首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
M L Bortolin  P Ganot    T Kiss 《The EMBO journal》1999,18(2):457-469
During site-specific pseudouridylation of eukaryotic rRNAs, selection of correct substrate uridines for isomerization into pseudouridine is directed by small nucleolar RNAs (snoRNAs). The pseudouridylation guide snoRNAs share a common 'hairpin-hinge- hairpin-tail' secondary structure and two conserved sequence motifs, the H and ACA boxes, located in the single-stranded hinge and tail regions, respectively. In the 5'- and/or 3'-terminal hairpin, an internal loop structure, the pseudouridylation pocket, selects the target uridine through formation of base-pairing interactions with rRNAs. Here, essential elements for accumulation and function of rRNA pseudouridylation guide snoRNAs have been analysed by expressing various mutant yeast snR5, snR36 and human U65 snoRNAs in yeast cells. We demonstrate that the H and ACA boxes that are required for formation of the correct 5' and 3' ends of the snoRNA, respectively, are also essential for the pseudouridylation reaction directed by both the 5'- and 3'-terminal pseudouridylation pockets. Similarly, RNA helices flanking the two pseudouridylation pockets are equally essential for pseudouridylation reactions mediated by either the 5' or 3' hairpin structure, indicating that the two hairpin domains function in a highly co-operative manner. Finally, we demonstrate that by manipulating the rRNA recognition motifs of pseudouridylation guide snoRNAs, novel pseudouridylation sites can be generated in yeast rRNAs.  相似文献   

2.
3.
The yeast snoRNP protein, NOP1, is structurally and functionally homologous to vertebrate fibrillarin and is essential for viability. A conditionally lethal allele was constructed by placing NOP1 expression under the control of a GAL promoter. Growth on glucose medium results in the depletion of NOP1 over several generations, during which cell growth is progressively impaired. Pulse labelling of proteins shows that NOP1 depleted strains are greatly impaired in the production of cytoplasmic ribosomes, and they have a reduced level of rRNA. Northern hybridization and pulse-chase labelling of pre-rRNA show a progressive impairment of all pre-rRNA processing steps. The pathway leading to 18S rRNA is particularly affected. Methylation of pre-rRNA is concomitantly impaired and unmethylated pre-rRNA accumulates and is not processed over long periods. NOP1 depletion does not prevent the accumulation of seven snoRNAs tested including U3; the levels of two species, U14 and snR190, decline. The snoRNAs synthesized in the absence of NOP1 retain TMG cap structures. Subnuclear fractionation and immunocytochemistry indicate that they continue to be localized in the nucleolus.  相似文献   

4.
Yeast snR30 is an essential box H/ACA small nucleolar RNA (snoRNA) that promotes 18S rRNA processing through forming transient base-pairing interactions with the newly synthesized 35S pre-rRNA. By using a novel tandem RNA affinity selection approach, followed by coimmunoprecipitation and in vivo cross-linking experiments, we demonstrate that in addition to the four H/ACA core proteins, Cbf5p, Nhp2p, Nop10p and Gar1p, a fraction of snR30 specifically associates with the Utp23p and Kri1p nucleolar proteins. Depletion of Utp23p and Kri1p has no effect on the accumulation and recruitment of snR30 to the nascent pre-ribosomes. However, in the absence of Utp23p, the majority of snR30 accumulates in large pre-ribosomal particles. The retained snR30 is not base-paired with the 35S pre-rRNA, indicating that its aberrant tethering to nascent preribosomes is likely mediated by pre-ribosomal protein(s). Thus, Utp23p may promote conformational changes of the pre-ribosome, essential for snR30 release. Neither Utp23p nor Kri1p is required for recruitment of snR30 to the nascent pre-ribosome. On the contrary, depletion of snR30 prevents proper incorporation of both Utp23p and Kri1p into the 90S pre-ribosome containing the 35S pre-rRNA, indicating that snR30 plays a central role in the assembly of functionally active small subunit processome.  相似文献   

