首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural organization of proteins in biological membranes can affect their function. Photosynthetic thylakoid membranes in chloroplasts have the remarkable ability to change their supramolecular organization between disordered and semicrystalline states. Although the change to the semicrystalline state is known to be triggered by abiotic factors, the functional significance of this protein organization has not yet been understood. Taking advantage of an Arabidopsis thaliana fatty acid desaturase mutant (fad5) that constitutively forms semicrystalline arrays, we systematically test the functional implications of protein crystals in photosynthetic membranes. Here, we show that the change into an ordered state facilitates molecular diffusion of photosynthetic components in crowded thylakoid membranes. The increased mobility of small lipophilic molecules like plastoquinone and xanthophylls has implications for diffusion-dependent electron transport and photoprotective energy-dependent quenching. The mobility of the large photosystem II supercomplexes, however, is impaired, leading to retarded repair of damaged proteins. Our results demonstrate that supramolecular changes into more ordered states have differing impacts on photosynthesis that favor either diffusion-dependent electron transport and photoprotection or protein repair processes, thus fine-tuning the photosynthetic energy conversion.  相似文献   

2.
Analyses were made of the effects of extraction of the 17,24 kilodalton extrinsic proteins from spinach versus wheat photosystem II (PSII) membranes on Ca abundance and O(2) evolution capacity determined in the absence and presence of either Cl(-) or Ca(2+). Extraction of these proteins from spinach PSII routinely diminished steady state O(2) evolution by about 70% when assayed in the presence of sufficient Cl(-). Additionally, O(2) evolution of 17,24 kilodalton-less spinach PSII membranes showed about 2-fold more enhancement by Ca(2+) than by Cl(-) during assay. When the same extraction and assay procedures were applied to wheat PSII membranes, we observed, in contrast to 17,24 kilodalton-less spinach PSII, only about 50% inhibition of O(2) evolution and about 2-fold greater enhancement by Cl(-) than by Ca(2+). Irrespective of differences in the magnitude of enhancement of O(2) evolution by Ca(2+)versus Cl(-) in spinach versus wheat, the K(m) values for Cl(-) (about 1.7 millimolar) and Ca(2+) (about 1.5 millimolar) were similar for both type preparations. The abundance of Ca specifically associated with fully functional PSII (about 2 and about 3 Ca/200 chlorophyll for spinach and wheat, respectively) was diminished to about 1 per 200 chlorophyll upon 17.24 kilodalton protein depletion. Further treatment of wheat 17,24 kilodalton-less PSII in darkness with 2 molar NaCl/1 millimolar ethyleneglycol-bis(beta-aminoethyl ether)-N,N'-tetraacetic acid/20 micromolar A23187(2) made O(2) evolution highly dependent on Ca(2+) addition, much like the 17,24 kilodalton-less spinach PSII. Analyses of this Ca(2+) effect on O(2) evolution revealed both high (K(m) about 65 micromolar) and low (K(m) about 1.5 millimolar) affinity Ca(2+) sites in wheat 17,24 kilodalton-less PSII. The results suggest that during 17,24 kilodalton extraction by NaCl, spinach PSII is more susceptible than wheat PSII to loss of high affinity Ca and irreversible inhibition of O(2) evolution.  相似文献   

