首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The proliferative capacity of mouse connective tissue-type mast cells (CTMC) was analyzed by using a newly discovered c-kit ligand, termed stem cell factor (SCF). More than 90% of CTMC in the peritoneal cavity responded to recombinant rat SCF (rrSCF) and were able to give rise to pure mast cell colonies in methylcellulose culture. Serial observation (mapping) of growth of individual CTMC in culture containing rrSCF confirmed their striking proliferative ability. No serum but accessory cells (non-CTMC cells) in the peritoneal population were required for the clonal growth of CTMC induced by rrSCF in our methylcellulose culture of whole peritoneal cells. The rrSCF-induced mast cell colony formation from peritoneal CTMC was completely inhibited by the addition of anti-c-kit antibody, which can block the binding of SCF to c-kit, to the culture. When IL-3 was combined with rrSCF, mast cell colonies dramatically increased in size. Mapping studies revealed that the combination of the two factors augmented the proliferative rate of CTMC. Approximately 60% of the constituent cells of the mast cell colonies which were formed from peritoneal CTMC in the culture containing rrSCF alone were stained with berberine sulfate, which is a characteristic of CTMC. However, most mast cells which were induced by rrSCF+IL-3 from peritoneal CTMC contained berberine(-)-safranin(-)-Alcian blue(+) granules. Although IL-4 exhibited little synergism with rrSCF in the induction of CTMC proliferation, the addition of IL-4 to the culture containing rrSCF+IL-3 resulted in an increase in mast cells which retained CTMC characteristics.  相似文献   

2.
12-O-Tetradecanoylphorbol-13-acetate (TPA), a tumor-promoting phorbol ester, induced the proliferation of connective tissue-type mast cells (CTMC) synergistically with IL-3 in a methylcellulose culture, as well as with IL-4. The culture of single CTMC and the serum-free culture of CTMC fractionated by Percoll density gradient centrifugation showed that this synergistic action of IL-3 and TPA required no effects of accessory cells or other humoral factors. Although the populations of CTMC acted on by TPA and IL-4 seemed to be close to each other, the velocity of colony growth induced by the simultaneous stimulation of the combination of TPA and IL-4 was faster than that induced by either TPA or IL-4 in the presence of IL-3. In addition, the addition of anti-IL-4 antibody did not neutralize the effect of TPA on the proliferation of CTMC. These results suggest that TPA and IL-4 act on the proliferation of CTMC synergistically with IL-3 via a different pathway. Beside TPA, other phorbol derivatives capable of activating protein kinase C (PKC) induced the proliferation of CTMC synergistically with IL-3, but phorbol derivatives which were unable to activate PKC did not. These results indicate that the activation of PKC is involved in the process of TPA action on the proliferation of CTMC. Furthermore, the facts that 1-oleoyl-2-acetylglycerol, which activated membrane PKC transiently, and staurosporine, which has been reported to inhibit PKC, did not induce the proliferation of CTMC in the presence of IL-3 and that the effect of TPA was exhibited by the sustained stimulation suggest that the action of TPA on the proliferation of CTMC requires at least two steps. The first one is the primary activation of membrane PKC and the second one is the disappearance of PKC from the cells, "down-regulation."  相似文献   

3.
Production of nitric oxide (NO) in response to bacterial lipopolysaccharide (LPS) was investigated using cultures of mouse peritoneal exudate cells (PEC) and the macrophage cell line RAW264.7. In the presence of anti-(interferon-gamma) (IFN-gamma), NO production was markedly suppressed in the PEC culture but not in the RAW264.7 culture. In the PEC culture, LPS induced both IFN-gamma production and activation of IFN response factor-1, which leads to the gene expression of inducible NO synthase, but neither was induced in the culture of RAW264.7 cells. In addition to anti-(IFN-gamma), antibodies against interleukin (IL)-12 and IL-18 showed a suppressive effect on LPS-induced NO production in the PEC culture, and these antibodies in synergy showed strong suppression. Stimulation of the PEC culture with IL-12 or IL-18 induced production of IFN-gamma and NO, and these cytokines, in combination, exhibited marked synergism. Stimulation of the culture with IFN-gamma induced production of NO, but not IL-12. The macrophage population in the PEC, prepared as adherent cells, responded well to LPS for IL-12 production, but weakly for production of IFN-gamma and NO. The macrophages also responded well to IFN-gamma for NO production. For production of IFN-gamma by stimulation with LPS or IL-12 + IL-18, nonadherent cells were required in the PEC culture. Considering these results overall, the indirect pathway, through the production of intermediates (such as IFN-gamma-inducing cytokines and IFN-gamma) by the cooperation of macrophages with nonadherent cells, was revealed to play the main role in the LPS-induced NO production pathway, as opposed to the direct pathway requiring only a macrophage population.  相似文献   

