共查询到20条相似文献,搜索用时 0 毫秒
2.
Habitat fragmentation reduces the size and increases the spatial isolation of plant populations. Initial predictions have been that such changes will be accompanied by an erosion of genetic variation and increased interpopulation genetic divergence due to increased random genetic drift, elevated inbreeding and reduced gene flow. Results of recent empirical studies suggest that while genetic variation may decrease with reduced remnant population size, not all fragmentation events lead to genetic losses and different types of genetic variation (e.g. allozyme and quantitative variation) may respond differently. In some circumstances, fragmentation actually appears to increase gene flow among remnant populations, breaking down local genetic structure. 相似文献
3.
Tallgrass prairie habitats within North America have suffered severe fragmentation and habitat loss as land has been converted for agricultural purposes. Habitat loss and fragmentation can affect gene flow and the genetic structure of insect populations. Neoconocephalus bivocatus is a prairie obligate katydid found only in isolated prairie patches. We compared genetic diversity and population differentiation using AFLP markers in N. bivocatus and N. robustus, a grassland generalist that is not isolated to prairie fragments and occupies a more contiguous range. Similar levels of genetic diversity were present within populations of both species. While population genetic structure was found in both species, there was no relationship between assigned genotypes and sampling localities. This genetic structure may instead be evidence of a past barrier to gene flow that has since been removed. Genetic differentiation within both species was low, with no evidence of a correlation with geographic distance, indicating neither species is dispersal limited at these distances. We see no significant reduction in genetic diversity or genetic differentiation within N. bivocatus when compared to N. robustus. We therefore conclude that while N. bivocatus utilizes a fragmented landscape, long-distance dispersal likely maintains gene flow between isolated prairie patches. 相似文献
4.
Changes in the global environment are modifying the geographical locations of habitats suitable for plant growth. The capacity of plants to migrate to sites of suitable environmental quality will strongly influence future distributions of plant diversity. However, it is not well understood how rates of plant migration are influenced by the habitat loss and habitat fragmentation that characterise contemporary landscapes. In this study we develop a model that can predict migration rates in both intact landscapes (potential migration rate) and in fragmented landscapes (realised migration rates). Migration rates in fragmented landscapes might be slower for many reasons. In this study we focus on two, non‐exclusive reasons. First, the processes that move seeds may break down in fragmented landscapes causing seeds to be dispersed shorter distances. Second, in fragmented landscapes some proportion of seeds will not be deposited in habitats suitable for recruitment. We describe the breakdown of dispersal processes as a competing risk between the factors influencing dispersal in intact landscapes and the factors that may disrupt dispersal processes in fragmented landscapes. We show how the parameters that influence dispersal in fragmented landscapes can be estimated, and how these estimates can be used to forecast migration rates using an integrodifference equation (IDE). The forecasts of the IDE described the effects of reduced dispersal distances adequately. However, the IDE produced biased estimates of the effects of a reduction in plant habitat on migration rates. Model analyses showed that, although we can expect realised migration rates to be lower than potential migration rates, we can also expect the sensitivity of migration rate to habitat loss to vary. In addition, simulations showed that the qualitative nature of the responses of migration rate to habitat loss were variable – some model species responded non‐linearly to habitat loss, others responded linearly. While our method provides guidelines for empirical data collection and model parameterisation, we recognise that obtaining these data will be challenging. 相似文献
5.
Separating the threats that habitat loss and habitat fragmentation pose to biodiversity is challenging because these processes usually occur simultaneously. Additionally, their importance may be underestimated due to time-delayed extinction. In central Texas savannas, woody plant encroachment reduces the amount of habitat available to herbaceous species while fragmenting remaining habitat. We examined the relationships between present species richness and present and past habitat amount and fragmentation (measured as fractal dimension) using a series of aerial photographs taken over nearly 60 years. We show that woody plant encroachment, a common phenomenon in savannas worldwide, reduces the diversity of herbaceous vegetation through both habitat loss and fragmentation. Habitat loss has the strongest impact on species richness over short time spans and small spatial scales in these savannas. Habitat fragmentation, however, has the strongest impact over longer time spans and larger spatial scales and generates long-term extinction debts. We also demonstrate that examining habitat loss and habitat fragmentation across different time periods and at different spatial scales is essential for understanding their joint and individual effects on plant community composition. 相似文献
6.
Genetic drift in finite populations ultimately leads to the loss of genetic variation. This paper examines the rate of neutral gene loss for a range of population structures defined by a graph. We show that, where individuals reside at fixed points on an undirected graph with equal degree nodes, the mean time to loss differs from the panmictic value by a positive additive term that depends on the number of individuals (not genes) in the population. The effect of these spatial structures is to slow the time to fixation by an amount that depends on the way individuals are distributed, rather than changing the apparent number of genes available to be sampled. This relationship breaks down, however, for a broad class of spatial structures such as random, small-world and scale-free networks. For the latter structures there is a counter-intuitive acceleration of fixation proportional to the level of ploidy. 相似文献
7.