3.
Photosynthetic thylakoid membranes in plants contain highly folded membrane layers enriched in photosystem II, which uses light energy to oxidize water and produce oxygen. The sunlight also causes quantitative phosphorylation of major photosystem II proteins. Analysis of the Arabidopsis thaliana stn7xstn8 double mutant deficient in thylakoid protein kinases STN7 and STN8 revealed light-independent phosphorylation of PsbH protein and greatly reduced N-terminal phosphorylation of D2 protein. The stn7xstn8 and stn8 mutants deficient in light-induced phosphorylation of photosystem II had increased thylakoid membrane folding compared with wild-type and stn7 plants. Significant enhancement in the size of stacked thylakoid membranes in stn7xstn8 and stn8 accelerated gravity-driven sedimentation of isolated thylakoids and was observed directly in plant leaves by transmission electron microscopy. Increased membrane folding, caused by the loss of light-induced protein phosphorylation, obstructed lateral migration of the photosystem II reaction center protein D1 and of processing protease FtsH between the stacked and unstacked membrane domains, suppressing turnover of damaged D1 in the leaves exposed to high light. These findings show that the high level of photosystem II phosphorylation in plants is required for adjustment of macroscopic folding of large photosynthetic membranes modulating lateral mobility of membrane proteins and sustained photosynthetic activity.The use of captured sunlight energy to split water and drive oxygenic photosynthesis by photosystem II (PSII) (Barber, 2006) inevitably generates reactive oxygen species and causes oxidative damage to the PSII protein pigment complex. The light-induced damage to PSII, in particular to the D1 reaction center protein, requires PSII repair to sustain its photosynthetic function (Takahashi and Murata, 2008). Impairment and degradation of D1 increase with rising light intensities, and this protein has the fastest turnover rate among the photosynthetic proteins of plants, algae, and cyanobacteria (Yokthongwattana and Melis, 2006). However, in plants, the PSII is segregated in highly stacked membrane layers of very large thylakoid membranes (Andersson and Anderson, 1980; Kirchhoff et al., 2008), which are densely folded to fit inside chloroplasts (Mullineaux, 2005; Shimoni et al., 2005). As a consequence, the PSII repair cycle in plants is slower than in cyanobacteria (Yokthongwattana and Melis, 2006), and it includes migration of the PSII complex from the stacked membrane domains (grana) to the unstacked membranes (stroma lamellae), where proteolysis and insertion of a newly synthesized D1 protein occurs (Baena-Gonzalez and Aro, 2002; Yokthongwattana and Melis, 2006). High light also causes quantitative phosphorylation of the membrane surface–exposed regions of D1, D2, CP43, and PsbH proteins of PSII in plants (Rintamäki et al., 1997; Vener et al., 2001), but the function of this phosphorylation is largely unknown and reports on its importance for the D1 protein turnover are conflicting (Bonardi et al., 2005; Tikkanen et al., 2008).Phosphorylation of the PSII proteins in Arabidopsis thaliana depends mostly on the light-activated protein kinase STN8 (Vainonen et al., 2005), while the STN7 kinase is essential for phosphorylation of the light-harvesting proteins of PSII (Bellafiore et al., 2005; Bonardi et al., 2005; Tikkanen et al., 2006). An earlier study on Arabidopsis mutants lacking both STN7 and STN8 (stn7xstn8), as well as only STN8, concluded that protein phosphorylation was not essential for PSII repair (Bonardi et al., 2005), while more recent work revealed a dramatic retardation in D1 degradation under high light in the stn8 and stn7xstn8 mutants (Tikkanen et al., 2008). Moreover, it was shown that the lack of PSII phosphorylation resulted in accumulation of photodamaged PSII complexes and in general oxidative damage of photosynthetic proteins in the thylakoid membranes under high light (Tikkanen et al., 2008). The other study revealed that the stn7xstn8 double mutant grown under natural field conditions produced 41% less seeds than wild-type plants (Frenkel et al., 2007), which also indicated physiological importance of thylakoid protein phosphorylation in maintenance of plant fitness.To uncover the function of light-dependent protein phosphorylation in plant photosynthetic membranes, we performed a detailed analysis of the Arabidopsis mutants deficient in the protein kinases STN7 and STN8. The earlier published results on protein phosphorylation analyses in the stn7xstn8 mutant of Arabidopsis were restricted to antiphosphothreonine antibody-based immunodetection and did not reveal any phosphorylation of PSII core proteins (Bonardi et al., 2005; Tikkanen et al., 2008). Using a mass spectrometry (MS) approach and immunoblot analyses with two complementary antiphosphothreonine antibodies, we find remaining light-independent phosphorylation of PsbH and D2 proteins of PSII in stn7xstn8. We demonstrate that degradation and aggregation patterns of the D1 protein in stn7xstn8 differ from those in wild-type, stn7, and stn8 plants. We also observe a reproducible delay in the degradation of D1 in high light–treated leaves of stn7xstn8 and stn8 compared with the wild-type and stn7 plants. Finally, we show that phosphorylation of PSII proteins modulates macroscopic rearrangements of the entire membrane network of plant thylakoids, which facilitates lateral mobility of membrane proteins, required for repair and sustained activity of PSII.  相似文献   