5.
A common maturation pathway for small nucleolar RNAs.   总被引:24,自引:7,他引:17       下载免费PDF全文
M P Terns  C Grimm  E Lund    J E Dahlberg 《The EMBO journal》1995,14(19):4860-4871
We have shown that precursors of U3, U8 and U14 small nucleolar RNAs (snoRNAs) are not exported to the cytoplasm after injection into Xenopus oocyte nuclei but are selectively retained and matured in the nucleus, where they function in pre-rRNA processing. Our results demonstrate that Box D, a conserved sequence element found in these and most other snoRNAs, plays a key role in their nuclear retention, 5' cap hypermethylation and stability. Retention of U3 and U8 RNAs in the nucleus is saturable and relies on one or more common factors. Hypermethylation of the 5' caps of U3 RNA occurs efficiently in oocyte nuclear extracts lacking nucleoli, suggesting that precursor snoRNAs are matured in the nucleoplasm before they are localized to the nucleolus. Surprisingly, m7G-capped precursors of spliceosomal small nuclear RNAs (snRNAs) such as pre-U1 and U2, can be hypermethylated in nuclei if the RNAs are complexed with Sm proteins. This raises the possibility that a single nuclear hypermethylase activity may act on both nucleolar and spliceosomal snRNPs.  相似文献   

6.
Maturation of pre-ribosomal RNA (pre-rRNA) in eukaryotic cells takes place in the nucleolus and involves a large number of cleavage events, which frequently follow alternative pathways. In addition, rRNAs are extensively modified, with the methylation of the 2'-hydroxyl group of sugar residues and conversion of uridines to pseudouridines being the most frequent modifications. Both cleavage and modification reactions of pre-rRNAs are assisted by a variety of small nucleolar RNAs (snoRNAs), which function in the form of ribonucleoprotein particles (snoRNPs). The majority of snoRNAs acts as guides directing site-specific 2'-O-ribose methylation or pseudouridine formation. Over one hundred RNAs of this type have been identified to date in vertebrates and the yeast Saccharomyces cerevisiae. This number is readily explained by the findings that one snoRNA acts as a guide usually for one or at most two modifications, and human rRNAs contain 91 pseudouridines and 106 2'-O-methyl residues. In this article we review information about the biogenesis, structure and function of guide snoRNAs.  相似文献   

7.
A common core structure for U3 small nucleolar RNAs.   总被引:7,自引:1,他引:6       下载免费PDF全文
  相似文献   

8.
In order to study the structural and functional organization of the eukaryotic nucleolus, we have started to isolate and characterize nucleolar components of the yeast Saccharomyces cerevisiae. We have identified a major 38 kd nucleolar protein (NOP1), which is located within nucleolar structures resembling the dense fibrillar region of mammalian nucleoli. This 38 kd protein is conserved in evolution since affinity-purified antibodies against the yeast protein stain the nucleolus of mammalian cells in indirect immunofluorescence microscopy and the yeast protein is decorated by antibodies directed against human fibrillarin. Affinity-purified antibodies against the yeast NOP1 efficiently precipitate at least seven small nuclear RNAs involved in rRNA maturation. We have cloned the gene encoding the yeast NOP1 protein. Haploid cells carrying a disrupted copy of the gene are not viable, showing that NOP1 is essential for cell growth. The gene codes for a 34.5 kd protein which contains glycine/arginine rich sequence repeats at the amino terminus similar to those found in other nucleolar proteins. This suggests that NOP1 is in association with small nucleolar RNAs, required for rRNA processing and likely to be the homologue of the mammalian fibrillarin.  相似文献   

9.
Small nucleolar RNAs (snoRNAs) are one of the most abundant and well-studied groups of non-coding RNAs. snoRNAs are mostly engaged in processing of rRNA. However, recent data indicate that snoRNAs are also involved in other processes including regulation of alternative splicing, translation and oxidative stress. snoRNAs are also involved in pathogenesis of some hereditary diseases and cancer. Therefore, the range of snoRNAs’ functions is significantly wider than it has been assumed earlier.  相似文献   

