首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In previous studies in intact 3T3-L1 fibroblasts and adipocytes, we demonstrated that the phosphorylation state of an acidic, multicomponent Mr 80,000 protein appeared to be a specific and useful marker for the activation state of protein kinase C (Blackshear, P.J., Witters, L.A., Girard, P.R., Kuo, J.F., and Quamo, S.N. (1985) J. Biol. Chem. 260, 13304-13315). In the present studies, we demonstrate that the Mr 80,000 protein from rat adipose tissue was a substrate for protein kinase C in vitro, and co-migrated on two-dimensional gels with the analogous protein from murine 3T3-L1 adipocytes labeled by exposure of intact cells to 32Pi and phorbol 12-myristate 13-acetate. Partial proteolytic maps of the two 32P-proteins were nearly identical, supporting the postulate that the sites phosphorylated by protein kinase C in vitro, and in response to phorbol 12-myristate 13-acetate in vivo, were similar or identical. Despite their similar apparent molecular weights, we were able to distinguish between the Mr 80,000 protein and protein kinase C by several physical criteria. The Mr 80,000 protein kinase C substrate was found in fractions of all rat tissues examined, but was most prominent in rat brain. Phorbol 12-myristate 13-acetate also stimulated phosphorylation of the Mr 80,000 protein in several types of cultured neuronal cells, suggesting a possible role for this protein in cholinergic neurotransmission. The Mr 80,000 protein appears to be a useful marker for protein kinase C activation in a variety of cell types.  相似文献   

2.
Exposure of serum-deprived 3T3-L1 fibroblasts to phorbol 12-myristate 13-acetate (PMA), synthetic diacylglycerols, platelet-derived growth factor (PDGF), or pituitary fibroblast growth factor (FGF) resulted in stimulated phosphorylation of an acidic, multicomponent, soluble protein of Mr 80,000. Phosphorylation of this protein was promoted to a lesser extent by epidermal growth factor; however, neither insulin nor dibutyryl cAMP was effective. Phosphoamino acid analysis and peptide mapping of the Mr 80,000 32P-protein after exposure of fibroblasts to PDGF revealed identical patterns to those obtained with PMA or diacylglycerols. In contrast to the Mr 80,000 protein, proteins of Mr 22,000 (and pI 4.4) and Mr 31,000 were also phosphorylated in response to insulin as well as to PMA, diacylglycerols, epidermal growth factor, PDGF, and FGF in these cells. Similar findings were noted in fully differentiated 3T3-L1 adipocytes. Preincubation of the cells with high concentrations of active phorbol esters abolished specific [3H]phorbol 12,13-dibutyrate binding, protein kinase C activity, and immunoreactivity and also prevented stimulated phosphorylation of the Mr 80,000 protein by PMA, diacylglycerols, PDGF, or FGF, supporting the contention that this effect was mediated through protein kinase C. The stimulated phosphorylation of the Mr 22,000 and 31,000 proteins in response to PMA was also abolished by such pretreatment. In contrast, the ability of insulin, PDGF, and FGF to promote phosphorylation of the Mr 22,000 and 31,000 proteins was unaffected in the protein kinase C-deficient cells. We conclude that PDGF and FGF may exert some of their effects on these cells through at least two distinct pathways of protein phosphorylation, phorbol ester-like (P) activation of protein kinase C, and an insulin-like (I) pathway exemplified by phosphorylation of the Mr 22,000 and 31,000 proteins.  相似文献   

3.
A calcium-activated and phospholipid-dependent protein kinase (protein kinase C) catalyzes the phosphorylation of both insoluble microsomal (Mr approximately 100,000) and purified soluble (Mr = 53,000) 3-hydroxy-3-methylglutaryl coenzyme A reductase. The phosphorylation and concomitant inactivation of enzymic activity of HMG-CoA reductase was absolutely dependent on Ca2+, phosphatidylserine, and diolein. Dephosphorylation of phosphorylated HMG-CoA reductase was associated with the loss of protein bound radioactivity and reactivation of enzymic activity. Maximal phosphorylation of purified HMG-CoA reductase was associated with the incorporation of 1.05 +/- 0.016 mol of phosphate/mol of native form of HMG-CoA reductase (Mr approximately 100,000). The apparent Km for purified HMG-CoA reductase and histone H1 was 0.08 mg/ml, and 0.12 mg/ml, respectively. The tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate stimulated the protein kinase C-catalyzed phosphorylation of HMG-CoA reductase. Increased phosphorylation of HMG-CoA reductase by phorbol 12-myristate 13-acetate suggests a possible in vivo protein kinase C-mediated mechanism for the short-term regulation of HMG-CoA reductase activity. The identification of the protein kinase C system in addition to the reductase kinase-reductase kinase kinase bicyclic cascade systems for the modulation of the enzymic activity of HMG-CoA reductase may provide new insights into the molecular mechanisms involved in the regulation of cholesterol biosynthesis.  相似文献   

