首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muhsin  Tawfik M.  Salih  Talal H. 《Mycopathologia》2001,150(2):49-52
Sixteen fungal species were isolated from 182 specimens collected from four ruminants (buffalo, camel, cattle and sheep) in Southern Iraq. Fungi represented by five species of dermatophytes and eleven species of other fungi were screened for the activity of four enzymes; keratinase, proteinase, lipase and amylase. Keratinase was found to be produced by all of the dermatophytes and non-dermatophytes, except for Paecillomyces variottii and Scytalidium lignicola. However, high keratinase activity was expressed by the dermatophytic species particularly by Trichophyton mentagrophytes var. erinacei and Microsporum gypseum. Three dermatophytes viz. M. gypseum, T. verrucosum and T. mentagrophytes var. nodulare were capable of producing protease, lipase and amylase. Although, T. mentagrophytes var. erinacei showed high protease activity, it did not produce lipase and amylase. On the contrary most of the non-dermatophytic species revealed protease and lipase activities higher than the dermatophytes. The Curvularia spp. isolates showed the highest protease and amylase activity, while Aspergillus parasiticus revealed the highest activity of lipase and amylase. No correlation was observed between enzyme activity and the growth rate of the examined fungi. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Germination of Microsporum gypseum macroconidia was accompanied by the release of alkaline protease, calcium ions, and inorganic phosphate into the germination fluid. The rate of germination was greatest during the first 2 hr, decreasing thereafter. This decrease in rate was accompanied by a decrease in protease activity, which was caused by an interaction of the enzyme with the inorganic phosphate released from the spores and accumulated in the germination medium after 2 hr. Germination of high spore densities was regulated by the ratio of released phosphate to protease protein, resulting in a constant percentage of germination at both high and low spore densities. A germination-defective mutant strain failed to germinate normally and released excessively high concentrations of phosphate into the germination medium during the initial 2 hr of incubation. Addition of calcium ions to germination mutant macroconidia stabilized spore morphology, prevented protease inactivation, and allowed normal germ-tube outgrowth. The germination of macroconidia appears to be regulated by the release of phosphate ions, which then inhibit the alkaline protease.  相似文献   

3.
Aims: The aim of the study was to optimize microbial degradation of keratinous waste and to characterize the alkaline active keratinase showing its biotechnological importance. Method and Results: An extracellular keratinase enzyme was purified from the culture medium of a bacterial isolate and the conditions were optimized. The molecular weight of DEAE‐Sepharose‐purified keratinase was determined by SDS‐PAGE. Instrumental analyses were investigated to study the mechanism of bovine hair hydrolysis. Isolate was identified as Bacillus pumilus based on phenotypic characteristics and 16S rDNA sequence. The optimized condition for its growth was pH 8 and 35°C. The molecular weight of the keratinase was estimated as 65 kDa. Activity inhibition by phenyl methyl sulphonyl fluoride confirmed keratinase as serine protease type. Instrumental analysis revealed the sulphitolysis and proteolysis involved mechanism in bovine hair hydrolysis. Conclusion: This study indicates that the isolated keratinase is an alkaline active serine protease with a high degree of activity towards bovine hair. Significance and Impact of the Study: This study examines a serine protease with high keratinolytic activity and degradation mechanism for bovine hair. The keratinolytic activity of the isolated strain and its reaction mechanism on bovine hair could show biotechnological potential in the leather industry.  相似文献   