4.
Anergy and suppression are cardinal features of CD4(+)CD25(+)Foxp3(+) T cells (T regulatory cells (Treg)) which have been shown to be tightly controlled by the maturation state of dendritic cells (DC). However, whether lymphoid organ DC subsets exhibit different capacities to control Treg is unclear. In this study, we have analyzed, in the rat, the role of splenic CD4(+) and CD4(-) conventional DC and plasmacytoid DC (pDC) in allogeneic Treg proliferation and suppression in vitro. As expected, in the absence of exogenous IL-2, Treg did not expand in response to immature DC. Upon TLR-induced maturation, all DC became potent stimulators of CD4(+)CD25(-) T cells, whereas only TLR7- or TLR9-matured pDC induced strong proliferation of CD4(+)CD25(+)Foxp3(+) T cells in the absence of exogenous IL-2. This capacity of pDC to reverse Treg anergy required cell contact and was partially CD86 dependent and IL-2 independent. In suppression assays, Treg strongly suppressed proliferation and IL-2 and IFN-gamma production by CD4(+)CD25(-) T cells induced by mature CD4(+) and CD4(-) DC. In contrast, upon stimulation by mature pDC, proliferating Treg suppressed IL-2 production by CD25(-) cells but not their proliferation or IFN-gamma production. Taken together, these results suggest that anergy and the suppressive function of Treg are differentially controlled by DC subsets.  相似文献   

5.
IL-4 suppression of in vivo T cell activation and antibody production   总被引:3,自引:0,他引:3  
Injection of mice with a foreign anti-IgD Ab stimulates B and T cell activation that results in large cytokine and Ab responses. Because most anti-IgD-activated B cells die before they can be stimulated by activated T cells, and because IL-4 prolongs the survival of B cells cultured with anti-Ig, we hypothesized that treatment with IL-4 at the time of anti-IgD Ab injection would decrease B cell death and enhance anti-IgD-induced Ab responses. Instead, IL-4 treatment before or along with anti-IgD Ab suppressed IgE and IgG1 responses, whereas IL-4 injected after anti-IgD enhanced IgE responses. The suppressive effect of early IL-4 treatment on the Ab response to anti-IgD was associated with a rapid, short-lived increase in IFN-gamma gene expression but decreased CD4+ T cell activation and decreased or delayed T cell production of other cytokines. We examined the possibilities that IL-4 stimulation of IFN-gamma production, suppression of IL-1 or IL-2 production, or induction of TNF-alpha or Fas-mediated apoptosis could account for IL-4's suppressive effect. The suppressive effect of IL-4 was not reversed by IL-1, IL-2, or anti-TNF-alpha or anti-IFN-gamma mAb treatment, or mimicked by treatment with anti-IL-2Ralpha (CD25) and anti-IL-2Rbeta (CD122) mAbs. Early IL-4 treatment failed to inhibit anti-IgD-induced Ab production in Fas-defective lpr mice; however, the poor responsiveness of lpr mice to anti-IgD made this result difficult to interpret. These observations indicate that exposure to IL-4, while T cells are first being activated by Ag presentation, can inhibit T cells activation or promote deletion of responding CD4+ T cells.  相似文献   