4.
Effects of photoinhibition on the redox properties of Cyt b-559were studied with NH2OH treated PSII membranes, which are depletedof the water-oxidizing complex. The membranes contained threeredox forms (HP-, IP- and LP-forms) of Cyt b-559, with Em valuesof +435, +237 and +45 mV, respectively. A novel intermediate-potentialform of Cyt b-559 was generated during photoinhibition on thedonor side of PSII: photoinhibitory illumination (7,000 µEm–2 s–1) for 1 min induced a 30% decrease in thelevel of the HP-form, with concomitant generation of the intermediate-potential(IP-) form whose Em value was about +350mV. Prolonged illumination(10 min) resulted in complete loss of the HP-form and an apparentincrease in the level of the IPform. After further photoinhibitorytreatment (60 min), complete loss of the IP'-form was observedand levels of the IP- and LP-forms each increased to about 50%of the total amount of Cyt b-559. Kinetic analysis of thesedata led to the conclusion that the HP-form is converted tothe LP-form via two intermediate-potential forms (IP' and IP),and that IP'-form appears only at the early phase of photoinhibition. (Received March 30, 1994; Accepted February 27, 1995)  相似文献   

5.
In manganese-retaining PS II membranes, photooxidized iodide-125labels a site close to the Cl- and/or manganese (in S2state)-binding sites in D1 protein, whereas in manganese-depletedPS II membranes it labels a site close to the Z$-binding sitein D1 protein (Ikeuchi et al.(1988) Biochim. Biophys. Acta 932:160–169). Amino acid analysis revealed that monoiodotyrosineis the sole amino acid iodinated, and peptide mapping analysisshowed that the iodination site is located between proline-141and methionine-172 of D1 in both samples. These results implythat the tyrosine residue at 147 and/or 161 of D1 is the targetof iodination irrespective of the presence or absence of manganese.Although both of the two tyrosine residues stay in membrane-spanning-helix based on proposed D1 structure, only the tyrosine-161residue is close to the lumen surface and seems to be the mostlikely candidate for iodination site. It could be also assumedin turn that Cl-, manganese- and Z$-binding sites areclose to this tyrosine-161 residue in D1 protein. (Received February 5, 1988; Accepted March 26, 1988)  相似文献   

6.
Light-induced interaction of Fe(II) cations with the donor side of Mn-depleted photosystem II (PS II(–Mn)) results in the binding of iron cations and blocking of the high-affinity (HAZ) Mn-binding site. The pH dependence of the blocking was measured using the diphenylcarbazide/2,6-dichlorophenolindophenol test. The curve of the pH dependence is bell-shaped with pK 1 = 5.8 and pK 2 = 8.0. The pH dependence of the O2-evolution mediated by PS II membranes is also bellshaped (pK 2 = 7.6). The pH dependence of the process of electron donation from exogenous donors in PS II(–Mn) was studied to determine the location of the alkaline pH sensitive site of the electron transport chain. The data of the study showed that the decrease in the iron cation binding efficiency at pH > 7.0 during blocking was determined by the donor side of the PS II(–Mn). Mössbauer spectroscopy revealed that incubation of PS II(–Mn) membranes in a buffer solution containing 57Fe(II) + 57Fe(III) was accompanied by binding only Fe(III) cations. The pH dependence of the nonspecific Fe(III) cation binding is also described by the same bell-shaped curve with pK 2 = 8.1. The treatment of the PS II(–Mn) membranes with the histidine modifier diethylpyrocarbonate resulted in an increase in the iron binding strength at alkaline pH. It is suggested that blocking efficiency at alkaline pH is determined by competition between OH and histidine ligand for Fe(III). Because the high-affinity Mn-binding site contains no histidine residue, this fact can be regarded as evidence that histidine is located at another (other than high-affinity) Fe(III) binding site. In other words, this means that the blockage of the high-affinity Mn-binding site is determined by at least two iron cations. We assume that inactivation of oxygen-evolving complex and inhibition of photoactivation in the alkaline pH region are also determined by competition between OH and a histidine residue involved in coordination of manganese cation outside the high-affinity site.  相似文献   