Tropical montane forests suffer from increasing fragmentation and replacement by other types of land-use such as coffee plantations.
These processes are known to affect gene flow and genetic structure of plant populations. Epiphytes are particularly vulnerable
because they depend on their supporting trees for their entire life-cycle. We compared population genetic structure and genetic
diversity derived from AFLP markers of two epiphytic fern species differing in their ability to colonize secondary habitats.
One species, Pleopeltis crassinervata, is a successful colonizer of shade trees and isolated trees whereas the other species, Polypodium rhodopleuron, is restricted to forests with anthropogenic separation leading to significant isolation between populations. By far most
genetic variation was distributed within rather than among populations in both species, and a genetic admixture analysis did
not reveal any clustering. Gene flow exceeded by far the benchmark of one migrant per generation to prevent genetic divergence
between populations in both species. Though populations are threatened by habitat loss, long-distance dispersal is likely
to support gene flow even between distant populations, which efficiently delays genetic isolation. Consequently, populations
may rather be threatened by ecological consequences of habitat loss and fragmentation. 相似文献
8.
生境破碎化包括生境丧失与破碎化两个相对独立的过程,为探讨这两个过程各自对生物多样性的影响,本文利用苜蓿草地实验模型系统(EMS)构建了36个小区研究不同生境丧失与破碎化对昆虫群落及不同类群的影响,包括18个破碎化小区与18个连续小区,破碎化小区全部采用1 m×1 m(H=1)破碎,连续小区苜蓿连片(H=0),生境丧失采... 相似文献
9.
Whereas matrix management has recently been suggested as a useful tool in biodiversity conservation, patterns and processes within matrices remain unknown. We examined the effects of the loss and fragmentation (configuration) of original deciduous habitats on birds in larch plantation matrix in the winter and during the breeding season in a montane region in Nagano Prefecture, central Japan. Birds were counted using a plot-count method from 32 (winter) and 46 (breeding) matrix (plantation) sites with a range of surrounding habitat loss and fragmentation at a 1600-m scale. Birds were assigned to species groups based on ecological traits, and three groups for which larch plantation would function as low-quality matrix were analyzed. Bird occurrences were explained primarily by habitat structure. Although the effects of landscape structure were less than those of habitat structure, three of five groups across the two seasons experienced significant landscape effects. All effects were of habitat fragmentation (scatteredness of deciduous habitats), i.e. two groups (flycatchers in the breeding season and tree nesters in both seasons) frequently occurred in matrix surrounded by highly scattered deciduous habitats. However, most of these effects were confounded by local habitat structure. That is, the variation in bird occurrences explained purely by fragmentation variables was <6%. Nonetheless, because these effects were marginally significant at p<0.10, there was some support for fragmentation effects after covariation with habitat structure was considered. Based on these results and associated theoretical studies, we hypothesized that habitat fragmentation leads to loss of individuals and is more important than habitat loss in landscapes with a structurally similar matrix. We also hypothesized that matrix within landscapes with highly scattered habitats should be managed with high priority. 相似文献
10.
Although habitat fragmentation is suspected to jeopardize the long-term survival of many species, few data are available on its impact on the genetic variability of invertebrates. We assess the genetic population structure of the flightless ground beetle Carabus violaceus L., 1758 in a Swiss forest, which is divided into several fragments by a highway and two main roads. Eight samples were collected from different forest fragments and analysed at six microsatellite loci. The largest genetic differentiation was observed between samples separated by roads and in particular by the highway. The number of roads between sites explained 44% of the variance in pairwise F(ST) estimates, whereas the age of the road and the geographical distance between locations were not significant factors. Furthermore, a comparison of allelic richness showed that the genetic variability in a small forest fragment isolated by the highway was significantly lower than in the rest of the study area. These findings strongly support the hypothesis that large roads are absolute barriers to gene flow in C. violaceus, which may lead to a loss of genetic variability in fragmented populations. 相似文献
11.
Habitat loss and fragmentation are known to reduce patch sizes and increase their isolation, consequently leading to modifications
in species richness and community structure. Calcareous grasslands are among the richest ecosystems in Europe for insect species.
About 10% (1,150 ha) of the total area of a calcareous ridge region (Calestienne, Belgium) and its butterfly community was
analysed over a timeframe of about 100 years. Since 1905 to present day (2005), the Calestienne region has undergone both
calcareous grassland loss and fragmentation: not only did calcareous grassland size decrease and isolation increase, but also,
the number of calcareous grassland patches within the landscape increased until 1965, and subsequently decreased, clearly
reflecting the effects of fragmentation. These processes have had a profound effect on the butterfly community: extinction
and rarefaction affected significantly more often specialist species, which means that generalist species are more and more
overrepresented. This ecological drift, i.e. the replacement of specialists by generalists in species assemblages is likely
to be a general effect of habitat loss and fragmentation on natural communities. 相似文献
12.
