首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
目的:通过了解某高校甲型H1N1流感病例的流行病学分布特征,为预防和控制流感在高校的蔓延提供依据。方法:以某高校2009年11月6日至2009年11月24日发病并确诊的74例甲型H1N1流感病例为研究对象,分析并比较病例的年龄、性别、学历层次、年级、专业、发病时间和临床症状。结果:74例甲型H1N1流感确诊病例均为学生,罹患率为1.63%,其中男性占94.6%,女性占5.4%;病例平均年龄为20.5岁±2.2岁;94.6%的病例为本科生;本科生罹患率(4.03%)显著高于研究生(0.14%);2006级见习期本科生罹患率(11.05%)显著高于其他年级学生;疫情的流行全距为19天,发病高峰为2009年11月13日至2009年11月18日;病例以发热、咳嗽、乏力、头疼等临床症状为主。结论:该高校甲型H1N1流感确诊病例多为22岁以下的男性学生。本研究提示加强见习学生的监测和管理、设立隔离宿舍、接种疫苗等有针对性的措施能够有效控制流感疫情在高校蔓延。  相似文献   

2.
自2009年3月18日墨西哥发现人感染甲型H1N1病毒疑似病例以来,一种新的猪源性H1N1型流感病毒开始在墨西哥和美国蔓延开来.并在数周内扩散到很多国家和地区.不断引起人类感染和死亡。伴随着流感疫情在全球范围内的迅速蔓延,6月初,世界卫生组织宣布把甲型H1N1流感警戒级别升至6级.甲型H1N1流感疫情已经发展成为全球性“流感大流行”。甲型H1N1流感疫情成为了全球高度关注的突发公共卫生事件。  相似文献   

3.
中国内地首例确诊甲型H1N1流感病例的实验室检测   总被引:3,自引:0,他引:3  
本实验室针对中国四川省一例输入性疑似甲型H1N1流感病例的临床咽拭子标本进行Real-time PCR和RT-PCR检测,并随后对部分基因片段进行测序,结果表明临床咽拭子标本为甲型H1N1流感病毒阳性,因此该疑似甲型H1N1流感病例成为中国内地首例确诊的甲型H1N1流感病例。  相似文献   

4.
流行性感冒(简称流感)病毒已经与人类“相处”了400多年,可在各年龄段的人群中流行和引起发病,每年在全球引起25万~50万人发病[1]。2009年3月在北美地区暴发了新型H1N1流感,截至2009年6月8日,已有73个国家和地区的25288人被感染,其中139人死亡(http://www.who.int/csr/don/2009_06_08/en/index.html)。世界卫生组织(WorldHealthOrganization,WHO)曾称其为猪流感,原因是其多数基因片段来源于猪流感病毒。猪流感这一名称直接导致了埃及4月30日为预防流感蔓延而扑杀了30万头生猪。随后,WHO将其改名为甲型H1N1流感(下称2009甲型H1N1流感)。因此,甲型H1N1流感病毒的起源毫无疑问成为世界各国关注的热点,本文就2009甲型H1N1流感、1997年人际传播的H5N1禽流感以及人类历史上的几次人流感大流行,对甲型流感病毒的基因组结构特点及其特有的进化机制作一简单介绍......  相似文献   

5.
目的了解甲型H3N2流感暴发流行特征,为制定预防措施提供依据。方法对和温村小学239名学生流感发病及流感疫苗接种情况进行调查,对发病者逐一个案调查登记,采集患者咽拭子标本送百色市疾病预防控制中心实验室检测确诊。结果该校学生流感发病33例,发病率为13.81%,学前班及1~6年级共7个班均有病例发生,发病班级为100%。发病者中,男性18例,女性15例,男女性别比为1.2∶1,男女发病率分别为14.52%(18/124)、13.04%(15/115),(χ2=0.11,P0.05),男女发病率差异无统计学意义。患者咽拭子标本5人份,经实验室检测甲型H3N2流感病毒核酸阳性率为100%。结论该校学生无流感疫苗免疫接种史,易感人群积累,是本次甲型H3N2流感暴发流行的根本原因。应在每年秋冬流感流行季节前一个月,加强中小学校学生流感疫苗接种,提高易感人群免疫力,防止甲型H3N2流感扩散蔓延。  相似文献   