7.
In maize chloroplasts, the ratio of HCO3 (anion) binding sites to high-affinity atrazine binding sites is unity. In the dark, atrazine noncompetitively inhibits the binding of half of the HCO3 to the photosystem II (PSII) complexes. The inhibition of binding saturates at 5 micromolar atrazine, little inhibition is seen at 0.5 micromolar atrazine, although the high-affinity herbicide binding sites are nearly filled at this concentration. This means that HCO3 and atrazine interact noncompetitively at a specific low-affinity herbicide binding site that exists on a portion of the PSII complexes. Light abolishes the inhibitory effects of atrazine on HCO3 binding. Based on the assumption that there is one high-affinity atrazine binding site per PSII complex, we conclude that there is also only one binding site for HCO3 with a dissociation constant near 80 micromolar. The location of the HCO3 binding site, and the low-affinity atrazine binding site, is not known.  相似文献   

8.
After acid-treatment of spinach (Spinacia oleracea) chloroplasts, various partial electron transport reactions are inactivated from 25 to 75%. Divalent cations in concentrations from 10 to 50 millimolar can partially restore electron transport rates. Two cation-specific sites have been found in photosystem II: one on the 3-(3,4-dichlorophenyl)-1, 1-dimethylurea-insensitive silicomolybdate pathway, which responds better to restoration by Mg2+ than by Ca2+ ions, the other on the forward pathway to photosystem I, located on the 2,5-dimethylbenzoquinone pathway. This site is selectively restored by Ca2+ ions. When protonated chloroplasts are treated with N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)aziridine, a carboxyl group modifying reagent, presumed to react with glutamic and aspartic acid residues of proteins, restoration of electron transport at the Ca2+-selective site on the 2,5-dimethylbenzoquinone pathway is impaired, while no difference in restoration is seen at the Mg2+ site on the 3-(3,4-dichlorophenyl)-1,1-dimethylurea-insensitive silicomolybdate pathway.

Trypsin treatment of chloroplasts modifies the light-harvesting pigment-protein complex, destroys the dibromothymoquinone-insensitive 2,5-dimethyl-benzoquinone reduction, but does not interfere with the partial restoration of activity of this pathway by Ca2+ ions, implying that the selective Ca2+ effect on photosystem II (selective Ca2+ site) is different from its effects as a divalent cation on the light-harvesting pigment-protein complex involved in the excitation energy distribution between the two photosystems.

  相似文献   

9.
The photosystem II core complex purified from digitonin extractsof spinach chloroplasts was resolved into two chlorophyll-proteincomplexes by digitonin polyacrylamide gel electrophoresis aftertreatment with 1 M potassium thiocyanate. One of the chlorophyll-proteincomplexes resolved consisted of 47, 32, 30 and 9 kDa polypeptidesand the other was complementally composed of only the 43 kDapolypeptide. The former complex was highly active in the photoreductionof 2, 6-dichlorophenol indophenol by 1,5-diphenylcarbazide andretained all of the components responsible for the electrontransport from the secondary electron donor (Z) to the primaryelectron acceptor (QA). EPR signal IIfast and IIslow were alsopreserved in this complex although their hyperfine structureswere largely modified. The complex was estimated to contain1.8 molecules of plastoquinone A as well as 1.5, 3.7 and 3.9molecules of cytochrome b559, pheophytin and ß-carotene,respectively, per QA. These results indicate that potassiumthiocyanate specifically removes the 43 kDa polypeptide fromthe PS II core complex leaving the electron transport systemin an almost intact state. (Received June 17, 1987; Accepted October 23, 1987)  相似文献   