6.
7.
8.
Effects of interferon-gamma on the activation of human T lymphocytes   总被引:7,自引:0,他引:7  
The role of interferon (IFN)-gamma in the activation of human T cells was investigated. Addition of IFN-gamma to mixed-lymphocyte cultures (MLC) augmented both the proliferation and the development of T-cell-mediated cytotoxicity. IFN-gamma also augmented the early expression on CD8+ but not CD4+ lymphocytes of IL-2 receptor alpha chain (Tac antigen) and Class II major histocompatibility antigen (HLA-DR). This effect synergized with that caused by interleukin 2 and was not observed with IFN-alpha. The addition of neutralizing antibody against IFN-gamma to MLC suppressed the development of cytotoxicity and proliferation and the expression of activation antigens on CD8+ cells. In experiments in which highly purified CD8+ T cells were activated with cell-free stimuli, IFN-gamma slightly but significantly augmented proliferation, antibody to IFN-gamma suppressed proliferation, and excess IFN-gamma reversed this suppression. It is concluded that (i) IFN-gamma augmented activation of T cells in human MLC, (ii) IFN-gamma exerted effects directly on T cells, and (iii) IFN-gamma preferentially augmented CD8+ cell activation.  相似文献   

9.
An impaired differentiation of naive CD4+ T cells towards Th2 cells may contribute to the chronic tissue-destructive T-cell activity in rheumatoid arthritis (RA). The differentiation of naive CD4+ T cells into memory Th2 cells by IL-7 in comparison with that by IL-4 was studied in RA patients and in healthy controls. Naive CD4+ T cells from peripheral blood were differentiated by CD3/CD28 costimulation in the absence of or in the presence of IL-7 and/or IL-4. The production of IFN-gamma and IL-4 was measured by ELISA and by single-cell FACS analysis to indicate Th1 and Th2 cell activity. CD3/CD28 costimulation and IL-7 were early inducers of IL-4 production, but primarily stimulated IFN-gamma production. In contrast, in short-term cultures exogenously added IL-4 did not prime for IL-4 production but suppressed IL-7-induced IFN-gamma production. Upon long-term stimulation of naive CD4+ T cells, IFN-gamma production was differentially regulated by IL-7 and IL-4, but IL-4 production was increased by both IL-7 and IL-4. IL-7 and IL-4 additively induced polarization towards a Th2 phenotype. This susceptibility of naive CD4+ T cells to become Th2 cells upon culture with IL-7 and IL-4 was increased in RA patients compared with that in healthy controls. These findings demonstrate that, in RA patients, differentiation of naive CD4+ T cells towards a Th2 phenotype by CD3/CD28 costimulation, IL-7 and IL-4 is not impaired. The perpetuation of arthritogenic T-cell activity in RA therefore seems not to be the result of intrinsic defects of naive CD4+ T cells to develop towards suppressive memory Th2 cells.  相似文献   

10.
Highly purified human T cells from peripheral blood fail to produce interferon (IFN)-gamma in the absence of accessory cells. The ability of T cells to produce IFN-gamma upon stimulation with phytohemagglutinin (PHA) or concanavalin A could be restored by the addition of cultured allogeneic human foreskin fibroblasts. Addition of antibodies specific for HLA-DR, DQ, and DP antigens failed to block this accessory function of the fibroblasts. In contrast, antibodies to HLA-DR and DQ antigens inhibited the accessory cell activity of autologous monocytes. Allogeneic fibroblasts failed to exert accessory activity when exogenous interleukin 2 (IL-2) was used as the stimulus for IFN-gamma production. In contrast, autologous monocytes were active as accessory cells for IL-2-stimulated T cells. Addition of recombinant human interleukin 1 alpha (IL-1 alpha) or IL-1 beta to PHA-stimulated T cells co-cultured with fibroblasts stimulated IFN-gamma production. In contrast, preincubation of fibroblasts with IL-1 alpha or IL-1 beta caused a dose-dependent suppression of the ability of fibroblasts to augment PHA- and concanavalin A-induced IFN-gamma production by T cells. Preincubation of fibroblasts with recombinant human tumor necrosis factor (TNF) also reduced their accessory activity. Incubation of fibroblasts with IFN-gamma produced some reduction in their accessory activity and the inhibitory effect of TNF was further enhanced in the presence of IFN-gamma. A 4- to 10-hr incubation of fibroblasts with IL-1 or TNF was sufficient to produce a maximal suppression of accessory activity. Fixation of fibroblasts with formaldehyde decreased their accessory activity, but fixation did not abolish the suppression of accessory function induced by earlier incubation with IL-1. Supernatants of IL-1-treated fibroblast cultures had less suppressive activity than the IL-1-treated fibroblasts per se, and no suppressive activity at all was detected in the supernatants of TNF-treated fibroblasts. Enhanced prostaglandin synthesis may play a role in the IL-1- and TNF-induced suppression of accessory cell function, but other factors are likely to be involved. Our results show that fibroblasts can have a marked effect on T cell function and that IL-1 and TNF can exert immunoregulatory activities indirectly by altering the interactions of fibroblasts with T cells.  相似文献   

