首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polC gene of Bacillus subtilis is defined by five temperature-sensitive mutations and the 6-(p-hydroxyphenylazo)-uracil (HPUra) resistance mutation azp-12. Biochemical evidence suggests that polC codes for the 160-kilodalton DNA polymerase III. A recombinant plasmid, p154t, was isolated and found to contain the azp-12 marker and one end of the polC gene (N. C. Brown and M. H. Barnes, J. Cell. Biochem. 78 [Suppl.]: 116, 1983). The azp-12 marker was localized to a 1-kilobase DNA segment which was used as a probe to isolate recombinant lambda phages containing polC region sequences. A complete polC gene was constructed by in vitro ligation of DNA segments derived from two of the recombinant phages. The resulting plasmid, pRO10, directed the synthesis of four proteins of 160, 76, 39, and 32 kilodaltons in Escherichia coli maxicells. Recombination-deficient (recE) B. subtilis PSL1 containing pRO10 produced an HPUra-resistant polymerase III activity which was lost when the strain was cured of pRO10. In vivo, the HPUra resistance of the plasmid-encoded polymerase III appeared to be recessive to the resident HPUra-sensitive polymerase III enzyme.  相似文献   

2.
In vivo studies of PBS2 phage replication in a temperature-sensitive Bacillus subtilis DNA polymerase III (Pol III) mutant and a temperature-resistant revertant of this mutant have suggested the possible involvement of Pol III in PBS2 DNA synthesis. Previous results with 6-(p-hydroxyphenylazo)-uracil (HPUra), a specific inhibitor of Pol III and DNA replication in uninfected cells, suggest that Pol III is not involved in phage DNA replication, due to its resistance to this drug. Experiments were designed to examine possible explanations for this apparent contradiction. First, assays of the host Pol III and the phage-induced DNA polymerase activities in extracts indicated that a labile Pol III did not result in a labile phage-induced enzyme, suggesting that this new polymerase is not a modified HPUra-resistant form of Pol III. Indeed the purified phage-induced enzyme was resistant to the active, reduced form of HPUra under all assay conditions tested. Since in vitro Pol III was capable of replicating the uracil-containing DNA found in this phage, the sensitivity of the purified enzyme to reduced HPUra was examined using phage DNA as template-primer and dUTP as substrate; these new substrates did not affect the sensitivity of the host enzyme to the drug.  相似文献   

3.
Summary polC, the gene specifying the structure of the replication-specific DNA polymerase III of B. subtilis, was mapped by exploiting azp-12, a mutation conferring resistance to azopyrimidine which determines a mutant, azopyrimidine-resistant enzyme. azp-12 was located in the area of the pyrA locus and is between spcB1 and recA1. azp-12 was linked by transformation to four other mutations which influence the in vitro behaviour of DNA polymerase III-polC25, polC26, mut-1(ts), and DNAF133; the close linkage of these five mutations strongly suggests that they are alleles of the same gene.  相似文献   

4.
The pcbA1 mutation allows DNA replication dependent on DNA polymerase I at the restrictive temperature in polC(Ts) strains. Cells which carry pcbA1, a functional DNA polymerase I, and a temperature-sensitive DNA polymerase III gene were used to study the role of DNA polymerase III in DNA repair. At the restrictive temperature for DNA polymerase III, these strains were more sensitive to the alkylating agent methyl methanesulfonate (MMS) and hydrogen peroxide than normal cells. The same strains showed no increase in sensitivity to bleomycin, UV light, or psoralen at the restrictive temperature. The sensitivity of these strains to MMS and hydrogen peroxide was not due to the pcbAl allele, and normal sensitivity was restored by the introduction of a chromosomal or cloned DNA polymerase III gene, verifying that the sensitivity was due to loss of DNA polymerase III alpha-subunit activity. A functional DNA polymerase III is required for the reformation of high-molecular-weight DNA after treatment of cells with MMS or hydrogen peroxide, as demonstrated by alkaline sucrose sedimentation results. Thus, it appears that a functional DNA polymerase III is required for the optimal repair of DNA damage by MMS or hydrogen peroxide.  相似文献   