10.
Azide ions inhibited O2 evolution in PSII membranes from spinachin a time-dependent manner in the light until all activity disappeared.Illumination in the presence of azide (azide-phototreatment)irreversibly inhibited the following processes: (1) both theoxidation of water and the electron transport between the redox-activetyrosine 161 of the D1 protein (YZ) and the secondary quinoneelectron acceptor (QB) site, to the same extent; (2) the donationof electrons to the primary quinone electron acceptor (QA),as measured by monitoring the maximum variable fluorescenceof Chl; and (3) the photoproduction of the YZ radical (Y). Thus,the primary site of inhibition appeared to lie between YZ andQA. On illumination of Tris-treated PSII membranes in the presenceof azide, production of the azidyl radical was observed by spin-trappingESR. Yield of Y in Tris-treated membranes on illumination wassuppressed by azide. Electron transport from YZ to QB in Tris-treatedmembranes was inhibited only when the azidyl radical was photoproduced,and it was inhibited more rapidly than it was in the oxygenicPSII membranes. These results indicate that the azidyl radicalwas produced via a univalent oxidation of azide by Y and thatit irreversibly inhibited the electron transport from YZ toQA in Tris-treated membranes. Although the azidyl radical wasundetectable in the oxygenic PSII membranes, probably due tosteric interference by the peripheral proteins of water-oxidizingcomplex with the access of the spin-trapping reagent to theproduction site of the radical, the participation of the azidylradical in the inhibition of the oxygenic PSII membranes issuggested since simultaneous occurrence of both electron transportand azide was required for the inhibition. Possible inhibitorymechanisms and the target sites of azidyl radical are discussed. (Received April 21, 1995; Accepted July 3, 1995)  相似文献   

11.
The effects of the photosystem II herbicides diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) and atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) on the photosynthetic membranes of a cyanobacterium, Aphanocapsa 6308, were compared to the effects on a higher plant, Spinacia oleracea. The inhibition of photosystem II electron transport by these herbicides was investigated by measuring the photoreduction of the dye 2,6-dichlorophenol-indophenol spectrophotometrically using isolated membranes. The concentration of herbicide that caused 50% inhibition of electron transport (I50 value) in Aphanocapsa membranes for diuron was 6.8 × 10−9 molar and the I50 value for atrazine was 8.8 × 10−8 molar. 14C-labeled diuron and atrazine were used to investigate herbicide binding with calculated binding constants (K) being 8.2 × 10−8 molar for atrazine and 1.7 × 10−7 molar for diuron. Competitive binding studies carried out on Aphanocapsa membranes using radiolabeled [14C]atrazine and unlabeled diuron revealed that diuron competed with atrazine for the herbicide-binding site. Experiments involving the photoaffinity label [14C]azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-2-triazine) and autoradiography of polyacrylamide gels indicated that the herbicide atrazine binds to a 32-kilodalton protein in Aphanocapsa 6308 cell extracts.  相似文献   

12.
Cahen D  Malkin S 《Plant physiology》1977,60(6):845-849
In a previous work the development of photosystem II activity during the greening process of the y-1 mutant of Chlamydomonas reinhardi was studied (Cahen, Malkin, Shochat, Ohad. Plant Physiol 58: 257-267). Measurements of quantum yield, maximal rate of electron transfer, flash yield, and fluorescence induction indicated that photosystem II development consists of two partially overlapping phases: (a) reorganization and integration of preexisting units; and (b) addition of newly formed units to the growing membranes.  相似文献   