6.
了解云南省2009~2014年甲型H1N1流感病毒的流行趋势,研究HA和NA基因进化特征。对云南省近6年来上报的流感监测病例数据进行病原谱总结,挑选出23株甲型H1N1流感毒株进行HA及NA基因分析。利用MEGA 5.0软件对测序结果构建进化树分析基因同源性。2009~2014年云南省共监测到4次甲型H1N1流感流行高峰,核酸检测结果中甲型H1N1流感占检出总量的28.8%。测序结果显示,HA与NA基因均分为3个类群,检测到一株具有H275Y突变位点的毒株。甲型H1N1流感是导致本省流感流行的重要亚型之一,2009~2014年间分离的毒株主要有Goup1、Gourp7和Gourp6三个支系,绝大部分甲型H1N1流感毒株仍对神经氨酸酶抑制剂敏感。  相似文献   

7.
摘要:目的 了解玉溪市2009-2014 年流感流行特征和流感流行优势毒株的变化规律,为制定预防和控制策略提供依据。方法 采用MDCK细胞进行流感样病例标本的病毒分离培养,最后采用流感分型试剂进行病毒型别鉴定。结果 2009-2014年玉溪市流感实验室共监测流感样病例3 248例,阳性标本489份,阳性率为15.06%,新甲型H1N1、H3N2、B型流感分别占43.97%、28.22%和25.36%,学生和离退人员阳性病例分别占52.15%和14.11%;哨点医院流感样病例标本阳性检出率低于暴发疫情,差异有统计学意义(χ2=301.14,P<0.01);每年10月到次年3月出现流行高峰,2009年10月至2011年3月以新甲型H1N1流感为主,2011年4月至2012年3月以B型流感为主,2012年4月至2013年3月以A(H3N2)型流感为主;2013年4月至2014年3月以B型流感为主。结论 玉溪市流感病毒优势毒株是甲型H1N1、H3N2、B型流感,优势毒株在2009-2014 年发生了四次转变,其进一步变异的可能性仍然存在,加强流感样病例病原学与重点人群疫情监测有重要意义。  相似文献   

8.
2009 年3—4 月, 墨西哥暴发了一次原因不明的肺炎, 仅墨西哥城就发生数百例, 其中59 例死亡。同年4 月15 日美国首次出现了由新“猪流行性感冒( 简称流感) ”病毒引起的感染病例, 证实为一种过去在人及猪中均未出现过的新甲型H1N1 流感病毒[1] , 在墨西哥暴发流行的肺炎病原就是该新甲型H1N1 流感病毒[2] , 现正式将其命名为2009 甲型H1N1 流感病毒。由于人群中普遍缺乏对此新病毒的抵抗力, 新病毒很快在美洲其他国家传播, 世界卫生组织(World Health Organization, WHO) 2009 年于4 月29 日宣布将流感大流行警告级别升为5 级; 随后新病毒又在欧洲快速传播, 2009 年6 月11 日,WHO进一步将流感大流行的警告级别升为最高级( 6 级) , 即正式宣告流感已在全球大流行。这引起各国政府和人民的高度关注, 同时对疫苗的生产和接种提出了要求[ 3, 4 ] 。目前2009 甲型H1N1 流感流行尚未结束, 现就有关的一些科学问题讨论如下。  相似文献   

9.
2009年全球暴发2009甲型H1N1流行性感冒(简称流感)疫情,上海于2009年5月出现第1例输入型病例。为了解上海地区输入型2009甲型H1N1流感病毒的生物学特征,以上海较早发现的2例输入型甲型H1N1流感患者作为研究对象,分离出A/Shanghai/37T/2009和A/Shanghai/71T/2009病毒,利用实时定量荧光反转录-聚合酶链反应(RT-PCR)鉴定病毒,通过扫描透射电子显微镜观察、免疫荧光检测、全基因组测序和生物信息软件分析,对这2株流感病毒形态、结构、耐药性、基因特点和病毒型别等进行研究。结果显示,病毒呈现正黏病毒颗粒形态特征;犬肾(MDCK)细胞内的病毒能与患者恢复期血清反应。此2株病毒的全基因核酸序列和氨基酸序列与美国参考株A/California/04/2009(H1N1)有较高同源性,其中第31位氨基酸残基发生改变。对金刚烷胺耐药,而对奥司他韦敏感。基于全基因组的系统发育分析,确认此2株病毒属2009甲型H1N1流感病毒。  相似文献   

10.
结合甲型H1N1流感特点,建立了基于元胞自动机的异质个体甲型H1N1流感传播模型,并给出了该模型的动态仿真过程.异质即考虑到不同个体在传染性、对疾病抵抗能力等方面的差异.进而,从网络动力学的角度考虑了个体相互作用之间的关系,包括感染甲型H1N1流感死亡者占总数的比例随时间的变化以及甲型H1N1流感消失所需要的时间.本文计算出的病死率为0.0037,与中华人民共和国卫生部官网提供的甲型H1N1流感病毒的病死率0.004接近,说明了模型的合理性和有效性.模型及计算结果,可为疫情发展趋势的预测、以及政府制定干预疫情的有效措施提供可靠的依据.  相似文献   

11.