11.
Recent lines of evidence have demonstrated that IL-27, a newly identified IL-12-related cytokine, has two apparently conflicting roles in immune responses: one as an initiator of Th1 responses and the other as an attenuator of inflammatory cytokine production. Although the IL-27-mediated Th1 initiation mechanism has been elucidated, little is known about the molecular basis for the suppression of cytokine production. In the present study, we demonstrated that IL-27 suppressed the production of various proinflammatory cytokines by fully activated CD4+ T cells while it had no effect on the cytokine production by CD4+ T cells at early phases of activation. IL-27 also suppressed IL-17 production by activated CD4+ T cells, thereby counteracting IL-23, another IL-12-related cytokine with proinflammatory effects. In fully activated CD4+ T cells, STAT3 was preferentially activated by IL-27 stimulation, whereas both STAT1 and 3 were activated by IL-27 in early activated CD4+ T cells. Lack of STAT3 in fully activated cells impaired the suppressive effects of IL-27. These data indicated that the preferential activation of STAT3 in fully activated CD4+ T cells plays an important role in the cytokine suppression by IL-27/WSX-1.  相似文献   

12.
Inhibition of IgG-triggered human eosinophil function by IL-4   总被引:1,自引:0,他引:1  
Triggering of eosinophil secretory and cytotoxic functions by stimulation of the IgG and IgE FcR is thought to have major importance in the pathophysiology of tissue eosinophilia. We studied the ability of human rIL-4 to regulate this triggering event in human eosinophils. At doses ranging from 0.1 to 10 pg/ml, IL-4 suppressed eosinophil secretion of beta-glucuronidase and arylsulfatase by up to 65% after stimulation with IgG-coated Sepharose beads. This effect required prolonged preincubation (16 h) of eosinophils with IL-4; no effect was detected after 1 h preincubation. Enzyme secretion stimulated by IgE-coated beads was not affected. Further, IL-4 (after 16 h preincubation), suppressed eosinophil antibody-dependent killing of schistosomula (Schistosoma mansoni) targets by 24 to 39% in four experiments (p less than 0.05). Flow microfluorimetry analysis showed that IL-4 reduced the expression of IgG FcR, but not IgE FcR, suggesting that this mechanism underlies the suppression of IgG-mediated secretion. Taken collectively, these results demonstrate a mechanism for T lymphocyte suppression of IgG-stimulated eosinophil functions via IL-4.  相似文献   

13.
In murine infection with Trypanosoma cruzi, immune responsiveness to parasite and non-parasite Ag becomes suppressed during the acute phase of infection, and this suppression is known to extend to the production of IL-2. To determine whether suppression of lymphokine production was specific for IL-2, or was a generalized phenomenon involving suppressed production of other lymphokines, we have begun an investigation of the ability of mice to produce of a number of lymphokines during infection, initially addressing this question by studying IFN-gamma production. Supernatants from Con A-stimulated spleen cells from infected resistant (C57B1/6) and susceptible (C3H) mice were assayed for IFN-gamma. Supernatants known to be suppressed with respect to IL-2 production from both mouse strains contained IFN-gamma at or above that of supernatants from normal spleen cells. Samples were assayed in an IFN bioassay to ensure that the IFN-gamma detected by ELISA was biologically active. Thus, suppression during T. cruzi infection does not extend to the production of all lymphokines. The stimulation of IFN-gamma production was confirmed by detection of IFN-gamma mRNA in unstimulated spleen cells from infected animals, and in Con A, Con A + PMA, and in some cases, parasite Ag-stimulated spleen cells from infected animals. IFN-gamma mRNA levels in mitogen-stimulated spleen cells equalled or exceeded those found in similarly stimulated normal cells. In contrast, stimulated spleen cells from infected animals had reduced levels of IL-2 mRNA relative to normal spleen cells. Thus at both the protein and mRNA level, IFN-gamma production is stimulated by T. cruzi infection, whereas IL-2 production is suppressed. Serum IFN-gamma in infected C57B1/6 and C3H mice was detected 8 days after infection, peaked on day 20 of infection, and subsequently fell, but remained detectable at low levels throughout the life of infected mice. Infected animals were depleted of cell populations known to be capable of producing IFN-gamma, and Thy-1+, CD4-, CD8-, NK- cells, and to a lesser degree, CD4+ and CD8+ cells were found to be responsible for the production of IFN-gamma during infection. We also report that IL-2 can induce IFN-gamma production in vitro and in vivo by spleen cells from infected animals, and that IL-2 can synergize with epimastigote or trypomastigote antigen to produce high levels of IFN-gamma comparable to those found in supernatants from mitogen-stimulated cells.  相似文献   