13.
Homann PH 《Plant physiology》1988,88(1):194-199
To further our understanding of the role of Cl and certain other monovalent anions in the oxygen evolving photosystem II of chloroplasts, dissociating and stabilizing anion effects on the extrinsic 17 and 23 kilodalton polypeptides of the photosynthetic water oxidizing complex were investigated. It was found that (a) the dissociation of the two polypeptides in Cl free media of pH ≈ 7 was enhanced by millimolar concentrations of the divalent anion SO42− and also by divalent cations like Mg2+ and Ca2+; (b) the dissociation was opposed by relatively low concentrations of monovalent anions with an order of effectiveness Cl = Br > NO3 > F > ClO4; (c) at molar concentrations, SO42− stabilized the binding of the 23 kilodalton polypeptide, while Cl and Br became dissociating agents, in agreement with studies by Blough and Sauer (1984 Biochim Biophys Acta 767: 377-381); (d) the binding of the polypeptides was strengthened at room temperature relative to 0°C, indicating an involvement of hydrophobic forces. It is suggested that a specific binding of Cl, or certain substitutes, organizes the protein surfaces and/or the adjacent water layers in the water oxidizing complex in a way that not only stabilizes its assembly, but is essential for the catalytic mechanism as well. Binding of, or charge screening by, divalent ions interferes with this process. At high salt concentrations, all these effects are overridden by “lyotropic” actions of the solutes that affect the integrity of the water oxidizing protein complex by stabilizing or disrupting critical hydrophobic domains.  相似文献   

14.
Interactions of externally added plastoquinone (PQ) derivatives(PQ0-PQ3) with the photosystem II (PSII) acceptor side wereinvestigated in PSII membrane fragments prepared from spinachby measuring the photoreduction rates of PQ derivatives at variousPQ concentrations, and the following results were obtained. From the kinetic analysis, all the PQ derivatives (PQ0-PQ3)except PQ3 were shown to accept electrons at two sites (theQB site and the PQ site) as in the case of Synechococcus vulcanusPSII particles with benzoquinone derivatives [Satoh et al. (1995)Plant Cell Physiol. 36: 597]. Affinities of PQ derivatives at the QB site increased as thelength of the isoprene side chain got longer, while those atthe PQ site were not very much different for all the PQ derivativestested in this study. The inhibitory effect of DCMU was noncompetitive, and, therefore,the affinity of PQ3 for the PQ site was determined while thatfor the QB site could not be estimated presumably due to itsfairly high affinity to the site. Based on the results obtained using PQ derivatives, the mechanismof interaction of an authentic PQ, PQ9, at the QB site is discussed. (Received May 2, 1996; Accepted July 24, 1996)  相似文献   

15.
We have studied the inactivation of the water-oxidizing complexby exogenous, ‘general’ reductants in various typesof PS II membrane. Extraction of the 33, 23 and 17 kDa proteinsfrom PS II membranes rendered the functional Mn susceptibleto rapid solubilization by reductants such as hydroquinone,benzidine and ascorbate, while water analogs, such as NH2OH,inactivated the complex regardless of the presence of PS IIextrinsic proteins. The extent of the inactivation was dependenton the hydrophobicity of the reductants examined. Diphenylcarbazide,an efficient electron donor to Z+ and D+, did not inactivatethe Mn complex. As reported earlier [Ghanotakis et al. (1984)Biochim. Biophys. Acta 767: 524], weak illumination deceleratedthe inactivation of the complex by the various reductants. Kineticanalyses of the flash-induced protection provided evidence aboutthe nature of the light state that was not susceptible to thereductants. This state was generated and decayed with half timesof approximately 0.5 and 9 s, respectively. However, such lightprotection was diminished under Cl-depleted conditions,at slightly alkaline pH, or when ascorbate was employed as areductant. Furthermore, we observed that the oxidation of N,N,N',N'-tetramethyl-p-phenylenediamine,which reacts with the Mn complex, was accomplished as a biphasicreaction. The amount of the fast phase, which was almost eliminatedafter the reconstitution of the 33 kDa protein and Ca2+, wasapproximately 7 electron equivalents per 200 Chl. From theseresults, it is likely that the bulky, ‘general’reductants reduce the functional Mn directly by solubilizingMn from the complex in the same way as do the water analogs.The effectiveness of these reductants in the photoactivationof the apo-water-oxidizing complex is also discussed. (Received September 13, 1989; Accepted March 12, 1990)  相似文献   