5.
The virulent phage phie of Bacillus subtilis which contains hydroxymethyluracil in its DNA requires host DNA polymerase III for its DNA replication. DNA polymerase III(ts) mutant cells infected with phie at restrictive temperatures do not support phage DNA synthesis. However, phie grows normally both at low and high temperatures in the mutant's parent strain and in spontaneous DNA polymerase III(+) revertants isolated from the mutant strain. Temperature-shift-down experiments with phie-infected cells having thermosensitive DNA polymerase III (pol III(ts)) indicate that at 48 C the thermolabile DNA polymerase III is irreversibly inactivated and has to be synthesized de novo after the shift to 37 C, before phage DNA synthesis can begin. Temperature-shift-up experiments with phie-infected mutant cells show that phage replication is arrested immediately after the temperature shift and indicate that phie requires DNA polymerase III throughout its replication stage.  相似文献   

6.
The plasmid R6K has been introduced into a number of Escherichia coli polymerase deficient (pol) mutants. In polCts mutants transferred to the nonpermissive temperature to inactivate polymerase III, R6K replicates but the replication products have a density in dye-CsCl gradients intermediate between supercoiled and linear forms. This aberrant replication requires normal cellular levels of polymerase I since it does not occur in polA polCts mutants. Normal R6K replication and maintenance occur in a polA polB polC+ host, however, we cannot tell from our experiments wheather polymerase I or III replicates R6K in polA+ polC+ host. Polymerase II, the polB gene product, has no detectable role in R6K replication.  相似文献   

7.
Genomic DNA encompassing polC, the structural gene specifying Bacillus subtilis DNA polymerase III (PolIII), was sequenced and found to contain a 4311-bp open reading frame (ORF) encoding a 162.4-kDa polypeptide of 1437 amino acids (aa). The ORF was engineered into an Escherichia coli expression plasmid under the control of the coliphage lambda repressor. Derepression of E. coli transformants carrying the recombinant vector resulted in the high-level synthesis of a recombinant DNA polymerase indistinguishable from native PolIII. N-terminal aa sequence analysis of the recombinant polymerase unequivocally identified the 4311-bp ORF as that of polC. Comparative aa sequence analysis indicated significant homology of the B. subtilis enzyme with the catalytic alpha subunit of the E. coli PolIII and, with the exception of an exonuclease domain, little homology with other DNA polymerases. The respective sequences of the mutant polC alleles, dnaF and ts-6, were identified, and the expression of specifically truncated forms of polC was exploited to assess the dependence of polymerase activity on the structure of the enzyme's C terminus.  相似文献   

8.
Summary The characteristics of Bacillus subtilis dnaF, a mutation specifying a temperature sensitive phenotype, were examined to determine its relationship to polC, the gene specifying the structure of DNA polymerase III (pol III). Exposure of growing cells bearing dnaF to non-permissive temperature inhibited replicative DNA synthesis and specifically depressed the expression of pol III activity in crude extracts. Highly purified pol III derived from cells bearing dnaF was temperature sensitive in its polymerase activity, indicating that dnaF is a specific, polC mutation which specifies a structurally altered enzyme.  相似文献   

9.
The repair response of Escherichia coli to hydrogen peroxide has been examined in mutants which show increased sensitivity to this agent. Four mutants were found to show increased in vivo sensitivity to hydrogen peroxide compared with wild type. These mutants, in order of increasing sensitivity, were recA, polC, xthA, and polA. The polA mutants were the most sensitive, implying that DNA polymerase I is required for any repair of hydrogen peroxide damage. Measurement of repair synthesis after hydrogen peroxide treatment demonstrated normal levels for recA mutants, a small amount for xthA mutants, and none for polA mutants. This is consistent with exonuclease III being required for part of the repair synthesis seen, while DNA polymerase I is strictly required for all repair synthesis. Sedimentation analysis of cellular DNA after hydrogen peroxide treatment showed that reformation was absent in xthA, polA, and polC(Ts) strains but normal in a recA cell line. By use of a lambda phage carrying a recA-lacZ fusion, we found hydrogen peroxide does not induce the recA promoter. Our findings indicate two pathways of repair for hydrogen peroxide-induced DNA damage. One of these pathways would utilize exonuclease III, DNA polymerase III, and DNA polymerase I, while the other would be DNA polymerase I dependent. The RecA protein seems to have little or no direct function in either repair pathway.  相似文献   