4.
The increasing demands of keratinases for biodegradation of recalcitrant keratinaceous waste like chicken feathers has lead to research on newer potential bacterial keratinases to produce high-value products with biological activities. The present study reports a novel keratinolytic bacterium Bacillus velezensis strain ZBE1 isolated from deep forest soil of Western Ghats of Karnataka, which possessed efficient feather keratin degradation capability and induced keratinase production. Production kinetics depicts maximum keratinase production (11.65 U/mL) on 4th day with protein concentration of 0.61 mg/mL. Effect of various physico-chemical factors such as, inoculum size, metal ions, carbon and nitrogen sources, pH and temperature influencing keratinase production were optimized and 3.74 folds enhancement was evidenced through response surface methodology. Silver (AgNP) and zinc oxide (ZnONP) nanoparticles with keratin hydrolysate produced from chicken feathers by the action of keratinase were synthesized and verified with UV–Visible spectroscopy that revealed biological activities like, antibacterial action against Bacillus cereus and Escherichia coli. AgNP and ZnONP also showed potential antioxidant activities through radical scavenging activities by ABTS and DPPH. AgNP and ZnONP revealed cytotoxic effect against MCF-7 breast cancer cell lines with IC50 of 5.47 µg/ml and 62.26 µg/ml respectively. Characterizations of nanoparticles were carried out by Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray, X-ray diffraction, thermogravimetric analysis and atomic force microscopy analysis to elucidate the thermostability, structure and surface attributes. The study suggests the prospective applications of keratinase to trigger the production of bioactive value-added products and significant application in nanotechnology in biomedicine.  相似文献   

5.
Keratinolytic potential of A. keratinophila (DSM 44409T), a newly described Amycolatopsis sp. isolated from cultivated soil in Kuwait, was demonstrated using keratinazure as the sole source of carbon and nitrogen as estimated by gel diffusion assay. Effects of 12 various nutritional supplements on the keratinolytic and azocollytic activities were determined. NH4H2PO4 and KNO3 in the medium supported a significantly higher keratinolytic activity than other supplements. However, azocollytic activities in all the supplemented media and the control were same. Best combination of carbon and nitrogen supplements (galactose and NH4H2PO4 respectively) used to evaluate the dynamics of growth and enzymes (keratinase and protease) activities of the isolate revealed a luxuriant growth with optimal keratinolytic activity occurring during the log phase. Other parameters of the fermentation medium, including pH, biomass accumulation, total protein and free amino acid concentrations were also studied.  相似文献   

6.
In order to prepare the multi-functional biofertilizer, thermo-tolerant phosphate-solubilizing microbes including bacteria, actinomycetes, and fungi were isolated from different compost plants and biofertilizers. Except Streptomycesthermophilus J57 which lacked pectinase, all isolates possessed amylase, CMCase, chitinase, pectinase, protease, lipase, and nitrogenase activities. All isolates could solubilize calcium phosphate and Israel rock phosphate; various isolates could solubilize aluminum phosphate, iron phosphate, and hydroxyapatite. During composting, biofertilizers inoculated with the tested microbes had a significantly higher temperature, ash content, pH, total nitrogen, soluble phosphorus content, and germination rate than non-inoculated biofertilizer; total organic carbon and carbon-to-nitrogen ratio showed the opposite pattern. Adding these microbes can shorten the period of maturity, improve the quality, increase the soluble phosphorus content, and enhance the populations of phosphate-solubilizing and proteolytic microbes in biofertilizers. Therefore, inoculating thermo-tolerant phosphate-solubilizing microbes into agricultural and animal wastes represents a practical strategy for preparing multi-functional biofertilizer.  相似文献   

7.
Hydrolysis of Feather Keratin by Immobilized Keratinase   总被引:4,自引:0,他引:4       下载免费PDF全文
X. Lin  J. Shih    H. E. Swaisgood 《Applied microbiology》1996,62(11):4273-4275
Keratinase isolated from Bacillus licheniformis PWD-1 was immobilized on controlled-pore glass beads. The immobilized keratinase demonstrated proteolytic activities against both insoluble feather keratin and soluble casein. It also displayed a higher level of heat stability and an increased tolerance toward acidic pHs compared with the free keratinase. During a continuous reaction at 50(deg)C, the immobilized keratinase retained 40% of the original enzyme activity after 7 days. The immobilized keratinase exhibits improved stability, thereby increasing its potential for use in numerous applications.  相似文献   

