首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
4.
5.
Pseudomonas fluorescens strain PCL1210, a competitive tomato root tip colonization mutant of the efficient root colonizing wild type strain WCS365, is impaired in the two-component sensor-response regulator system ColR/ColS. Here we show that a putative methyltransferase/wapQ operon is located downstream of colR/colS and that this operon is regulated by ColR/ColS. Since wapQ encodes a putative lipopolysaccharide (LPS) phosphatase, the possibility was studied that the integrity of the outer membrane of PCL1210 was altered. Indeed, it was shown that mutant PCL1210 is more resistant to various chemically unrelated antibiotics which have to pass the outer membrane for their action. In contrast, the mutant is more sensitive to the LPS-binding antibiotic polymyxin B. Mutant PCL1210 loses growth in competition with its wild type when grown in tomato root exudate. Mutants in the methyltransferase/wapQ operon are also altered in their outer membrane permeability and are defective in competitive tomato root tip colonization. A model for the altered outer membrane of PCL1210 is discussed.  相似文献   

6.
7.
8.
9.
Liu Y  Burne RA 《Journal of bacteriology》2011,193(11):2826-2837
A gene, designated atlS, encoding a major autolysin from Streptococcus gordonii, was identified and characterized. The predicted AtlS protein is 1,160 amino acids and 127 kDa and has a conserved β1,4-N-acetylmuramidase domain. Zymographic analysis of wild-type S. gordonii revealed peptidoglycan hydrolase activities with molecular masses of 130 and 90 kDa that were absent in an atlS deletion mutant. Western blotting revealed that the 90-kDa band was derived from the 130-kDa protein. Inactivation of atlS resulted in formation of long chains by the cells, markedly decreased autolytic capacity, poor biofilm formation, diminished tolerance of acid and oxidative stress, and decreased production of extracellular DNA (eDNA). The biofilm-forming capacity of the atlS mutant could be almost completely restored to that of the wild-type strain by adding purified recombinant AtlA autolysin of S. mutans but was only partially restored by addition of eDNA. Autolysis, eDNA release, and atlS expression increased sharply when cells entered stationary phase and were greatly enhanced in cells growing with aeration. The LytST and VicRK two-component systems were both required for the induction of atlS by aeration, and purified LytT was able to bind to the promoter region of atlS in vitro. Thus, AtlS and its associated regulatory cascade dominantly control phenotypes of S. gordonii that are critical to colonization, persistence, and competition with other commensal and pathogenic oral bacteria in response to the redox environment and growth domain.  相似文献   

10.
11.
12.
The root-associated biological control bacterium Pseudomonas aureofaciens 30-84 produces a range of exoproducts, including protease and phenazines. Phenazine antibiotic biosynthesis by phzXYFABCD is regulated in part by the PhzR-PhzI quorum-sensing system. Mutants defective in phzR or phzI produce very low levels of phenazines but wild-type levels of exoprotease. In the present study, a second genomic region of strain 30-84 was identified that, when present in trans, increased beta-galactosidase activity in a genomic phzB::lacZ reporter and partially restored phenazine production to a phzR mutant. Sequence analysis identified two adjacent genes, csaR and csaI, that encode members of the LuxR-LuxI family of regulatory proteins. No putative promoter region is present upstream of the csaI start codon and no lux box-like element was found in either the csaR promoter or the 30-bp intergenic region between csaR and csaI. Both the PhzR-PhzI and CsaR-CsaI systems are regulated by the GacS-GacA two-component regulatory system. In contrast to the multicopy effects of csaR and csaI in trans, a genomic csaR mutant (30-84R2) and a csaI mutant (30-84I2) did not exhibit altered phenazine production in vitro or in situ, indicating that the CsaR-CsaI system is not involved in phenazine regulation in strain 30-84. Both mutants also produced wild-type levels of protease. However, disruption of both csaI and phzI or both csaR and phzR eliminated both phenazine and protease production completely. Thus, the two quorum-sensing systems do not interact for phenazine regulation but do interact for protease regulation. Additionally, the CsaI N-acylhomoserine lactone (AHL) signal was not recognized by the phenazine AHL reporter 30-84I/Z but was recognized by the AHL reporters Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136(pCF240). Inactivation of csaR resulted in a smooth mucoid colony phenotype and formation of cell aggregates in broth, suggesting that CsaR is involved in regulating biosynthesis of cell surface components. Strain 30-84I/I2 exhibited mucoid colony and clumping phenotypes similar to those of 30-84R2. Both phenotypes were reversed by complementation with csaR-csaI or by the addition of the CsaI AHL signal. Both quorum-sensing systems play a role in colonization by strain 30-84. Whereas loss of PhzR resulted in a 6.6-fold decrease in colonization by strain 30-84 on wheat roots in natural soil, a phzR csaR double mutant resulted in a 47-fold decrease. These data suggest that gene(s) regulated by the CsaR-CsaI system also plays a role in the rhizosphere competence of P. aureofaciens 30-84.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
As reported, the two-component system ColRS is involved in two completely different processes. It facilitates the root colonization ability of Pseudomonas fluorescens and is necessary for the Tn4652 transposition-dependent accumulation of phenol-utilizing mutants in Pseudomonas putida. To determine the role of the ColRS system in P. putida, we searched for target genes of response regulator ColR by use of a promoter library. Promoter screening was performed on phenol plates to mimic the conditions under which the effect of ColR on transposition was detected. The library screen revealed the porin-encoding gene oprQ and the alginate biosynthesis gene algD occurring under negative control of ColR. Binding of ColR to the promoter regions of oprQ and algD in vitro confirmed its direct involvement in regulation of these genes. Additionally, the porin-encoding gene ompA(PP0773) and the type I pilus gene csuB were also identified in the promoter screen. However, it turned out that ompA(PP0773) and csuB were actually affected by phenol and that the influence of ColR on these promoters was indirect. Namely, our results show that ColR is involved in phenol tolerance of P. putida. Phenol MIC measurement demonstrated that a colR mutant strain did not tolerate elevated phenol concentrations. Our data suggest that increased phenol susceptibility is also the reason for inhibition of transposition of Tn4652 in phenol-starving colR mutant bacteria. Thus, the current study revealed the role of the ColRS two-component system in regulation of membrane functionality, particularly in phenol tolerance of P. putida.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号