10.
The nucleotide sequence of chick pre-rRNA between 5.8S and 28S rRNAs is 85% G + C and has the potential to form many different secondary structures. A model is presented in which a small nucleolar RNA, U3, and its associated proteins act as an RNA isomerase to position the pre-rRNA for processing. Cleavage could be performed either by a nuclease present in the U3RNP or by a ribonuclease directed to the proper form of the pre-rRNA.  相似文献   

11.
Ribose methylation is a prevalent type of nucleotide modification in rRNA. Eukaryotic rRNAs display a complex pattern of ribose methylations, amounting to 55 in yeast Saccharomyces cerevisiae and about 100 in vertebrates. Ribose methylations of eukaryotic rRNAs are each guided by a cognate small RNA, belonging to the family of box C/D antisense snoRNAs, through transient formation of a specific base-pairing at the rRNA modification site. In prokaryotes, the pattern of rRNA ribose methylations has been fully characterized in a single species so far, Escherichia coli, which contains only four ribose methylated rRNA nucleotides. However, the hyperthermophile archaeon Sulfolobus solfataricus contains, like eukaryotes, a large number of (yet unmapped) rRNA ribose methylations and homologs of eukaryotic box C/D small nucleolar ribonuclear proteins have been identified in archaeal genomes. We have therefore searched archaeal genomes for potential homologs of eukaryotic methylation guide small nucleolar RNAs, by combining searches for structured motifs with homology searches. We have identified a family of 46 small RNAs, conserved in the genomes of three hyperthermophile Pyrococcus species, which we have experimentally characterized in Pyrococcus abyssi. The Pyrococcus small RNAs, the first reported homologs of methylation guide small nucleolar RNAs in organisms devoid of a nucleus, appear as a paradigm of minimalist box C/D antisense RNAs. They differ from their eukaryotic homologs by their outstanding structural homogeneity, extended consensus box motifs and the quasi-systematic presence of two (instead of one) rRNA antisense elements. Remarkably, for each small RNA the two antisense elements always match rRNA sequences close to each other in rRNA structure, suggesting an important role in rRNA folding. Only a few of the predicted P. abyssi rRNA ribose methylations have been detected so far. Further analysis of these archaeal small RNAs could provide new insights into the origin and functions of methylation guide small nucleolar RNAs and illuminate the still elusive role of rRNA ribose methylations.  相似文献   

12.
Several nucleolar proteins, such as nucleolin, NOP1/fibrillarin, SSB1, NSR1 and GAR1 share a common glycine and arginine rich structural motif called the GAR domain. To identify novel nucleolar proteins from fission yeast we screened Schizosaccharomyces pombe genomic DNA libraries with a probe encompassing the GAR structural motif. Here we report the identification and characterization of a S.pombe gene coding for a novel nucleolar protein, designated gar2. The structure of the fission yeast gar2 is reminiscent of that of nucleolin from vertebrates and NSR1 from Saccharomyces cerevisiae. In addition, like these proteins, gar2 has a nucleolar localisation. The disruption of the gar2+ gene affects normal cell growth, leads to an accumulation of 35S pre-rRNA and a decrease of mature 18S rRNA steady state levels. Moreover, ribosomal profiles of the mutant show an increase of free 60S ribosomal subunits and an absence of free 40S ribosomal subunits. gar2 is able to rescue a S.cerevisiae mutant lacking NSR1, thus establishing gar2 as a functional homolog of NSR1. We propose that gar2 helps the assembly of pre-ribosomal particles containing 18S rRNA.  相似文献   

13.
Small nucleolar RNAs (snoRNAs) were utilized to express Rev-binding sequences inside the nucleolus and to test whether they are substrates for Rev binding and transport. We show that U16 snoRNA containing the minimal binding site for Rev stably accumulates inside the nucleolus maintaining the interaction with the basic C/D snoRNA-specific factors. Upon Rev expression, the chimeric RNA is exported to the cytoplasm, where it remains bound to Rev in a particle devoid of snoRNP-specific factors. These data indicate that Rev can elicit the functions of RNA binding and transport inside the nucleolus.  相似文献   