Background

In this study, we assess how effective pandemic and trivalent 2009-2010 seasonal vaccines were in preventing influenza-like illness (ILI) during the 2009 A(H1N1) pandemic in France. We also compare vaccine effectiveness against ILI versus laboratory-confirmed pandemic A(H1N1) influenza, and assess the possible bias caused by using non-specific endpoints and observational data.

Methodology and Principal Findings

We estimated vaccine effectiveness by using the following formula: VE  =  (PPV-PCV)/(PPV(1-PCV)) × 100%, where PPV is the proportion vaccinated in the population and PCV the proportion of vaccinated influenza cases. People were considered vaccinated three weeks after receiving a dose of vaccine. ILI and pandemic A(H1N1) laboratory-confirmed cases were obtained from two surveillance networks of general practitioners. During the epidemic, 99.7% of influenza isolates were pandemic A(H1N1). Pandemic and seasonal vaccine uptakes in the population were obtained from the National Health Insurance database and by telephonic surveys, respectively. Effectiveness estimates were adjusted by age and week. The presence of residual biases was explored by calculating vaccine effectiveness after the influenza period. The effectiveness of pandemic vaccines in preventing ILI was 52% (95% confidence interval: 30–69) during the pandemic and 33% (4–55) after. It was 86% (56–98) against confirmed influenza. The effectiveness of seasonal vaccines against ILI was 61% (56–66) during the pandemic and 19% (−10–41) after. It was 60% (41–74) against confirmed influenza.

Conclusions

The effectiveness of pandemic vaccines in preventing confirmed pandemic A(H1N1) influenza on the field was high, consistently with published findings. It was significantly lower against ILI. This is unsurprising since not all ILI cases are caused by influenza. Trivalent 2009-2010 seasonal vaccines had a statistically significant effectiveness in preventing ILI and confirmed pandemic influenza, but were not better in preventing confirmed pandemic influenza than in preventing ILI. This lack of difference might be indicative of selection bias.  相似文献   

12.
On 15 April and 17 April 2009, novel swineorigin influenza A (H1N1) virus was identifi ed in specimens obtained from two epidemiologically unlinked patients in the United States. The ongoing outbreak of novel H1N1 2009 influenza (swine influenza) has caused more than 3,99,232 laboratory confi rmed cases of pandemic influenza H1N1 and over 4735 deaths globally. This novel 2009 influenza virus designated as H1N1 A/swine/California/04/2009 virus is not zoonotic swine flu and is transmitted from person to person and has higher transmissibility then that of seasonal influenza viruses. In India the novel H1N1 virus infection has been reported from all over the country. A total of 68,919 samples from clinically suspected persons have been tested for influenza A H1N1 across the country and 13,330 (18.9%) of them have been found positive with 427 deaths. At the All India Institute of Medical Sciences, New Delhi India, we tested 1096 clinical samples for the presence of novel H1N1 influenza virus and seasonal influenza viruses. Of these 1096 samples, 194 samples (17.7%) were positive for novel H1N1 influenza virus and 197 samples (18%) were positive for seasonal influenza viruses. During outbreaks of emerging infectious diseases accurate and rapid diagnosis is critical for minimizing further spread through timely implementation of appropriate vaccines and antiviral treatment. Since the symptoms of novel H1N1 influenza infection are not specifi c, laboratory confi rmation of suspected cases is of prime importance.  相似文献   

13.

Background

The aim of this study was to assess the disease burden of the 2009 pandemic influenza A(H1N1) in Greece.