Habitat loss and fragmentation would often induce delayed extinction, referred to as extinction debt. Understanding potential extinction debts would allow us to reduce future extinction risk by restoring habitats or implementing conservation actions. Although growing empirical evidence has predicted extinction debts in various ecosystems exposed to direct human disturbances, potential extinction debts in natural ecosystems with minimal direct human disturbance are little studied. Ongoing climate change may cause habitat loss and fragmentation, particularly in natural ecosystems vulnerable to environmental change, potentially leading to future local extinctions. Recent climate change would lead to extended growing season caused by earlier snowmelt in spring, resulting in expansion of shrubby species and thereby habitat loss and fragmentation of mountainous moorlands. We examined the potential extinction debts of species diversity and functional diversity (FD; trait variation or multivariate trait differences within a community) in subalpine moorland ecosystems subjected to few direct human disturbances. Plant species richness for all species and for moorland specialists were primarily explained by the past kernel density of focal moorlands (a proxy for spatial clustering of moorlands around them) but not the past area of the focal moorlands, suggesting potential extinction debt in subalpine moorland ecosystems. The higher kernel density of the focal moorland in the past indicates that it was originally surrounded by more neighborhood moorlands and/or had been locally highly fragmented. Patterns in current plant species richness have been shaped by the historical spatial configuration of moorlands, which have disappeared over time. In contrast, we found no significant relationships between the FD and historical and current landscape variables depicting each moorland. The prevalence of trait convergence might result in a less sensitive response of FD to habitat loss and fragmentation compared to that of species richness. Our finding has an important implication that climate change induced by human activities may threaten biodiversity in natural ecosystems through habitat loss and fragmentation. 相似文献
14.
Habitat loss and fragmentation is one of the main causes of biodiversity loss. Rare species are generally thought to be more sensitive to habitat fragmentation than common ones as small populations become even smaller. We did a population genetic study on a rare bird, the Worthen's sparrow Spizella wortheni which is endemic to semi‐arid and arid regions of northeast Mexico. Its population numbers suffer greatly from the transformation of grassland into farmland that leads to a patchy distribution with locally small population sizes. Our data show that its genetic diversity is nevertheless high, few to no differentiation between study localities was found, and gene flow was high. Although we can not exclude that is too early to see an impact on the genetic level, we think that these results might be explained by the species’ biology: like many other birds living in arid areas, the Worthen's sparrow has a nomadic life style; depending on local conditions individuals flexibly move between areas. This behavior could enhance their ability to find suitable habitat patches in a fragmented landscape. Our results imply that nomadic behavior, which is an adaptation to high temporal variability in environmental conditions, may make species more resilient to spatial variability caused by habitat fragmentation. This insight contributes to identifying common factors such as nomadism that predict a species’ sensitivity to habitat fragmentation. 相似文献
15.
We evaluate the hypothesis that Atlantic cod larvae are passively transported by sea currents from off-shore spawning areas to settle in coastal waters, a hypothesis which has recently gained support from genetic analysis of cod in the North Sea-Skagerrak area. Such larval transport has been suggested to be an important mechanism behind the commonly observed low spatial genetic differentiation in many marine organisms. Here, we apply an ARMAX(2,2) model for juvenile abundance and use long-term monitoring data from the Skagerrak coast, constituting 54 continuous annual series from 1945 to 1997. Analysing the model, we find that the product of the size of the North Sea breeding stock and the strength of the net inflow of North Sea waters had a significant, positive effect on the abundance of coastal juvenile cod. The peak effect occurs during the month of March, just after spawning, when eggs and larvae remain pelagic and sensitive to currents. In contrast, we find no evidence of any direct effect of the North Sea spawning stock alone. Our analyses indicate that 15-20,000 0-group larvae from the North Sea reach each fjord per year, on average. This corresponds to about 1-10% of the total 0-group population in each fjord on average. These findings clearly demonstrate a direct link between larval drift and gene flow in the marine environment. 相似文献
16.
Habitat loss and the resultant fragmentation of remaining habitat is the primary cause of loss of biological diversity. How do these processes affect the dynamics of parasites and pathogens? Hess has provided some important insights into this problem using metapopulation models for pathogens that exhibit ''S-I'' dynamics; for example, pathogens such as rabies in which the host population may be divided into susceptible and infected individuals. A major assumption of Hess''s models is that infected patches become extinct, rather than recovering and becoming resistant to future infections. In this paper, we build upon this framework in two different ways: first, we examine the consequences of including patches that are resistant to infection; second, we examine the consequences of including a second species of host that can act as a reservoir for the pathogen. Both of these effects are likely to be important from a conservation perspective. The results of both sets of analysis indicate that the benefits of corridors and other connections that allow species to disperse through the landscape far outweigh the possible risks of increased pathogen transmission. Even in the commonest case, where harmful pathogens are maintained by a common reservoir host, increased landscape connectance still allows greater coexistence and persistence of a threatened or endangered host. 相似文献
17.