10.
Summary It has been proposed that the mutation fixation processes stimulated by SOS induction result from an induced infidelity of DNA replication (Radman 1974). The aim of this study was to determine if mutator mutations in the E. coli DNA polymerase III might affect UV-induced mutagenesis.Using a phage mutation assay which can discriminate between targeted and untargeted mutations, we show that the polC74 mutator mutation (Sevastopoulos and Glaser 1977) primarily affects untargeted mutagenesis, which occurs in a recA1 genetic background and is amplified in the recA + genetic background. The polC74 mutation also increases the UV-induced mutagenesis of the bacterial chromosome. These results suggest that DNA polymerase III is involved in the process of UV-induced mutagenesis in E. coli.  相似文献   

11.
Cell survival, deoxyribonucleic acid (DNA) degradation, and the repair of DNA single-strand breaks were measured for Escherichia coli K-12 pol+, polA1, polC1026(ts), and polA1 polC1026(ts) cells after 137Cs gamma irradiation. The results indicate that DNA polymerase III is required for growth medium-dependent (type III) repair in polA+ or polA cells. In pol+ or polC cells, DNA polymerase I performs type II repair efficiently. The relative deficiencies of each of these strains in DNA repair generally correlate with their relative sensitivities to cell killing and with the extent of DNA degradation observed.  相似文献   

12.
SP01 development was inhibited by nalidixic acid and novobiocin in the sensitive host Bacillus subtilis 168M. Inhibition by novobiocin was prevented by a Novr mutation in the cellular DNA gyrase gene. Nalidixic acid inhibition persisted in hosts carrying a Nalr gyrase, but could be overcome by phage mutation. We conclude that SP01 requires for its development subunit B of the host DNA gyrase, but replaces or modifies subunit A.  相似文献   

13.
The Escherichia coli dnaE gene, which encodes the alpha subunit of DNA polymerase III (pol III) holoenzyme, has been cloned in a plasmid containing the PL promoter of phage lambda and thermally induced to overproduce the alpha subunit. In cells carrying this plasmid (pKH167), the alpha subunit was amplified, after heat induction, to a level of about 0.2% of the total cellular protein. Polymerase activity was assayed in three ways: (i) gap-filling by pol III holoenzyme and subassemblies of it, (ii) the extensive replication of a primed, single-stranded DNA circle only by pol III holoenzyme, and (iii) complementation of a crude, inactive pol III holoenzyme (temperature-sensitive dnaE mutant fraction) in replication of a primed, single-stranded DNA circle. Amplification of the alpha subunit raised the polymerase level 10-fold in assay (i), indicative of the dependence of pol III gap-filling activity on this polypeptide; pol III holoenzyme activity remained unaffected (assay (ii)), but the complementation activity was raised 5-fold (assay (iii)). Thus, the elevated alpha subunit (free or in a subassembly form) can substitute in vitro for a defective alpha subunit in pol III holoenzyme, but cannot increase the in vivo level of about eight pol III holoenzyme molecules per cell. This low level of pol III holoenzyme is fixed in wild type cells (bearing no plasmid) despite the presence of a 5-fold excess of the alpha subunit, as inferred from the various assays. These results suggest that the low level of pol III holoenzyme is determined by a factor or factors other than the level of the alpha subunit.  相似文献   

14.
Enterococcus faecalis (Ef) dnaE and polC, the respective genes encoding the DNA replication-specific DNA polymerase III E and DNA polymerase III C, were cloned and engineered for expression in Escherichia coli as hexahistidine (his6)-tagged recombinant proteins. Each gene expressed a catalytically active DNA polymerase of the expected molecular weight. The recombinant polymerases were purified and each was characterized with respect to catalytic properties, inhibitor sensitivity, and recognition by specific antibody raised against the corresponding DNA polymerase III of the model Gram-positive (Gr(+)) organism, Bacillus subtilis (Bs). In conclusion, the properties of each Enterococcus polymerase enzymes were similar to those of the respective B. subtilis enzymes.  相似文献   

