首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The MukB protein is essential for chromosome partitioning in Escherichia coli and consists of 1484 amino acid residues (170 kDa). We have determined the base changes at the mutated sites of the mukB106 mutant and a newly isolated mutant, mukB33 . These mutant mukB genes were each found to carry a single base-pair transition which leads to an amino acid substitution; a serine residue at position 33 was changed to phenylalanine in the case of mukB106 , and an aspartic acid residue at position 1201 was changed to asparagine in the case of mukB33 .  相似文献   

2.
The partition system of the low-copy-number plasmid/prophage of bacteriophage P1 encodes two proteins, ParA and ParB, and contains a DNA site called parS. ParB and the Escherichia coli protein IHF bind to parS to form the partition complex, in which parS is wrapped around ParB and IHF in a precise three-dimensional conformation. Partition can be thought of as a positioning reaction; the plasmid-encoded components ensure that at least one copy of the plasmid is positioned within each new daughter cell. We have used an E. coli chromosomal partition mutant to test whether this positioning is mediated by direct plasmid-chromosomal attachment, for example, by pairing of the partition complex that forms at parS with a bacterial attachment site. The E. coli MukB protein is required for proper chromosomal positioning, so that mukB mutants generate some cells without chromosomes (anucleate cells) at each cell division. We analyzed the plasmid distribution in nucleate and anucleate mukB cells. We found that P1 plasmids are stable in mukB mutants and that they partition into both nucleate and anucleate cells. This indicates that the P1 partition complex is not used to pair plasmids with the host chromosome and that P1 plasmids must be responsible for their own proper cellular localization, presumably through host-plasmid protein-protein interactions.  相似文献   

3.
FtsH is an ATP-dependent protease that is essential for cell viability in Escherichia coli. The essential function of FtsH is to maintain the proper balance of biosynthesis of major membrane components, lipopolysaccharide and phospholipids. F plasmid uses a partitioning system and is localized at specific cell positions, which may be related to the cell envelope, to ensure accurate partitioning. We have examined the effects of ftsH mutations on the maintenance of a mini-F plasmid, and have found that temperature-sensitive ftsH mutants are defective in mini-F plasmid partition, but not replication, at permissive temperature for cell growth. A significant fraction of replicated plasmid molecules tend to localize close together on one side of the cell, which may result in failure to pass the plasmid to one of the two daughter cells upon cell division. By contrast, an ftsH null mutant carrying the suppressor mutation sfhC did not affect partitioning of the plasmid. The sfhC mutation also suppressed defective maintenance in temperature-sensitive ftsH mutants. Using this new phenotype caused by ftsH mutations, we also isolated a new temperature-sensitive ftsH mutant. Mutations in ftsH cause an increase in the lipopolysaccharide/ phospholipid ratio due to stabilization of the lpxC gene product, which is involved in lipopolysaccharide synthesis and is a substrate for proteolysis by the FtsH protease. It is likely that altered membrane structure affects the localization or activity of a putative plasmid partitioning apparatus located at positions equivalent to 1/4 and 3/4 of the cell length.  相似文献   

4.
5.
A new mutation, parC, causing abnormal chromosome segregation was identified in two thermosensitive mutants of Escherichia coli. The thermosensitive growth of the mutants was corrected by pLC4-14 in the Clarke-Carbon collection. This plasmid carries a putative gene which can suppress the cell division defect due to ftsI (pbpB) and has hence been termed sufI (sui). The nearness of parC to metC was confirmed, and cotransduction frequency of parC was 59% with metC and 20% with glc. The parC-sufI region was analyzed by subcloning the chromosome region of pLC4-14. The parC and the sufI gene products were electrophoretically identified as proteins of 75 and 55 kilodaltons (kDa), respectively. The allelism of parC+ on pLC4-14 to parC1215 was confirmed by cloning parC1215. The sufI gene appeared to be dispensable for cell viability, and overproduction of its product caused suppression of ftsI. An essential gene coding for a 25-kDa protein was found between the parC and the sufI gene. These three genes were transcribed in the same direction and may be organized into an operon, with parC to the proximal side and with internal promoters at least for the distal genes. The localization of the gene products was examined in maxicells. The sufI protein was synthesized as a precursor which could be chased into a mature form. The major part of the mature form was found in the soluble fraction. The 25-kDa protein was found almost exclusively in the membrane fraction. The parC protein was associated with the membrane fraction in the presence of Mg2+ but found in the soluble fraction when Mg2+ was sequestered with EDTA.  相似文献   