生境破碎化对生物多样性和生态系统功能影响是当前国内外生态学家研究的热点问题之一。文章针对生境破碎化的内涵、量度指标进行介绍,着重分析生境破碎化对植物-昆虫关系的影响,包括植物与植食性昆虫的关系、植物与传粉昆虫的关系、种子与种子捕食者的关系,植物及其分解者的关系,还分析生境破碎化对昆虫-昆虫关系的影响,包括昆虫及其拟寄生物的关系、捕食者与猎物的关系。通过对上述方面的阐述,旨在更好地理解生境破碎化对动植物群落相互关系产生的深刻影响,并提出今后研究中应注意的问题和研究热点。 相似文献
18.
- 1 Current stream restoration practices are rarely based on sufficient knowledge of the physical-habitat requirements of the biota. In this study the drift loss of two lowland stream benthic macroinvertebrates, Gammarus pulex (L.) (Amphipoda, Crustacea) and Ephemerella ignita (Poda) (Ephemeroptera, Insecta), was investigated over gradients of flow forces and abundance of woody debris in laboratory flume experiments.
- 2 The losses by drift of E. ignita and G. pulex increased significantly at median flume shear stresses of approximately 11 and 31 dyn cm?2, respectively.
- 3 Above these critical shear-stress values the population losses of both species significantly decreased with increasing abundance of stationary woody debris.
- 4 Ephemerella ignita exhibited high population loss in the first period of hydraulic disturbance. Gammarus pulex was affected in a different way, showing an almost constant population loss over time. In contrast to E. ignita, G. pulex used the refugium ‘woody debris’ actively and more efficiently.
- 5 Restoration concepts of lowland running waters have to consider hydraulic disturbance by flow as a key element for potential benthic community recovery.
- 6 Woody debris in the baseflow channel of lowland streams appears to mitigate the impact of hydraulic disturbance to benthic macroinvertebrates caused by rising discharge.
相似文献
19.
? The mating system, dispersal and census size are predicted to determine the magnitude of genetic drift, but little is known about their relative importance in nature. ? We estimated the contributions of several population-level features to genetic drift in 18 populations of Arabidopsis lyrata. The factors were outcrossing rate, within-population spatial genetic structure, census size and substrate type. The expected heterozygosity (H(E)) at 10 microsatellite loci was taken to reflect the effective population size (N(e)) and the strength of genetic drift. ? The mating system explained most of the variation in H(E) (60%), followed by substrate (10%), genetic structure (9%) and census size (6%). The most outcrossing population had a +0.32 higher predicted H(E) than the most selfing population; the estimated N(e) of selfing populations was less than half that of outcrossing populations. Rocky outcrops supported populations with a +0.14 higher H(E) than did sandy substrates. The most structured population had a +0.24 higher H(E) than the least structured population, and the largest population had a +0.18 higher H(E) than the smallest population. ? This study illustrates the importance of outcrossing, genetic structure and the physical environment--together with census size--in maintaining H(E), and suggests that multiple population-level characteristics influence N(e) and the action of genetic drift. 相似文献
20.
Fragmentation can affect the demographic and genetic structure of populations near the boundary of their biogeographic range. Higher genetic differentiation among populations coupled with lower level of within-population variability is expected as a consequence of reduced population size and isolation. The effects of these 2 factors have been rarely disentangled. Given their high gene flow, anemophilous forest trees should be more affected, in terms of loss of genetic diversity, by small population size rather than geographic isolation alone. We studied the impact of distance from the main range (a measure of isolation) and reduced population size on the within-population and among population components of genetic variability. We assayed 11 isozyme loci in a total of 856 individuals in 27 marginal populations of European beech (Fagus sylvatica L.) in Central Italy. Populations were divided into 3 groups with an increasing level of fragmentation. In the most fragmented group, the within-population genetic variability was slightly smaller and the among population differentiation significantly larger than in the other 2 groups. Isolation-by-distance was lost when only pairs of populations involving at least one from the most fragmented group were considered and maintained in the other groups. These results support the role of random genetic drift having a larger impact on the most fragmented group, whereas gene flow seems to balance genetic drift in the 2 less fragmented ones. Given that average distance from the main range is not different between the intermediate and the most fragmented group, but average population size is smaller, we can conclude that gene flow is effective, even at relatively long distances, in balancing the effect of fragmentation if population size is not too small. 相似文献
|