8.
9.
Extracts of dormant microcysts of Polysphondylium pallidum demonstrate pH optima for the hydrolysis of casein at 3.5 and 6.0. During germination the intracellular pH 6.0 caseinolytic specific activity does not change significantly. The pH 6.0 protease is also active on azo-albumin, revealing the same developmental pattern with this substrate. Both acid protease activities are excreted during the germination process. Addition of purified nonspecific protease to cultures speeds up germination, suggesting that the excreted protease may play a role in removal of the microcyst wall. When cycloheximide is added to cultures, complete germination (emergence) is stopped whereas the pH 6.0 protease activity still accumulates to between 50 and 60% of the maximum control activity. Although this suggests that post-translational controls might mediate the accumulation of a portion of the pH 6.0 protease increase, mixing and dilution experiments with cell extracts do not reveal the differential presence of soluble activators or inhibitors of this activity at different developmental stages. The presence of tightly bound enzyme-inhibitor complexes for protease B in dormant microcysts has not been ruled out and is currently under study.  相似文献   

10.
分析不同基因型小麦品种逆境萌发过程中种子萌发相关酶活性及基因表达差异,明确在逆境条件下,种子活力与种子萌发相关酶活性及基因表达量的关系.通过标准发芽试验和逆境(冷浸、人工老化、干旱胁迫)发芽试验,测定4个小麦品种种子活力、萌发过程中可溶性总糖和可溶性蛋白含量、α-淀粉酶活性、半胱氨酸蛋白酶活性及相关基因表达量.结果表明:干旱、人工老化和冷浸胁迫3种逆境对种子活力都有一定影响.不同萌发条件下,可溶性总糖含量呈现先小幅度升高后小幅度降低再迅速升高的趋势;而可溶性蛋白含量随着萌发时间的延长呈现逐渐下降的趋势.α-淀粉酶活性整体呈现逐渐升高的趋势,但在冷浸胁迫处理后,豫农949和轮选061的α-淀粉酶活性在萌发60 h后出现下降.半胱氨酸蛋白酶活性整体呈先降低后升高的趋势,但在干旱胁迫条件下,豫农949、豫麦49-198和轮选061的半胱氨酸蛋白酶活性呈现先升高后降低再升高的趋势.不同逆境萌发条件下,α-AMY(α-淀粉酶基因)表达量整体呈先上升后下降的趋势.冷浸胁迫处理后,轮选061的α-AMY表达量高于对照,在其他逆境萌发条件下,4个品种的α-AMY表达量均低于对照;人工老化处理后,长4738的CP(半胱氨酸蛋白酶基因)表达量与对照差异不显著,在其他逆境萌发条件下,4个品种的CP表达量均高于对照.种子萌发期间,不同萌发条件下α-淀粉酶和半胱氨酸蛋白酶活性与其基因表达并没有直接关系,α-淀粉酶活性与可溶性总糖含量达到显著正相关,半胱氨酸蛋白酶活性与可溶性蛋白含量的相关性不显著.在标准发芽条件下,α-淀粉酶活性与活力指数呈显著正相关,而在逆境萌发过程中,其相关性不显著.冷浸胁迫处理后,半胱氨酸蛋白酶活性与活力指数呈显著正相关,但在标准发芽、干旱胁迫、人工老化处理后,其相关性不显著.  相似文献   

11.
In this paper, we describe a study concerning the determination of some characteristics of soybean seedlings and the detection of acid phosphatase activities towards different substrates during the germination. Enzyme activities with p-nitrophenylphosphate (pNPP) and inorganic pyrophosphate (PPi) as substrates were detected from the 5th and 7th days after germination, respectively. Acid phosphatase activities with tyrosine phosphate (TyrP), glucose-6-phosphate (G6P) and phosphoenol pyruvate (PEP) were also observed but to a lesser extent. Under the same conditions, no enzyme activity was detected with phytic acid (PhyAc) as substrate. The appearance of phosphatase activity was coincident with the decrease of inorganic phosphate content during germination; over the same period, the protein content increased up to the 5th day, decreased until the 8th day, and remained constant after this period. Relative to phosphatase activity in the cotyledons, the activities detected in the hypocotyl and roots were 82% and 38%, respectively. During storage the enzyme maintained about 63% of its activity for 3 months at 5 degrees C. The specificity constant (Vmax/Km) values for pNPP and PPi were 212 and 64 mu kat mM-1 mg-1, respectively. Amongst the substrates tested, PPi could be a potential physiological substrate for acid phosphatase during the germination of soybean seeds.  相似文献   