4.
The molecular heterogeneity of protein kinase C (PKC) is now widely documented. In our first report, we characterized the rat lacrimal gland PKC along with a phorbol 12-myristate 13-acetate (PMA)-activated and phospholipid-independent protein kinase activity [Mauduit P., Zoukhri D. and Rossignol B. (1989) Fedn Eur. biochem. Socs Lett. 252, 5-11. In this work, we show that when the rat lacrimal gland cytosolic fraction is chromatographed on hydroxyapatite, only one peak of PKC activity can be detected. Comparison with a rat brain cytosolic fraction indicated that it is PKC-alpha which is expressed in the rat lacrimal gland. This result was confirmed by the use of polyclonal antibodies raised against rat brain PKC-alpha, beta and gamma isoforms. We also provide evidence that free arachidonic acid activates PKC, as does PMA, in a calcium and phospholipid-free system.  相似文献   

5.
We have used digitonin permeabilization to study the mechanism of bombesin-induced activation of protein kinase C in Swiss 3T3 cells. Protein kinase C-mediated phosphorylations in permeabilized cells were identified using phorbol esters and diacylglycerols. Addition of phorbol 12,13-dibutyrate (PDBu) in the presence of [gamma-32P]ATP and digitonin caused a marked and rapid time- and dose-dependent increase in the phosphorylation of an Mr 80,000 cellular protein (maximum stimulation = 12.6 +/- 1.6-fold after 1 min, EC50 = 27 nM). 1-oleoyl-2-acetylglycerol substituted for PDBu in stimulating the phosphorylation of Mr 80,000 protein (EC50 = 13 microM). Bombesin also caused a striking increase in the phosphorylation of Mr 80,000 protein with a time course similar to that observed with PDBu. This phosphorylation was mimicked by mammalian bombesin-like peptides and blocked by the bombesin antagonists [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P and [Leu13 psi (CH2NH)Leu14]bombesin. Down-regulation of protein kinase C in intact cells by prolonged exposure to PDBu prevented Mr 80,000 protein phosphorylation upon subsequent bombesin addition in digitonin-permeabilized cells. Comigration on one- and two-dimensional gel electrophoresis and phosphopeptide mapping confirmed that the Mr 80,000 protein phosphorylated in permeabilized cells was indistinguishable from the Mr 80,000 protein which is the major protein kinase C substrate in intact cells. The GDP analogue guanosine-5'-O-(2-thiodiphosphate) (GDP beta S) caused a 70% inhibition of the bombesin-induced phosphorylation of Mr 80,000 protein but had no effect on the phosphorylation induced by PDBu. Bombesin stimulated Mr 80,000 protein phosphorylation in permeabilized cells in a dose-dependent manner (EC50 = 4 nM), and GDP beta S shifted the bombesin dose response curve to higher bombesin concentrations (EC50 = 14 nM). These results demonstrate for the first time a growth factor receptor-mediated activation of protein kinase C in permeabilized cells and provide functional evidence for the involvement of a G protein in the transmembrane signaling pathway that mediates the stimulation of protein kinase C by bombesin in Swiss 3T3 cells.  相似文献   