14.
Co-culture of blood forms of Trypanosoma cruzi, the causative agent of Chagas' disease, with human PBMC impaired the capacity of T lymphocytes to express surface receptors for IL-2. This effect was evidenced by marked reductions in both the proportion of Tac+ cells and the density of Tac Ag on the surface of the positive cells, determined by flow cytometry. The extent of the inhibition increased with parasite concentration. Under optimal or suboptimal conditions of stimulation with either PHA or monoclonal anti-CD3, specific for an epitope of the T3-Ti human T cell Ag receptor complex, the presence of T. cruzi curtailed the capacity of T lymphocytes to proliferate and express Il-2R but did not affect IL-2 production. Furthermore, the addition of exogenous IL-2 did not restore the responsiveness of suppressed human lymphocytes but did when mouse lymphocytes were used instead. Therefore, unlike mouse lymphocytes, human lymphocyte suppression by T. cruzi did not involve deficient IL-2 production and was accompanied by impaired IL-2 utilization. Co-culture of human monocytes/macrophages with suppressive concentrations of T. cruzi increased IL-1 production, and the parasite did not decrease IL-1 secretion stimulated by a bacterial LPS. Therefore, the suppression of IL-2R expression and lymphoproliferation is not likely to have been an indirect consequence of insufficient IL-1 production due to infection of monocytes or macrophages. We have shown that suppression of human lymphocyte proliferation by T. cruzi is not caused by nutrient consumption, absorption of IL-2, lymphocyte killing, or mitogen removal by the parasite. Therefore, these results uncover a novel suppressive mechanism induced by T. cruzi, involving inhibited expression of IL-2R after lymphocyte activation and rendering T cells unable to receive the IL-2 signal required for continuation of their cell cycle and mounting effective immune responses.  相似文献   

15.
The subpopulation of CD4+ T cells that expresses the Leu-8 peripheral lymph node homing receptor suppresses PWM-stimulated Ig synthesis. To determine the mechanism of this suppression, the immunoregulatory activity of culture supernatants obtained from peripheral blood CD4+ Leu-8+ T cells cultured with anti-CD3 mAb and PMA (Leu-8+ supernatant) was determined. Leu-8+ supernatant suppressed PWM-stimulated Ig synthesis in cultures containing non-T cells and CD4+ Leu-8- T cells. In contrast, the supernatant from CD4+ Leu-8- T cells did not suppress Ig synthesis. The inhibitory activity of CD4+ Leu-8+ T cell supernatants could not be accounted for by a deficiency or excess of IL-2, IL-4, IFN-gamma, IL-6, or PGE2. In studies examining the effect of CD4+ Leu-8+ supernatant on T cells, the supernatant did not alter either mitogen-induced proliferation or the helper function of CD4+ Leu-8- T cells. In studies examining the effect of CD4+ Leu-8+ supernatant on B cells, the supernatant inhibited Staphylococcus aureus Cowan I strain-induced B cell Ig secretion but not B cell proliferation. The suppressor activity of Leu-8+ supernatant was eliminated by protease treatment and was eluted by HPLC in two main peaks, with molecular sizes of 44 and 12 kDa. In summary, these studies indicate that supernatants from activated CD4+ Leu-8+ T cells directly suppress B cell Ig production.  相似文献   