12.
Mycotic/fungal keratitis is a suppurative, generally ulcerative infection of the cornea. The filamentous fungi, Aspergillus spp. are the second leading cause of mycotic keratitis, particularly in India. Aspergillus spp. produce a range of extracellular enzymes that are used to break down complex molecules and used for growth and reproduction, also for survival on/in host organism. The current study was designed with an objective to screen in vitro extracellular enzyme activity of Fusarium and Aspergillus isolates from mycotic keratitis patients and to correlate the same as a putative virulence factor. Extracellular enzymes viz., deoxyribonuclease (DNase), protease, lipase, elastase, keratinase, etc., produced by Aspergillus have key role in keratomycosis and hence their (n = 85) in vitro activities were investigated. It was found that, the majority of the Aspergillus isolates produced protease (n = 75; 88% of 85) followed by lipase (n = 59; 69% of 85), DNase (n = 35; 41% of 85), elastase (n = 26; 31% of 85) and keratinase (n = 13; 15% of 85). The enzyme activity indices (EAI) for DNase, elastase, protease and lipase ranged between 1.01 and 1.98, whereas elastase EAI varied between 1.26 and 1.92. DNase, protease and lipase showed a maximum EAI of 1.98 and lowest EAI value of 1.01, respectively. Extracellular enzymes of Aspergillus spp. may have potential role in the onset and progression of keratitis.  相似文献   

13.
Cellulose digestion in lower termites, mediated by carbohydrases originating from both termite and endosymbionts, is well characterized. In contrast, limited information exists on gut proteases of lower termites, their origins and roles in termite nutrition. The objective of this study was to characterize gut proteases of the Formosan subterranean termite (Coptotermes formosanus Shiraki) (Isoptera: Rhinotermitidae). The protease activity of extracts from gut tissues (fore-, mid- and hindgut) and protozoa isolated from hindguts of termite workers was quantified using hide powder azure as a substrate and further characterized by zymography with gelatin SDS-PAGE. Midgut extracts showed the highest protease activity followed by the protozoa extracts. High level of protease activity was also detected in protozoa culture supernatants after 24 h incubation. Incubation of gut and protozoa extracts with class-specific protease inhibitors revealed that most of the proteases were serine proteases. All proteolytic bands identified after gelatin SDS-PAGE were also inhibited by serine protease inhibitors. Finally, incubation with chromogenic substrates indicated that extracts from fore- and hindgut tissues possessed proteases with almost exclusively trypsin-like activity while both midgut and protozoa extracts possessed proteases with trypsin-like and subtilisin/chymotrypsin-like activities. However, protozoa proteases were distinct from midgut proteases (with different molecular mass). Our results suggest that the Formosan subterranean termite not only produces endogenous proteases in its gut tissues, but also possesses proteases originating from its protozoan symbionts.  相似文献   