Methodology/Principal Findings

Data on influenza-like illness (ILI), collected through cross-sectional nationwide telephone surveys of 1,000 households in Greece repeated for 25 consecutive weeks, were combined with data from H1N1 virologic surveillance to estimate the incidence and the clinical attack rate (CAR) of influenza A(H1N1). Alternative definitions of ILI (cough or sore throat and fever>38°C [ILI-38] or fever 37.1–38°C [ILI-37]) were used to estimate the number of symptomatic infections. The infection attack rate (IAR) was approximated using estimates from published studies on the frequency of fever in infected individuals. Data on H1N1 morbidity and mortality were used to estimate ICU admission and case fatality (CFR) rates. The epidemic peaked on week 48/2009 with approximately 750–1,500 new cases/100,000 population per week, depending on ILI-38 or ILI-37 case definition, respectively. By week 6/2010, 7.1%–15.6% of the population in Greece was estimated to be symptomatically infected with H1N1. Children 5–19 years represented the most affected population group (CAR:27%–54%), whereas individuals older than 64 years were the least affected (CAR:0.6%–2.2%). The IAR (95% CI) of influenza A(H1N1) was estimated to be 19.7% (13.3%, 26.1%). Per 1,000 symptomatic cases, based on ILI-38 case definition, 416 attended health services, 108 visited hospital emergency departments and 15 were admitted to hospitals. ICU admission rate and CFR were 37 and 17.5 per 100,000 symptomatic cases or 13.4 and 6.3 per 100,000 infections, respectively.

Conclusions/Significance

Influenza A(H1N1) infected one fifth and caused symptomatic infection in up to 15% of the Greek population. Although individuals older than 65 years were the least affected age group in terms of attack rate, they had 55 and 185 times higher risk of ICU admission and CFR, respectively.  相似文献   

14.
The majority of emerging infectious diseases are zoonotic in origin, including recently emerging influenza viruses such as the 2009 swine-origin H1N1 influenza A epidemic. The epidemic that year affected both human and animal populations as it spread globally. In fact, before the end of 2009, 14 different countries reported H1N1 infected swine. In order to better understand the zoonotic nature of the epidemic and the relationship between human and animal disease surveillance data streams, we compared 2009 reports of H1N1 infection to define the temporal relationship between reported cases in animals and humans. Generally, human cases preceded animal cases at a country-level, supporting the potential of H1N1 infection to be a “reverse zoonosis”, and the value of integrating human and animal disease report data.  相似文献   

15.
In France, the 2011–2012 influenza epidemic was characterized by the circulation of antigenically drifted influenza A(H3N2) viruses and by an increased disease severity and mortality among the elderly, with respect to the A(H1N1)pdm09 pandemic and post-pandemic outbreaks. Whether the epidemiology of influenza in France differed between the 2011–2012 epidemic and the previous outbreaks is unclear. Here, we analyse the age distribution of influenza like illness (ILI) cases attended in general practice during the 2011–2012 epidemic, and compare it with that of the twelve previous epidemic seasons. Influenza like illness data were obtained through a nationwide surveillance system based on sentinel general practitioners. Vaccine effectiveness was also estimated. The estimated number of ILI cases attended in general practice during the 2011–2012 was lower than that of the past twelve epidemics. The age distribution was characteristic of previous A(H3N2)-dominated outbreaks: school-age children were relatively spared compared to epidemics (co-)dominated by A(H1N1) and/or B viruses (including the 2009 pandemic and post-pandemic outbreaks), while the proportion of adults over 30 year-old was higher. The estimated vaccine effectiveness (54%, 95% CI (48, 60)) was in the lower range for A(H3N2) epidemics. In conclusion, the age distribution of ILI cases attended in general practice seems to be not different between the A(H3N2) pre-pandemic and post-pandemic epidemics. Future researches including a more important number of ILI epidemics and confirmed virological data of influenza and other respiratory pathogens are necessary to confirm these results.  相似文献   

16.

Background

Characteristics of patients with community-acquired pneumonia (CAP) due to pandemic influenza A 2009 (H1N1) have been inadequately compared to CAP caused by other respiratory pathogens. The performance of prediction rules for CAP during an epidemic with a new infectious agent are unknown.

Methods

Prospective, population-based study from November 2008–November 2009, in centers representing 70% of hospital beds in Iceland. Patients admitted with CAP underwent evaluation and etiologic testing, including polymerase chain reaction (PCR) for influenza. Data on influenza-like illness in the community and overall hospital admissions were collected. Clinical and laboratory data, including pneumonia severity index (PSI) and CURB-65 of patients with CAP due to H1N1 were compared to those caused by other agents.

Results

Of 338 consecutive and eligible patients 313 (93%) were enrolled. During the pandemic peak, influenza A 2009 (H1N1) patients constituted 38% of admissions due to CAP. These patients were younger, more dyspnoeic and more frequently reported hemoptysis. They had significantly lower severity scores than other patients with CAP (1.23 vs. 1.61, P = .02 for CURB-65, 2.05 vs. 2.87 for PSI, P<.001) and were more likely to require intensive care admission (41% vs. 5%, P<.001) and receive mechanical ventilation (14% vs. 2%, P = .01). Bacterial co-infection was detected in 23% of influenza A 2009 (H1N1) patients with CAP.