16.
Mononuclear cells (MNC) derived from peripheral blood (PBMNC) of 23 normal donors and 4 AIDS patients, and from bone marrow (BMMNC) of 15 normal donors were incubated at 37 degrees C in culture medium alone or in the presence of either natural or recombinant human interleukin-2 (IL-2) or recombinant human interferon-gamma (IFN-gamma; 1-1,000 U/ml). The cultured cells were washed on days 1, 4 or 7 and tested for various immune functions in vitro and for cell surface phenotype. IL-2, but not IFN-gamma, was found mitogenic for both PBMNC and BMMNC. The natural killer (NK) activity of both PBMNC and BMMNC was the only function tested that was markedly augmented (over 100-fold compared to medium control) by both lymphokines. Pretreatment of PBMNC with IL-2 at greater than or equal to 10 U/ml profoundly suppressed (up to 90%) various functions, such as mitogenic responses (phytohemmagglutinin, concanavalin A, pokeweed mitogen), allogeneic mixed leukocyte reaction, antibody production and T cell colony formation in agar. In contrast, some BMMNC functions were elevated at low doses of IL-2 and IFN-gamma, and significant suppression of BMMNC was seen only with high doses of IL-2 (greater than or equal to 100 U/ml) and IFN-gamma (1,000 U/ml). IL-2 was by far more effective than IFN-gamma in both the amplification of NK activity and the suppression of most of the other functions. IL-2, but not IFN-gamma, was found to activate/induce suppressor cells and increased the proportion of Leu-2+ (CD8) cells in PBMNC; the suppressive effect was time- and dose-dependent. The IL-2-induced suppression could be diminished by inclusion of anti-IL-2 antibody during the pretreatment phase. Similar suppressive effects were noted in PBMNC from AIDS patients. These findings suggest that: (a) high-dose IL-2 may elicit immunosuppression which can be mediated by nondiscriminative highly cytotoxic cells (i.e. lymphokine-activated killer cells) and/or by noncytotoxic, nonspecific suppressor cells, and (b) that PBMNC respond differently to the lymphokines than do BMMNC.  相似文献   

17.
Retroviral infections are accompanied by immunosuppression in a variety of species. For feline leukemia virus, the immunosuppression has been ascribed to the transmembrane envelope protein, p15E, which suppresses the proliferative responses of cat, mouse, and human lymphocytes. A similar suppressive effect has been shown for a lysate of human immunodeficiency virus (HIV), strain HTLV-IIIB. Here we determined that detergent-disrupted HTLV-IIIB lystate exerted a strong suppressive effect on PHA-stimulated lymphocytes. Preparations of whole virions, a lysate of a local HIV isolate grown on MP-6 cells, and a commercially obtained UV and psoralene-inactivated lysate were examined and demonstrated to have a similar suppressive effect. The HIV lysate was not directly cytotoxic to lymphocytes and did not contain tumor necrosis factor or lymphotoxin. The HIV lysate specifically suppressed the proliferation of a range of hemopoietic cell lines from man and mouse including three EBV transformed CD4- and IL-2 receptor-negative B-cell lines. The lysate also suppressed the formation of human bone marrow colonies, whereas the lysate had only a slight or no effect on fibroblasts. The suppression of lymphocyte proliferation was not abrogated by addition of IL-2 or IL-1 and the HIV lysate inhibited the expression of IL-2 receptors on suboptimal PHA-stimulated mononuclear cells. The suppressive factor(s) has not been characterized in molecular terms, but suppressive activity was recovered in fractions with a molecular weight of about 67,000 and in both the glycoprotein fraction and in the glycoprotein-depleted fraction of the HIV lysate. Sera from one-third of a small series (N = 13) of individuals with antibodies to HIV seem to be able to neutralize the suppressive properties of HIV lysate in cultures.  相似文献   

18.
There is growing evidence that diesel exhaust particles (DEP) can induce allergic diseases with increased IgE production and preferential activation of Th2 cells. To clarify the cellular basis of the role of DEP in the induction of Th2-dominant responses, we examined the effects of DEP on the cytokine production by T cells stimulated with anti-CD3/CD28 Ab and on that by monocyte-derived dendritic cells (MoDCs) stimulated with CD40L and/or IFN-gamma. We examined IFN-gamma, IL-4, IL-5, IL-8, and IL-10 produced by T cells and TNF-alpha, IL-1beta, IL-10, and IL-12 produced by MoDCs using real-time PCR analysis or by ELISA. To highlight the effects of DEP, we compared the effects of DEP with those of dexamethasone (DEX) and cyclosporin A (CyA). DEP significantly suppressed IFN-gamma mRNA expression and protein production, while it did not affect IL-4 or IL-5 mRNA expression or protein production. The suppressive effect on IFN-gamma mRNA expression was more potent than that of DEX and comparable at 30 mug/ml with 10(-7) M CyA. The suppressive effect on IFN-gamma production was also more potent than that of either DEX or CyA. DEP suppressed IL-12p40 and IL-12p35 mRNA expression and IL-12p40 and IL-12p70 production by MoDCs, while it augmented IL-1beta mRNA expression. Finally, by using a thiol antioxidant, N-acetyl cysteine, we found that the suppression of IFN-gamma production by DEP-treated T cells was mediated by oxidative stress. These data revealed a unique characteristic of DEP, namely that they induce a Th2 cytokine milieu in both T cells and dendritic cells.  相似文献   