14.
Abstract

Bacillus subtilis K-5, an isolate from compost, utilized a wide range of keratinous wastes viz. diverse feather types, nails, hair, scales, etc. for growth and produced a thermostable alkaline protease (keratinase) with broad proteolytic activity. Optimization of cultural and environmental variables using a Plackett–Burman design and response surface methodology resulted in enhanced keratinase production (89%). Keratinase was partially purified (15-fold) by ammonium sulfate precipitation and carboxymethyl cellulose chromatography. The optimum pH and temperature for keratinase activity were 9.0 and 60°C, however, considerable activity and stability was observed over broad pH (5–10) and temperature range (50–90°C). B. subtilis K-5 keratinase exhibited excellent stability toward detergents (cetyl trimethylammonium bromide, Tween 80, and sodium dodecyl sulfate) and organic solvents (benzene, acetonitrile, phenylmethylsulfonyl fluoride); however, metal ions like Mn2+, Cu2+, Na+, Hg2+, K+, Ca2+, and Zn2+ inhibited the activity. B. subtilis K-5 protease showed remarkable potential for diverse applications like blood stain removal, gelatin hydrolysis from waste X-ray films and dehairing of animal hide.  相似文献   

15.
The behavior of nucleoside triphosphate diphosphatase (NTDPase)of pea cotyledon chromatin was investigated by a comparisonof the activities of amylase and protease in the cytoplasm.The activities of NTDPase and amylase increased from the 3rdto the 5th day during germination, but the activity of proteaseincreased more rapidly at the stage of imbibition. The inhibitorsactinomycin D and cycloheximide markedly inhibited the increasein the activities of NTDPase and amylase, but their inhibitionof protease was much less. Inhibition of germination by saltstress was accompanied by reductions in the increases in NTDPaseand protease activities, but not by a reduction in amylase activity.Removal of the embryo from dormant seeds had the same effecton these activities as salt stress did. These results suggestthat formation of the NTDPase in the chromatin of the cotyledonis under the control of the embryonic tissue. (Received October 22, 1980; Accepted January 20, 1981)  相似文献   

16.
Abstract

An extracellular keratinolytic protease produced by Bacillus sp. P45 was purified and characterized. The keratinase had a molecular weight of approximately 26 kDa and was active over wide pH and temperature ranges, with optimal activity at 55°C and pH 8.0. However, this enzyme displayed low thermostability, being completely inactivated after 10 min at 50°C. Keratinase activity increased with Ca2+, Mg2+, Triton X-100, ethanol and DMSO, was stable in the presence of the reducing agent 2-mercaptoethanol, and was inactivated by SDS. PMSF (phenylmethylsulfonyl fluoride) completely inactivated and EDTA strongly inhibited the enzyme, indicating that the keratinase is a serine protease depending on metal ions for optimal activity and/or stability. Accordingly, analysis of tryptic peptides revealed sequence homologies which characterize the keratinase as a subtilisin-like serine protease. The purified enzyme was able to hydrolyze azokeratin and keratin azure. Casein was hydrolyzed at higher rates than keratinous substrates, and 2-mercaptoethanol tended to enhance keratin hydrolysis. With synthetic substrates, the keratinase showed a preference for aromatic and hydrophobic residues at the P1 position of tetrapeptides; the enzyme was not active, or the activity was drastically diminished, towards shorter peptides. Keratinase from Bacillus sp. P45 might potentially be employed in the production of protein hydrolysates at moderate temperatures, being suitable for the bioconversion of protein-rich wastes through an environmentally friendly process requiring low energy inputs.  相似文献   

17.
A protease producing bacterial culture ('S7') was isolated from slaughterhouse waste samples, Hyderabad, India. It was related to Streptomyces sp. on the basis of biochemical properties and 16S rRNA gene sequencing. Purification of the protease present in the culture medium supernatant on sephacryl S-100 indicated that it contains a keratinase with 67% recovery, 2.5-fold purification and an estimated molecular mass of approximately 44,000 Da. Keratinase showed an optimal activity at 45 degrees C and pH 11. Keratinase activity increased substantially in presence of Ca(2+) and was inhibited in presence of PMSF and EDTA identifying it as a serine metalloprotease. Stability in the presence of detergents, surfactants and solvents make this keratinase extremely useful for biotechnological process involving keratin hydrolysis or in the leather industry.  相似文献   