Conclusions

Clinical characteristics of CAP caused by influenza A 2009 (H1N1) differ markedly from CAP caused by other etiologic agents. Commonly used CAP prediction rules often failed to predict admissions to intensive care or need for assisted ventilation in CAP caused by the influenza A 2009 (H1N1) virus, underscoring the importance of clinical acumen under these circumstances.  相似文献   

17.
对2009 年长沙麓山国际学校流感暴发疫情进行实验室诊断, 并探索新分离的A(H1N1)亚型流感病毒血凝素(HA)的基因特性。对流感暴发疫情的25 份鼻/咽拭子标本进行RT-PCR检测和流感病毒分离, 然后利用CEQ?8000 Genetic Analysis System对病毒分离株(A/Yuelu/314/2009)进行测序, 测序结果提交至GenBank(登录号: FJ912843)并用ClustalX和Mega4.1软件进行序列分析。结果显示, 分离出A(H1N1)亚型流感毒株18株, 检出21份A(H1N1)亚型流感病毒核酸阳性; A/Yuelu/314/2009(H1N1) HA基因序列与2008~2009 年疫苗株(A/Brisbane/59/2007)比较显示: 核苷酸和氨基酸同源性均为99%, 有6个位点的氨基酸发生了变异(V148A、S158N、G202A、I203D、A206T、W435R), 其中一个S158N氨基酸变异位于B抗原表位, HA基因序列上共有潜在糖基化位点9 个(27、28、40、71、151、176、303、497、536), 与A/Brisbane/59/2007相同且氨基酸序列保守。本实验诊断出此次流感暴发疫情的病原体为A(H1N1)型季节性流感病毒, 研究还发现A/Yuelu/314/2009(H1N1)长沙分离株与A/Brisbane/59/2007 疫苗株基因序列比较显示并未形成一个新的变种, 推测是由于分离株与疫苗株之间基因特性的改变和人群对A(H1N1)亚型流感病毒免疫力降低导致了此次长沙麓山国际学校A(H1N1)亚型流感的暴发。  相似文献   

18.

Background

The 2009 H1N1 influenza pandemic caused offseason peaks in temperate regions but coincided with the summer epidemic of seasonal influenza and other common respiratory viruses in subtropical Hong Kong. This study was aimed to investigate the impact of the pandemic on age-specific epidemic curves of other respiratory viruses.

Methods

Weekly laboratory-confirmed cases of influenza A (subtypes seasonal A(H1N1), A(H3N2), pandemic virus A(H1N1)pdm09), influenza B, respiratory syncytial virus (RSV), adenovirus and parainfluenza were obtained from 2004 to 2013. Age-specific epidemic curves of viruses other than A(H1N1)pdm09 were compared between the pre-pandemic (May 2004 – April 2009), pandemic (May 2009 – April 2010) and post-pandemic periods (May 2010 – April 2013).

Results

There were two peaks of A(H1N1)pdm09 in Hong Kong, the first in September 2009 and the second in February 2011. The infection rate was found highest in young children in both waves, but markedly fewer cases in school children were recorded in the second wave than in the first wave. Positive proportions of viruses other than A(H1N1)pdm09 markedly decreased in all age groups during the first pandemic wave. After the first wave of the pandemic, the positive proportion of A(H3N2) increased, but those of B and RSV remained slightly lower than their pre-pandemic proportions. Changes in seasonal pattern and epidemic peak time were also observed, but inconsistent across virus-age groups.

Conclusion

Our findings provide some evidence that age distribution, seasonal pattern and peak time of other respiratory viruses have changed since the pandemic. These changes could be the result of immune interference and changing health seeking behavior, but the mechanism behind still needs further investigations.  相似文献   

19.
目的:探讨妊娠合并肺炎及甲型H1N1流感的处理及预防措施。方法:我院2009年3月至2010年5月收治的12例妊娠合并肺炎及7例妊娠合并甲型H1N1流感的情况,包括对年龄、孕周、病情、其他合并症、辅助检查、治疗情况及转归进行回顾性分析。结果:19例经治疗后治愈14例,死亡5例,均为晚期妊娠,其中4例合并重症肺炎,1例合并重度子痫前期。12例妊娠合并肺炎者,死亡3例,治愈9例;7例妊娠合并甲型H1N1流感者,死亡2例,治愈5例。结论:妊娠合并肺炎及甲型H1N1流感者,病情控制越及时,母儿结局越好,若病情不见好转,应尽早终止妊娠。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号