6.
The nucleotide sequence was determined of the region upstream of the mukB gene of Escherichia coli. Two new genes were found, designated kicA and kicB (killing of cell); the gene order is kicB-kicA-mukB. Promoter activities were detected in the regions immediately upstream of kicB and kicA, but not in front of mukB. Gene disruption experiments revealed that the kicA disruptant was nonviable, but the kicB-disrupted mutant and the mutant lacking both the kicB and kicA genes were able to grow. When kicA disruptant cells bearing a temperature-sensitive replication plasmid carrying the kicA + gene were grown at 30° C and then transferred to 42° C, the mutant cells gradually lost colony-forming ability, even in the presence of a mukB + plasmid. Rates of protein synthesis, but not of RNA or DNA synthesis, fell dramatically during incubation at 42° C. These results suggested that the kicB gene encodes a killing factor and the kicA gene codes for a protein that suppresses the killing function of the kicB gene product. It was also demonstrated that KicA and KicB can function as a post-segregational killing system, when the genes are transferred from the E. coli chromosome onto a plasmid.  相似文献   

7.
GTP-binding proteins are involved in cell proliferation, development, signal transduction, protein elongation, etc. and construct the GTPase superfamily, whose structures and sequence motifs (G-1 to G-5) are highly conserved from prokaryote to eukaryote. Obg of Bacillus subtilis and Obg homologues of other bacteria belong to the GTPase superfamily and have been suggested as being essential for cell growth, development and monitoring of intracellular levels of GTP. We identified the Obg homologue in Escherichia coli, a protein previously known as YhbZ, which we have renamed ObgE. Double cross-over experiments showed that the obgE gene is essential for growth in E. coli. From characterization of the obgE temperature-sensitive mutant, we found that DNA replication was not inhibited, that the nucleoids did not partition and instead remained in the middle of cell, and that the cells elongated. Overproduction of ObgE also resulted in aberrant chromosome segregation. These data suggested that ObgE is involved directly or indirectly in E. coli chromosome partitioning. Characterization studies showed that ObgE is abundant in normal cells, partially associated with the membrane and does not associate with ribosomes such as in Obg of B. subtilis. We purified ObgE protein from a cell extract of E. coli, and the purified ObgE had GTPase activity and DNA-binding ability.  相似文献   

8.
Identification of the ubiD gene on the Escherichia coli chromosome   总被引:2,自引:0,他引:2       下载免费PDF全文
The open reading frame at 86.7 min on the Escherichia coli chromosome, "yigC," complemented a ubiD mutant strain, AN66, indicating that yigC is the ubiD gene. The gene product, a 497-amino-acid-residue protein, showed extensive homology to the UPF 00096 family of proteins in the Swiss-Prot database.  相似文献   

9.
The sopAB operon and the sopC sequence, which acts as a centromere, are essential for stable maintenance of the mini-F plasmid. Immunoprecipitation experiments with purified SopA and SopB proteins have demonstrated that these proteins interact in vitro. Expression studies using the lacZ gene as a reporter revealed that the sopAB operon is repressed by the cooperative action of SopA and SopB. Using immunofluorescence microscopy, we found discrete fluorescent foci of SopA and SopB in cells that produce both SopA and SopB in the presence of the sopC DNA segment, but not in the absence of sopC, suggesting the SopA-SopB complex binds to sopC segments. SopA was exclusively found to colocalize with nucleoids in cells that produced only SopA, while, in the absence of SopA, SopB was distributed in the cytosolic spaces.  相似文献   

