:2  
胰岛移植作为治疗1型糖尿病的有效方法,临床应用前景较好。但是,由于在胰岛移植手术中,有功能的胰岛细胞数量较少,而严重影响其治疗效果。因此,如何提高胰岛分离纯化效果,获取尽可能多的高质量的胰岛,成为胰岛移植手术成败的关键。本文仅就在采用实验动物分离和纯化胰岛方面的实验经验作以简要介绍。  相似文献   

17.
Allogeneic islet transplantation is an important therapeutic approach for the treatment of type 1 diabetes. Clinical application of this approach, however, is severely curtailed by allograft rejection primarily initiated by pathogenic effector T cells regardless of chronic use of immunosuppression. Given the role of Fas-mediated signaling in regulating effector T cell responses, we tested if pancreatic islets can be engineered ex vivo to display on their surface an apoptotic form of Fas ligand protein chimeric with streptavidin (SA-FasL) and whether such engineered islets induce tolerance in allogeneic hosts. Islets were modified with biotin following efficient engineering with SA-FasL protein that persisted on the surface of islets for >1 wk in vitro. SA-FasL-engineered islet grafts established euglycemia in chemically diabetic syngeneic mice indefinitely, demonstrating functionality and lack of acute toxicity. Most importantly, the transplantation of SA-FasL-engineered BALB/c islet grafts in conjunction with a short course of rapamycin treatment resulted in robust localized tolerance in 100% of C57BL/6 recipients. Tolerance was initiated and maintained by CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells, as their depletion early during tolerance induction or late after established tolerance resulted in prompt graft rejection. Furthermore, Treg cells sorted from graft-draining lymph nodes, but not spleen, of long-term graft recipients prevented the rejection of unmodified allogeneic islets in an adoptive transfer model, further confirming the Treg role in established tolerance. Engineering islets ex vivo in a rapid and efficient manner to display on their surface immunomodulatory proteins represents a novel, safe, and clinically applicable approach with important implications for the treatment of type 1 diabetes.  相似文献   

18.
Islet transplantation is a promising potential therapy for patients with type 1 diabetes. The outcome of islet transplantation depends on the transplantation of a sufficient amount of β-cell mass. However, the initial loss of islets after transplantation is problematic. We hypothesized the hyperglycemic status of the recipient may negatively affect graft survival. Therefore, in the present study, we evaluated the effect of insulin treatment on islet transplantation involving a suboptimal amount of islets in Akita mice, which is a diabetes model mouse with an Insulin 2 gene missense mutation. Fifty islets were transplanted under the left kidney capsule of the recipient mouse with or without insulin treatment. For insulin treatment, sustained-release insulin implants were implanted subcutaneously into recipient mice 2 weeks before transplantation and maintained for 4 weeks. Islet transplantation without insulin treatment did not reverse hyperglycemia. In contrast, the group that received transplants in combination with insulin treatment exhibited improved fasting blood glucose levels until 18 weeks after transplantation, even after insulin treatment was discontinued. The group that underwent islet transplantation in combination with insulin treatment had better glucose tolerance than the group that did not undergo insulin treatment. Insulin treatment improved graft survival from the acute phase (i.e., 1 day after transplantation) to the chronic phase (i.e., 18 weeks after transplantation). Islet apoptosis increased with increasing glucose concentration in the medium or blood in both the in vitro culture and in vivo transplantation experiments. Expression profile analysis of grafts indicated that genes related to immune response, chemotaxis, and inflammatory response were specifically upregulated when islets were transplanted into mice with hyperglycemia compared to those with normoglycemia. Thus, the results demonstrate that insulin treatment protects islets from the initial rapid loss that is usually observed after transplantation and positively affects the outcome of islet transplantation in Akita mice.  相似文献   

19.

Background

Islet transplantation may potentially cure type 1 diabetes mellitus (T1DM). However, immune rejection, especially that induced by the alloreactive T-cell response, remains a restraining factor for the long-term survival of grafted islets. Programmed death ligand-1 (PD-L1) is a negative costimulatory molecule. PD-L1 deficiency within the donor heart accelerates allograft rejection. Here, we investigate whether PD-L1 deficiency in donor islets reduces allograft survival time.

Methods

Glucose Stimulation Assays were performed to evaluate whether PD-L1 deficiency has detrimental effects on islet function. Islets isolated from PDL1-deficient mice or wild- type (WT) mice (C57BL/6j) were implanted beneath the renal capsule of streptozotocin (STZ)-induced diabetic BALB/c mice. Blood glucose levels and graft survival time after transplantation were monitored. Moreover, we analyzed the residual islets, infiltrating immune cells and alloreactive cells from the recipients.

Results

PD-L1 deficiency within islets does not affect islet function. However, islet PD-L1 deficiency increased allograft rejection and was associated with enhanced inflammatory cell infiltration and recipient T-cell alloreactivity.

Conclusions

This is the first report to demonstrate that PD-L1 deficiency accelerated islet allograft rejection and regulated recipient alloimmune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号