6.
The effect of phorbol 12-myristate 13-acetate (PMA) on protein kinase C was studied by metabolically labeling GH3 cells with [35S]methionine and using a polyclonal antibody raised against rat brain protein kinase C to immunoprecipitate the enzyme. PMA accelerates the loss of immunologically reactive protein kinase C from the cells in a time- and dose-dependent manner. The half-life of the enzyme in cells treated with 400 nM PMA was 2 h whereas in control cells 60-70% of the enzyme was still detectable after 24 h. The concentration of PMA required to reduce cellular protein kinase C 50% after 24 h was 130 nM. PMA also induced the translocation of [35S]Met-labeled protein kinase C from the cytosol to the membranes in a concentration-dependent manner. Less protein kinase C was translocated to membranes when cells were treated with 20 nM PMA than when they were exposed to 400 nM PMA. In the latter case, most of the labeled protein kinase C became membrane-associated. Maximal translocation was evident after 15 min of incubation with either concentration of PMA and was followed by degradation of the membrane-associated enzyme. The rate of degradation of membrane-associated protein kinase C was the same with both concentrations of PMA. In cells treated with 20 nM PMA, disappearance of [35S]Met-labeled protein kinase C from the cytosolic fraction occurred in two phases, a rapid decrease characteristic of the membrane-associated enzyme, followed by a slower loss similar to that seen in control cells. The results indicate that turnover of protein kinase C is enhanced by membrane association.  相似文献   

7.
We have examined phosphorylation of nerve growth factor (NGF) receptor in cultured sympathetic neurons and PC12 cells. Dissociated rat superior cervical ganglion neurons or PC12 cells were incubated with 32Pi to label cellular phosphoproteins. Membrane proteins were solubilized, and NGF receptor proteins were immunoprecipitated with the monoclonal antibody 192-IgG. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography showed that NGF receptor components of Mr = 80,000 and Mr = 210,000 were phosphorylated. Phosphorylation of neither species was affected by treating the cells with NGF or phorbol 12-myristate 13-acetate. When the 80,000-Da protein was subjected to complete trypsin proteolysis and then analyzed by reverse phase liquid chromatography, two 32P-labeled peptides were resolved. The more hydrophobic peptide accounted for most of the 32P and contained only phosphoserine; the other peptide contained phosphoserine and phosphothreonine. No phosphotyrosine was detected in the receptor proteins. When receptor molecules from nonlabeled PC12 cells were immunoprecipitated and then incubated in vitro with [gamma-32P]ATP and the cAMP-independent protein kinase FA/GSK-3, phosphorylation occurred predominantly on serine and to a lesser extent on threonine. However, the immunoprecipitated receptor proteins neither autophosphorylated nor were they detectably phosphorylated by cAMP-dependent protein kinase, casein kinase II, or protein kinase C (the Ca2+/phospholipid-dependent enzyme). We conclude that binding units of the NGF receptor are phosphorylated constitutively in at least two sites in intact cells and that they can be phosphorylated by FA/GSK-3 in vitro.  相似文献   

8.
Caldesmon is a widely distributed calmodulin- and actin-binding protein which occurs in different forms depending on the tissue or cell type under examination. On the basis of molecular weight, caldesmon species can be divided into two classes: caldesmon77 (Mr 70,000-80,000) and caldesmon150 (Mr 140,000-150,000). We have examined the phosphorylation of caldesmon77 by protein kinase C (the Ca2+/phospholipid-dependent enzyme) in vitro and in intact platelets. Caldesmon77, purified from bovine liver, could be phosphorylated by purified rat brain protein kinase C to a level of approximately 1.0 mol of phosphate per mol of caldesmon77 monomer. Two-dimensional tryptic peptide mapping and phosphoamino acid analysis reveals that caldesmon77 is phosphorylated at two major sites exclusively on serine residues. Following treatment of platelets with tumor-promoting phorbol ester, caldesmon77 phosphorylation was elevated 4-fold. Tryptic peptide mapping of phosphorylated platelet caldesmon77 demonstrates that phosphorylation is most significantly enhanced on two peptides which had migration patterns identical with those of the two major phosphopeptides of bovine liver caldesmon77 phosphorylated in vitro. The results of this study indicate that protein kinase C can phosphorylate caldesmon77 in vitro and in intact platelets, suggesting a role for protein kinase C in the regulation of caldesmon77 function or localization.  相似文献   

9.
Protein kinase C (PKC) was partially purified from Xenopus laevis oocytes by ammonium sulfate fractionation followed by DEAE-cellulose and hydroxyapatite column chromatography. In the latter chromatography, two distinct PKC activities were identified. Both PKC fractions contained an 80 kDa protein which was recognized by three antisera raised against the conserved regions of mammalian PKC. However, specific antisera against alpha, beta I, beta II, and gamma-subspecies of rat PKC did not recognize the protein. Kinetic properties of the Xenopus PKCs were very similar to those of the rat alpha PKC, and only a subtle difference was found in the mode of activation by arachidonic acid. When oocytes were treated with the tumor promoter, phorbol 12-myristate 13-acetate, one of the Xenopus PKCs was found to disappear very rapidly, while the other remained unchanged up to 2 hr.  相似文献   