10.
K Yamanaka  T Ogura  H Niki    S Hiraga 《Journal of bacteriology》1992,174(23):7517-7526
The mukB gene encodes a protein involved in chromosome partitioning in Escherichia coli. To study the function of this protein, we isolated from the temperature-sensitive mukB null mutant and characterized 56 suppressor mutants which could grow at 42 degrees C. Ten of the mutants also showed cold-sensitive growth at 22 degrees C. Using one of the cold-sensitive mutants as host, the wild type of the suppressor gene was cloned. The cloned suppressor gene complemented all of the 56 suppressor mutations. DNA sequencing revealed the presence of an open reading frame of 723 bp which could encode a protein of 25,953 Da. The gene product was indeed detected. The previously undiscovered gene, named smbA (suppressor of mukB), is located at 4 min on the E. coli chromosome, between the tsf and frr genes. The smbA gene is essential for cell proliferation in the range from 22 to 42 degrees C. Cells which lacked the SmbA protein ceased macromolecular synthesis. The smbA mutants are sensitive to a detergent, sodium dodecyl sulfate, and they show a novel morphological phenotype under nonpermissive conditions, suggesting a defect in specific membrane sites.  相似文献   

11.
Recombination is extensively used in order to move alleles between replicons. The exchange of wild-type chromosomal and mutant plasmid-borne alleles is a two-step process entailing the formation of a cointegrate between the entire plasmid and the chromosome, followed by resolution of such cointegrates to give a mutant chromosome and a plasmid carrying the wild-type chromosomal sequence. Often the cointegrate and the resolved forms cannot be distinguished phenotypically. To enable the direct isolation of the resolved products we have developed a positive selection technique. Cells containing a cointegrated plasmid R1 were constructed by transduction using a P1 lysate prepared from cells harbouring a plasmid comprising a mutant chromosomal allele and the so-called omega fragment which carries an aad (aminoglycoside adenylyltransferase) gene. P1 transduction from the cointegrate strain into an SmD recipient allowed direct selection for the resolved complex, since transduction of the aad gene is lethal to an SmD strain.  相似文献   

12.
13.
14.
A role for the Escherichia coli glgX gene in bacterial glycogen synthesis and/or degradation has been inferred from the sequence homology between the glgX gene and the genes encoding isoamylase-type debranching enzymes; however, experimental evidence or definition of the role of the gene has been lacking. Construction of E. coli strains with defined deletions in the glgX gene is reported here. The results show that the GlgX gene encodes an isoamylase-type debranching enzyme with high specificity for hydrolysis of chains consisting of three or four glucose residues. This specificity ensures that GlgX does not generate an extensive futile cycle during glycogen synthesis in which chains with more than four glucose residues are transferred by the branching enzyme. Disruption of glgX leads to overproduction of glycogen containing short external chains. These results suggest that the GlgX protein is predominantly involved in glycogen catabolism by selectively debranching the polysaccharide outer chains that were previously recessed by glycogen phosphorylase.  相似文献   

15.
16.
M A Schell  D B Wilson 《Gene》1979,5(4):291-303
This report describes the construction and isolation of a plasmid, derived from pBR322, which carries a BglII restriction fragment of DNA containing the galactokinase gene from Saccharomyces cerevisiae. This was accomplished by the following procedure: (1) Purified galactokinase mRNA, labelled with 125I, was hybridized to BglII digests of yeast DNA employing Southern's filter transfer technique to identify a restriction fragment containing the galactokinase gene. (2) This fragment was partially purified by agarose gel electrophoresis, ligated into the BamHI site of pBR322 and transformed into Escherichia coli to generate a clone bank containing the galactokinase gene. (3) This bank was screened by in situ colony hybridization with galactokinase mRNA resulting in the identification of a plasmid carrying this gene. This plasmid DNA hybridized with the galactokinase mRNA to the same extent in the presence of absence of a large excess of unlabelled mRNA from cells that were not induced for galactokinase synthesis, while the same amount of unlabelled galactose-induced mRNA reduced the hybridization by 95%. When this plasmid was introduced into an E. coli strain deleted for the galactose operon it caused the synthesis of low levels of yeast galactokinase activity.  相似文献   