15.
A modified in vitro replication system has been characterized and used to catalogue the host proteins required for the replication of plasmid RSF1030. These extracts differ from systems described previously in that endogenous DNA is removed. Replication in vitro therefore requires an exogenouos RSF1030. Synthesis in the in vitro system faithfully mimics in vivo replication with respect to the products synthesized, effects of specific inhibitors, and requirements for RNA polymerase and DNA polymerase I. In addition, we find that proteins encoded by dnaB, dnaC, dnaG, dnaI, dnaP and polC (DNA polymerase III), are required for in vitro plasmid synthesis. The product of dnaA is not required. Extracts prepared from E. coli mutants deficient in in vitro replication can be complemented by addition of purified proteins or of extracts carrying the wild type protein.  相似文献   

16.
Wild type (wt) Bacillus subtilis polC and polCazp12, a mutant derivative specifying a form of DNA polymerase III resistant to hydroxyphenylazopyrimidines, were cloned as genomic fragments approximating the length required to encode the entire polymerase. The cloned DNA fragments were subjected to restriction and partial sequence analysis to locate the 5' end of the polC-specific coding sequence and the azp12 mutation, which was identified as a T----G transversion specifying replacement of serine with alanine. The cloned wt and azp12-coding sequences were recloned in an Escherichia coli expression vector with their respective 5' ends under the control of the bacteriophage lambda PL promoter and cIts857-encoded repressor. In response to induction, the wt- and azp12-specific recombinant plasmids expressed active DNA polymerases indistinguishable from the native enzymes derived from the respective B. subtilis hosts.  相似文献   

17.
Replication slippage is a particular type of error caused by DNA polymerases believed to occur both in bacterial and eukaryotic cells. Previous studies have shown that deletion events can occur in Escherichia coli by replication slippage between short duplications and that the main E. coli polymerase, DNA polymerase III holoenzyme is prone to such slippage. In this work, we present evidence that the two other DNA polymerases of E. coli, DNA polymerase I and DNA polymerase II, as well as polymerases of two phages, T4 (T4 pol) and T7 (T7 pol), undergo slippage in vitro, whereas DNA polymerase from another phage, Phi29, does not. Furthermore, we have measured the strand displacement activity of the different polymerases tested for slippage in the absence and in the presence of the E. coli single-stranded DNA-binding protein (SSB), and we show that: (i) polymerases having a strong strand displacement activity cannot slip (DNA polymerase from Phi29); (ii) polymerases devoid of any strand displacement activity slip very efficiently (DNA polymerase II and T4 pol); and (iii) stimulation of the strand displacement activity by E. coli SSB (DNA polymerase I and T7 pol), by phagic SSB (T4 pol), or by a mutation that affects the 3' --> 5' exonuclease domain (DNA polymerase II exo(-) and T7 pol exo(-)) is correlated with the inhibition of slippage. We propose that these observations can be interpreted in terms of a model, for which we have shown that high strand displacement activity of a polymerase diminishes its propensity to slip.  相似文献   

18.
Bacillus subtilis DNA polymerase III (pol III), an arylhydrazinopyrimidine-sensitive, replication-specific enzyme, was used to generate a non-precipitating rabbit antibody which specifically inhibited pol III activity in vitro. The antibody was used to examine structural relationships among several DNA polymerases, and it was linked covalently to agarose; the antibody:agarose was employed to develop a rapid, selective method of purification of catalytically active B. subtilis pol III.  相似文献   

19.
20.
A novel DNA polymerase induced by Bacillus subtilis phage phi 29.   总被引:4,自引:2,他引:2       下载免费PDF全文
K Watabe  J Ito 《Nucleic acids research》1983,11(23):8333-8342
A novel DNA polymerase induced by Bacillus subtilis bacteriophage phi 29 has been identified. This polymerase can be separated from host DNA polymerase, by fractionation of extracts prepared from phage infected cells, using phosphocellulose chromatography. The isolated polymerase prefers poly(dA)oligo(dT) as template. The DNA polymerase isolated from the cells infected with a gene 2 temperature sensitive mutant (ts2) showed greater heat-lability than that induced by wild type phi 29. The ts2 DNA polymerase was also thermolabile for its activity in the formation of a covalent complex between phi 29 terminal protein and dAMP, the initiation step of phi 29 DNA replication. These findings indicate that gene 2 is the structural gene for a phi 29 DNA polymerase required for the complex formation step of DNA initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号