10.
Immunochemical characterization of rat brain protein kinase C   总被引:11,自引:0,他引:11  
Polyclonal antibodies against rat brain protein kinase C (the Ca2+/phospholipid-dependent enzyme) were raised in goat. These antibodies can neutralize completely the kinase activity in purified enzyme preparation as well as that in the crude homogenate. Immunoblot analysis of the purified and the crude protein kinase C preparations revealed a major immunoreactive band of 80 kDa. The antibodies also recognize the same enzyme from other rat tissues. Neuronal tissues (cerebral cortex, cerebellum, hypothalamus, and retina) and lymphoid organs (thymus and spleen) were found to be enriched in protein kinase C, whereas lung, kidney, liver, heart, and skeletal muscle contained relatively low amounts of this kinase. Limited proteolysis of the purified rat brain protein kinase C with trypsin results in an initial degradation of the kinase into two major fragments of 48 and 38 kDa. Both fragments are recognized by the antibodies. However, further digestion of the 48-kDa fragment to 45 kDa and the 38-kDa fragment to 33 kDa causes a loss of the immunoreactivity. Upon incubation of the cerebellar extract with Ca2+, the 48-kDa fragment was also identified as a major proteolytic product of protein kinase C. Proteolytic degradation of protein kinase C converts the Ca2+/phospholipid-dependent kinase to an independent form without causing a large impairment of the binding of [3H]phorbol 12,13-dibutyrate. The two major proteolytic fragments were separated by ion exchange chromatography and one of them (45-48 kDa) was identified as a protein kinase and the other (33-38 kDa) as a phorbol ester-binding protein. This degraded form of the phorbol ester-binding protein still requires phospholipid for activity but, unlike the native enzyme, becomes less dependent on Ca2+. These results demonstrate that rat brain protein kinase C is composed of two functionally distinct units, namely, a protein kinase and a Ca2+-independent/phospholipid-dependent phorbol ester-binding protein.  相似文献   

11.
Abstract: The involvement of protein kinase C and its interaction with interleukin 1β in the control of interleukin 6 release by cortical astrocytes was studied. The blockade of protein kinase C catalytic domain, by staurosporine, as well as the desensitization of protein kinase C by short-term phorbol 12-myristate 13-acetate pretreatment, increased the basal release of interleukin 6 by rat cortical astrocytes, whereas calphostin C, an antagonist of phorbol ester binding on protein kinase C regulatory domain, did not affect the basal release of the cytokine. The activation of protein kinase C by phorbol 12-myristate 13-acetate enhanced concentration- and time-dependently interleukin 6 release. This stimulatory action of phorbol 12-myristate 13-acetate was significantly reduced by staurosporine, by calphostin C, and by the desensitization of protein kinase C. Interleukin 1β increased interleukin 6 release in a concentration-related manner. Protein kinase C inhibition, by staurosporine or desensitization, potentiated severalfold, whereas calphostin C reduced interleukin 1β stimulation of interleukin 6 release. The treatment of cortical astrocytes with both interleukin 1β (3 ng/ml) and phorbol 12-myristate 13-acetate (10 nM) caused a synergistic stimulation of interleukin 6 release and its gene expression, an effect that was not relieved by either 20 nM staurosporine or by calphostin C but was slightly affected by protein kinase C desensitization. In conclusion, our data show that in rat cortical astrocytes the basal release of interleukin 6 is under a tonic inhibition exerted by a protein kinase C isoform or isoforms sensitive to blockade by staurosporine and desensitization but insensitive to calphostin C. Interleukin 1β stimulated interleukin 6 secretion via a mechanism that is also negatively modulated by a protein kinase C isoform or isoforms sensitive to staurosporine and desensitization. Finally, we showed that interleukin 1β and phorbol 12-myristate 13-acetate synergistically stimulated interleukin 6 release and its gene expression, operating in a manner insensitive to protein kinase C blockers and slightly reduced by protein kinase C desensitization.  相似文献   