17.
The ribosome-releasing factor (RRF) gene was localized at a position between 2 and 6 min on the Escherichia coli chromosome by measuring the gene-dosage-dependent production of RRF in various E. coli F' merozygotes. This position was confirmed and refined by using a nucleotide probe corresponding to a 16-amino-acid sequence in RRF. It was found that the RRF gene was contained in pLC 6-32 of the Clark-Carbon Gene Bank. Restriction enzyme mapping of E. coli genomic DNA with the above probe led us to conclude that the RRF gene is situated in the 4-min region, somewhere downstream (clockwise) of the elongation factor Ts gene, tsf. A pLC 6-32-derived DNA fragment which carries the RRF gene was found to contain a partial sequence of tsf. The exact location of the translational initiation site of the RRF gene was determined to be 1.1 kilobases downstream from the translational termination site of tsf. The RRF gene is designated frr.  相似文献   

18.
E P Ogryz'ko  V G Nikiforov 《Genetika》1988,24(10):1894-1896
A multicopy plasmid pLMN1 expressing a wild type rpoB gene encoding Escherichia coli RNA polymerase beta subunit gene was constructed. Introduction of this plasmid into rifampicin-resistant RpoB mutants makes them rifampicin-sensitive. Rifampicin-resistant clones appear in such strains with frequencies up to 10(-3), due to recombinational (recA-dependent) transfer of rif-r mutations from chromosome to pLMN1. This provides a simple selection procedure for transfer of any rpoB mutation, together with a rif-r mutation from a chromosome to pLMN1. In this way, we transferred rpoB22 amber mutation to pLMN1 for localization of the mutant codon by DNA sequencing.  相似文献   

19.
An expression plasmid in which plasmid DNA replication and heterologous gene expression can be simultaneously regulated was constructed to avoid derepression prior to induction. This was achieved by placing a pBR322 origin of replication immediately downstream of an anthranilate synthase-human epidermal growth factor fusion gene (trpE-hEGF), both under the control of the promoter from the tryptophan biosynthetic operon. Regulation of plasmid copy number ensured tight repression of the trp promoter prior to induction. Upon induction, plasmid copy number increased up to six-fold and the fusion protein accumulated to approximately 12% of total cell protein. Induction experiments with a series of plasmid derivatives with sequentially lower copy numbers revealed that accumulation levels of the TrpE-hEGF fusion protein post-induction correlated well with plasmid copy number. Plasmid constructs where the native trp promoter had been replaced by derivatives deleted of the attenuator resulted in high levels of hEGF accumulation in the tryptophan-free medium prior to induction. Nevertheless, up to two-fold increase in TrpE-hEGF accumulation levels were obtained using the constructs lacking the attenuator compared to those bearing the native trp promoter.  相似文献   

20.
The construction and some properties of new hybrid plasmids which are able to replicate in both Escherichia coli and Bacillus subtilis are presented. A 5.5 Md hybrid plasmid pJP9 was constructed from pBR322 (Tc, Ap) and pUB110 (Nm) plasmids. pIM1 (7.0 Md) and pIM3 (7.7 Md) plasmids are its different erythromycin resistant derivatives. Tetracycline, ampicillin, neomycin and possibly erythromycin resistance genes are expressed in E. coli while neomycin and erythromycin resistance genes are expressed in B. subtilis. Insertional inactivation of only one gene is possible using the pJP9 plasmid as a vector in B. subtilis. However, insertional inactivation of at least two different genes can be achieved and monitored in E. coli and B. subtilis transformants in cloning experiments with PIM1 and pIM3 plasmids. Insertional inactivation of antibiotic resistance genes present in pJP9 plasmid was achieved by cloning of Streptococcus sanguis DNA fragments generated by appropriate restriction endonucleases. The pJP9 plasmid and its derivatives were found to be stable in both hosts cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号