16.
Binding affinities of the QB site for four tetrahalogenatedbenzoquinones (THBQs) were investigated by measuring their abilityto serve as electron acceptors or act as inhibitors of oxygenevolution in Synechococcus photosystem II particles. Iodanil,bromanil and chloranil but not fluoranil induced a rapid oxidationof QA and doubled the area over the fluorescence inductioncurve, indicating dark oxidation of Q400. Analyses of thesetwo THBQ-induced reactions and inhibition of the acceleratedQA oxidation by DCMU yielded binding constants of thequinones comparable to those determined from measurements ofoxygen evolution. Generally, THBQs bound tightly to the QB site.However, the binding affinity varied in a wide range with THBQs.The QB site bound iodanil with an extremely high affinity butfluoranil relatively weakly. The hydroquinone forms of the THBQsalso bound to the QB site and inhibited QA oxidationby QB. The concentrations of the hydroquinones required for50% inhibition of QA oxidation suggest that the QB sitebinds the hydroquinones more weakly than the corresponding quinonesexcept for fluoranil, which binds to the QB site more tightlyin its reduced form than in oxidized one. The abilities of THBQsto function as electron acceptors or inhibitors of oxygen evolution,and as oxidants of Q400 in the dark, are discussed in relationto the binding affinities of the quinones to the QB site. 4Present address: Department of Biology, Faculty of Science,Toho University. Miyama 2-2-1, Funabashi, 274 Japan  相似文献   

17.
Stemler A 《Plant physiology》1980,65(6):1160-1165
High concentrations of both bicarbonate and formate inhibit photosynthetic O2 evolution at pH 8.0. At this pH, only 2.4% of the total dissolved carbon dioxide exists as CO2. At pH 7.3, where 11% of the total dissolved carbon dioxide exists as CO2, HCO3 no longer inhibits. While formate still inhibits O2 evolution at pH 7.3, its effect can be partially overcome if CO2 is also present. The rate of binding of added 14C-labeled inorganic carbon is nearly 10-fold more rapid when the internal pH of thylakoid membranes is at 6.0 than when it is at 7.8. These observations suggest that CO2, not HCO3, is initially bound to the photosystem II reaction center and that the location of the binding site is on the inside thylakoid surface. However, additional data presented here suggest that, after binding, CO2 is hydrated to HCO3 + H+ in a pH-dependent reaction. Two possible explanations of the “bicarbonate effect” are presented.  相似文献   

18.
The X-band EPR spectra of the IR sensitive untreated PSII and of MeOH- and NH(3)-treated PSII from spinach in the S(2)-state are simulated with collinear and rhombic g- and Mn-hyperfine tensors. The obtained principal values indicate a 1Mn(III)3Mn(IV) composition for the Mn(4) cluster. The four isotropic components of the Mn-hyperfine tensors are found in good agreement with the previously published values determined from EPR and (55)Mn-ENDOR data. Assuming intrinsic isotropic components of the Mn-hyperfine interactions identical to those of the Mn-catalase, spin density values are calculated. A Y-shape 4J-coupling scheme is explored to reproduce the spin densities for the untreated PSII. All the required criteria such as a S=1/2 ground state with a low lying excited spin state (30 cm(-1)) and an easy conversion to a S=5/2 system responsible for the g=4.1 EPR signal are shown to be satisfied with four antiferromagnetic interactions lying between -290 and -130 cm(-1).  相似文献   

19.
20.
Giardi MT  Rigoni F  Barbato R 《Plant physiology》1992,100(4):1948-1954
The effect of photosystem II core phosphorylation on the secondary quinone acceptor of photosystem II (QB) domain environment was analyzed by comparative herbicide-binding studies with photosystem II preparations from spinach (Spinacia oleracea L.). It was found that phosphorylation reduces the binding affinity for most photosynthetic herbicides. The binding of synthetic quinones and of the electron acceptor 2,6-dichlorophenolindophenol is also reduced by photosystem II phosphorylation. Four photosystem II core populations isolated from membranes showed different extents of phosphorylation as well as different degrees of affinity for photosynthetic herbicides. These findings support the idea that heterogeneity of photosystem II observed in vivo could be, in part, due to phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号