12.
To determine whether insulin activates protein kinase C in BC3H-1 myocytes, we evaluated changes in protein phosphorylation, protein kinase activities, and the intracellular translocation of protein kinase C activity in response to insulin and phorbol esters. Phorbol 12-myristate 13-acetate (PMA), but not insulin, stimulated the phosphorylation of an acidic Mr 80,000 protein which has been shown to be an apparently specific marker for protein kinase C activation. In addition, PMA, but not insulin, stimulated the rapid association of protein kinase C activity with a cellular particulate fraction. In contrast to these differences, both insulin and PMA stimulated the phosphorylation of ribosomal protein S6 and activated a ribosomal protein S6 kinase in cell-free extracts from cells exposed to these agents. In cells exposed to high concentrations of PMA for 16 h, protein kinase C activity and immunoreactivity were abolished, without changes in cellular morphology. Under these conditions, insulin, but not PMA, stimulated phosphorylation of the ribosomal protein S6 in intact cells and activated the S6 kinase in cell-free extracts derived from insulin-treated intact cells. We conclude that: insulin does not appear to activate protein kinase C in BC3H-1 myocytes, at least as assessed by phosphorylation of the Mr 80,000 protein; both insulin and PMA activate an S6 protein kinase in these cells; and insulin can promote S6 phosphorylation and activate the S6 kinase normally in protein kinase C-deficient cells. Activation of the S6 kinase by insulin and PMA, although apparently proceeding through different mechanisms, may explain some of the similar biological actions of these compounds in BC3H-1 myocytes.  相似文献   

13.
The co-carcinogenic compound phorbol 12-myristate 13-acetate but not its inactive analogue 4 alpha-phorbol 12,13-didecanoate causes the phosphorylation of several rabbit neutrophil polypeptides whose molecular weights and isoelectric points (pI) are as follows: Mr = 40,000, pI = 6.4; Mr = 50,000, pI = 4.9; Mr = 55,000, pI = 6.3; Mr = 64,000, pI = 6.0; Mr = 70,000, pI = 5.6; Mr = 90,000, pI = 6.0. Most of these phosphorylated proteins are located exclusively in the cytosol; the 64,000 molecular weight protein is found both in the cytosol and the cytoskeleton, and the 40,000 molecular weight protein is found in the nuclear pellet. The 50,000 molecular weight protein is also phosphorylated in whole cells by the chemotactic peptide fMet-Leu-Phe and in cell-free systems by protein kinase C. Using limited proteolysis, one phosphopeptide fragment was phosphorylated by the three stimuli. In addition, phorbol 12-myristate 13-acetate but not 4 alpha-phorbol 12,13-didecanoate causes cell aggregation and the exocytotic release of the specific granules of rabbit neutrophils. In contrast, both compounds increase the amount of actin associated with the cytoskeleton. The divalent cation ionophore A23187 at low concentration and the compound phorbol 12-myristate 13-acetate act synergistically in causing neutrophil degranulation. Lysosomal enzyme release and the phosphorylation of the 50,000 molecular weight polypeptide produced by phorbl 12-myristate 13-acetate are inhibited by trifluoperazine, and these two responses seem to be causally related. These results are discussed in terms of the role of 1,2-diacylglycerol and activation of protein kinase C in specific granule release from rabbit neutrophils.  相似文献   

14.
The effect of phorbol esters on cyclic AMP production in rat CNS tissue was examined. Using a prelabeling technique for measuring cyclic AMP accumulation in brain slices, it was found that phorbol 12-myristate, 13-acetate (PMA) enhanced the cyclic AMP response to forskolin and a variety of neurotransmitter receptor stimulants while having no effect on second messenger accumulation itself. A short (15-min) preincubation period with PMA was required to obtain maximal enhancement, whereas the augmentation was lessened by prolonged exposure (3 h) to the phorbol. The response to PMA was concentration dependent (EC50 = 1 microM) and regionally selective, being most apparent in forebrain, and was not influenced by removal of extracellular calcium or by inhibition of phosphodiesterase or phospholipase A2. Only those phorbols known to stimulate protein kinase C augmented the accumulation of cyclic AMP. Moreover, the membrane substrates phosphorylated by endogenous C kinase and by a partially purified preparation of this enzyme were similar. The results suggest that phorbol esters, by activating protein kinase C, modify the cyclic AMP response to brain neurotransmitter receptor stimulation in brain by influencing a component of the adenylate cyclase system beyond the transmitter recognition site.  相似文献   