19.
Souza VM  Jacysyn JF  Macedo MS 《Cytokine》2004,28(2):92-100
The extract from Ascaris suum worms (Asc) impairs Th1 and Th2 responses to a non-related antigen, i.e. ovalbumin (OVA). Its suppressive capacity is due to high molecular weight components present in a gel filtration fraction (PI). This fraction is able to elicit IL-4 and IL-10 secretion. Interestingly enough, it induces anti-PI non-anaphylactic IgG1 synthesis through the action of IL-12/IFN-gamma. Here, we investigated the down-regulation of the immune response to OVA by PI in IL-12, IFN-gamma, IL-4 or IL-10 C57BL/6 knockout mice immunized with OVA+PI in adjuvant. OVA-induced delayed-type hypersensitivity (DTH) reactions, secretion of IL-2 and IFN-gamma, and IgG1, IgG2c and IgE antibody production were suppressed by PI in wild-type mice, as well as in IL-12- or IFN-gamma-deficient mice. In contrast, PI had no effect on anti-OVA IgE production and DTH, and induced only a partial suppression of IgG1 and IFN-gamma in IL-10(-/-) mice. The experiments also showed that IL-4 was involved in the PI-induced suppression of IgG2c antibodies and IL-2 secretion. Finally, down-regulation of IFN-gamma was not seen in mice lacking both IL-4 and IL-10, i.e. IL-4(-/-) mice treated with anti-IL-10 antibodies before immunization. These results exclude the participation of IL-12 and IFN-gamma in PI-induced immunosuppression, and highlight the essential role of IL-10 in the suppression of OVA-specific Th2-related parameters, as well as the cooperation between IL-10 and IL-4 in the suppression of Th1-related parameters.  相似文献   

20.
A biphasic dose response curve was observed when the bone marrow-derived cell line FDCP1, used as an indicator line for IL-3 bioassays, was exposed to supernatants from some activated T cell clones but not others. The active component which inhibited proliferation at the higher supernatant concentrations appeared to be IFN-gamma, based on the following observations. 1) Only those culture supernatants which contained IFN-gamma gave a biphasic dose response curve; 2) with these supernatants, an anti-IFN-gamma mAb augmented the proliferation of FDCP1 cells at the higher supernatant concentrations; and 3) rIFN-gamma profoundly inhibited the proliferation of FDCP1 cells stimulated with rIL-3 or rIL-4. rTNF-alpha inhibited FDCP1 proliferation only to a modest extent, yet the combination of rTNF-alpha + rIFN-gamma provided greater inhibition than each agent alone. The proliferation of a second bone marrow-derived cell line, DA1, was not inhibited by rIFN-gamma or rIFN-gamma + rTNF-alpha when stimulated with rIL-3 or recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF). Fresh bone marrow cells also showed a suboptimal proliferative response when stimulated with T cell supernatants containing IFN-gamma, and this response was augmented considerably upon the addition of anti-IFN-gamma mAb. Bone marrow cell proliferation was observed upon exposure to rIL-3, rIL-4, or rGM-CSF, and these responses were inhibited by rIFN-gamma; rTNF-alpha also produced a synergistic effect with these cells. Bone marrow cell colony formation stimulated by rIL-3 or rGM-CSF also was inhibited by rIFN-gamma. Colony formation in bone marrow cell cultures was not observed in response to rIL-4. Collectively, these results suggest that Th1 cells, which in addition to IL-3 and GM-CSF also produce IFN-gamma, may regulate hemopoietic cell proliferation and colony formation differently from the way Th2 cells do, which do not produce IFN-gamma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号