14.
15.
Evolution of small nucleolar RNAs in nematodes   总被引:10,自引:3,他引:7       下载免费PDF全文
  相似文献   

16.
Yeast snR30 is a small nucleolar RNA required for 18S rRNA synthesis.   总被引:30,自引:9,他引:30       下载免费PDF全文
Subnuclear fractionation and coprecipitation by antibodies against the nucleolar protein NOP1 demonstrate that the essential Saccharomyces cerevisiae RNA snR30 is localized to the nucleolus. By using aminomethyl trimethyl-psoralen, snR30 can be cross-linked in vivo to 35S pre-rRNA. To determine whether snR30 has a role in rRNA processing, a conditional allele was constructed by replacing the authentic SNR30 promoter with the GAL10 promoter. Repression of snR30 synthesis results in a rapid depletion of snR30 and a progressive increase in cell doubling time. rRNA processing is disrupted during the depletion of snR30; mature 18S rRNA and its 20S precursor underaccumulate, and an aberrant 23S pre-rRNA intermediate can be detected. Initial results indicate that this 23S pre-rRNA is the same as the species detected on depletion of the small nucleolar RNA-associated proteins NOP1 and GAR1 and in an snr10 mutant strain. It was found that the 3' end of 23S pre-rRNA is located in the 3' region of ITS1 between cleavage sites A2 and B1 and not, as previously suggested, at the B1 site, snR30 is the fourth small nucleolar RNA shown to play a role in rRNA processing.  相似文献   

17.
18.
The gene encoding ribosomal protein S19 (RPS19) is mutated in approximately 25% of patients with Diamond-Blackfan anemia (DBA), which is a rare congenital erythroblastopenia. DBA patients have a variety of clinical characteristics, and the role of the RPS19 gene in the pathogenesis of the disease is presently unknown. To investigate a possible role for RPS19 in erythropoiesis, we looked for proteins associated with mouse RPS19 using a yeast two-hybrid system and identified a novel protein, which we named S19 binding protein (S19BP). The deduced amino acid sequence of S19BP derived from cDNA defines a calculated mass of 15,849 and an isoelectric point of 11.3. No known functional motifs were found in S19BP except a short polylysine tract embedded in a putative nucleolar localization signal. Immunolocalization experiments revealed that S19BP was highly concentrated in nucleoli after 6 h of transfection in Cos-7 cells. S19BP was expressed ubiquitously at a basal level but a significantly high level of expression was observed in some tissues.  相似文献   

19.
The primary structure of the gene for 18 S rRNA of the crustacean Artemia salina was determined. The sequence has been aligned with 13 other small ribosomal subunit RNA sequences of eukaryotic, archaebacterial, eubacterial, chloroplastic and plant mitochondrial origin. Secondary structure models for these RNAs were derived on the basis of previously proposed models and additional comparative evidence found in the alignment. Although there is a general similarity in the secondary structure models for eukaryotes and prokaryotes, the evidence seems to indicate a different topology in a central area of the structures.  相似文献   

20.
A Ghosh  T Ghosh  S Ghosh  S Das    S Adhya 《Nucleic acids research》1994,22(9):1663-1669
Using synthetic antisense RNA from the 5'-untranslated region of the beta-tubulin gene as probe in gel retardation assays, a heat stable RNA-binding factor was identified in promastigotes of the kinetoplastid protozoan Leishmania donovani. The same or similar factors interact with several small ribosomal RNA (srRNA) species and, more weakly, with tRNA, as shown by binding and competition experiments. Deletion analysis indicated involvement of repeated purine-rich motifs on the antisense RNA, in the reaction. Related, conserved motifs occur on at least two of the srRNAs. By a modified Western blot assay, the RNA-binding species was identified as a single, small polypeptide. The activity is apparently specific for the promastigote stage of the parasite, being undetectable in amastigotes. The properties of this RNA-binding factor suggest that it is a novel, previously uncharacterized protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号