18.
Two different endophytic strains, ESRAA1997 and ALAA2000, were isolated from the Egyptian herbal plant Anastatica hierochuntica. The 2 strains produced alkaline serine protease and were identified based on their phenotypic and chemotypic characteristics as different strains of Micromonospora spp. Both strains grew and produced keratinase, using different keratinous waste substances as the sole source of carbon and nitrogen. In our study, the activity and properties of keratinase enzymes of the wild strains ESRAA1997 and ALAA2000 were altered by genetic recombination through protoplast fusion between them, leading to a potent keratinolytic fusant Micromonospora strain AYA2000 with improved properties (activity, stability, specificity, and tolerance to inhibitors). Using a mixture of yeast extract, peptone, and malt extract as a supplement to the bovine hair medium increased keratinase production by 48%, and addition of 1% glucose suppressed enzyme production by Micromonospora strain AYA2000. The enzyme was purified by ammonium sulphate precipitation and DEAE-cellulose chromatography followed by gel filtration. The molecular weight, estimated using SDS-PAGE, was 39?kDa. The enzyme exhibited remarkable activity towards all keratinous wastes used and could also adapt to a broad range of pH and temperatures, with optima at pH?11 and 60?°C. The enzyme was not influenced by chelating reagents, metal ions, or alcohols. These properties make AYA2000 keratinase an ideal candidate for biotechnological application.  相似文献   

19.
Aims:  To isolate novel nonpathogenic fungus that completely degrades native chicken feather and characterize its keratinases. Methods and Results:  Feather‐degrading fungi were isolated from decaying feathers using a novel method based on simulating decaying process in the environment. The isolate F6 with high keratinolytic activity was identified as Trichoderma atroviride based on morphological traits and ITS1‐5·8S‐ITS2 sequence analysis. The purified dominant component of keratinase had a molecular mass of 21 kDa. The purified keratinase belonged to serine protease. Its isoelectric point, molecular weight, optimum pH, optimum temperature, and substrate specificity are different from those of other serine proteases of Trichoderma species. The optimum pH and temperature values of purified keratinase were consistent with those of crude keratinase. However, the differences between crude and purified enzymes such as thermostability, resistance to Ba2+, Mn2+, Hg2+, Zn2+, Cu2+, 1,10‐phenanthroline, 2,2′‐bipyridyl, and PMSF (phenylmethylsulfonyl fluoride) were observed. Conclusions:  The results suggested the purified keratinase is predominantly extracellular proteins when strain F6 was grown on keratinous substrates. The protease, in combination with other components, is effective in feather degradation. The strain F6 is more suitable for feather degradation than its purified keratinase. Significance and Impact of the Study:  The novel nonpathogenic T. atroviride F6 with high feather‐degrading activity showed potentials in biotechnological process of converting feathers into economically useful feather meal.  相似文献   

20.
The activities of digestive protease within the midgut of Mamestra configurata (bertha armyworm) larvae were examined using specific substrates and protease inhibitors. The bulk of the activity was associated with serine proteases comprising trypsin-, chymotrypsin-, and elastase-like enzymes. At least 10-15 serine protease isozymes were detected using one-dimension gelatin gel electrophoresis. Cysteine or aspartic protease activities were not present; however, amino- and carboxypeptidase activities were associated with the midgut extract. Midgut proteases were active in the pH range of 5.0-12.0 with peaks at pH 7.5 and 11.0. In general, the middle region of the midgut exhibited a higher pH (approximately 8.0) than either the posterior or anterior regions (approximately 7.3-7.7). Moulting larvae possessed a neutral gut pH that was 0.5-1.5 units below that of feeding larvae. Degenerate PCR and expressed sequence tag (EST)-based approaches were used to isolate 30 distinct serine protease encoding cDNAs from a midgut-specific cDNA library including 8 putative trypsins, 9 chymotrypsins, 1 elastase, and 12 whose potential activities could not be determined. cDNAs encoding three amino- and two carboxypeptidases were also identified. Larvae feeding upon artificial diet containing 0.2% soybean trypsin inhibitor experienced a significant delay in development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号