15.
A high Mr synthetase core complex isolated from higher eukaryotes contains aminoacyl-tRNA synthetases specific for arginine, aspartic acid, glutamic acid, glutamine, isoleucine, leucine, lysine, methionine, and proline. Previously, five of the synthetases were shown to be phosphorylated in reticulocytes, and the glutaminyl- and aspartyl-tRNA synthetases were shown to be selectively phosphorylated in response to 8-bromo cAMP (Pendergast, A. M., Venema, R. C., and Traugh, J. A. (1987) J. Biol. Chem. 262, 5939-5942). Exposure of reticulocytes to phorbol 12-myristate 13-acetate stimulates the selective phosphorylation of one synthetase in the complex, glutamyl-tRNA synthetase. Only the glutamyl-tRNA synthetase is modified to a significant extent when the purified complex is phosphorylated in vitro by protein kinase C; up to 0.7 mol of phosphate is incorporated per mol of synthetase. Two-dimensional phosphopeptide mapping shows a single tryptic phosphopeptide, which is identical for the enzyme modified in vitro by protein kinase C or in phorbol 12-myristate 13-acetate-stimulated cells. Phosphorylation in vivo is reproducibly accompanied by a 38 +/- 10% reduction in aminoacylation activity of partially purified glutamyl-tRNA synthetase assayed in vitro. Phosphorylation in vitro has no detectable effect on aminoacylation. This difference may be due to the absence of a required effector molecule which alters activity by interaction with the phosphorylated synthetase. Glutamyl-tRNA synthetase is one of a growing number of translational components, including initiation factors, which are coordinately modified by protein kinase C in response to phorbol 12-myristate 13-acetate.  相似文献   

16.
Membrane-associated protein kinases in human polymorphonuclear leukocytes were studied. In unstimulated polymorphonuclear leukocytes the protein kinase C was predominantly present in the cytosol but in phorbol 12-myristate 13-acetate- (PMA-) activated cells a time and dose-dependent translocation of the kinase to the particulate fraction occurred. Two new protein kinase activities also appeared in the particulate fraction upon PMA activation. The one had a Mr of 40,000 and its activity was independent of phospholipids. The other (Mr 90,000) as partially activated by phospholipids, but separated from protein kinase C on DEAE-cellulose chromatography.  相似文献   

17.
The effect of phorbol esters on cyclic AMP production in rat cerebral cortical slices was studied using a prelabelling technique to measure cyclic nucleotide accumulation. Cholera toxin-stimulated cyclic AMP accumulation was enhanced approximately 2-fold by phorbol 12-myristate, 13-acetate (PMA) which alone had no effect on cyclic AMP production. The augmentation by PMA was maximal within the first hour of incubation, decreasing progressively thereafter. Protein kinase C activity was decreased 80-90% during a 3 hr exposure to PMA, as was 3H-phorbol 12,13-dibutyrate binding. Both phosphatidyl serine and arachidonic acid were found to enhance protein kinase C activity in a concentration-dependent manner, an effect that was attenuated by prolonged incubation of the brain tissue with PMA. The results indicate that exposure of brain slices to phorbol esters causes a down-regulation of rat brain protein kinase C, and that this modification corresponds with a decrease in the ability of PMA to augment cyclic AMP production, suggesting a functional relationship between the two systems in rat brain.  相似文献   

18.
The zeta isoform of protein kinase C (PKC zeta) was purified to near homogeneity from the cytosolic fraction of bovine kidney by successive chromatography on DEAE-Sephacel, heparin-Sepharose, phenyl-5PW, hydroxyapatite, and Mono Q. The purified enzyme had a molecular mass of 78 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The protein was recognized by an antibody raised against a synthetic oligopeptide corresponding to the deduced amino acid sequence of rat PKC zeta. The enzymatic properties of PKC zeta were examined and compared with conventional protein kinase C purified from rat brain. The activity of PKC zeta was stimulated by phospholipid but was unaffected by phorbol ester, diacylglycerol, or Ca2+. PKC zeta did not bind phorbol ester, and autophosphorylation was not affected by phorbol ester. Unsaturated fatty acid activated PKC zeta, but this activation was neither additive nor synergistic with phospholipid. These results indicate that regulation of PKC zeta is distinct from that of other isoforms and suggest that hormone-stimulated increases in diacylglycerol and Ca2+ do not activate this isoform in cells. It is possible that PKC zeta belongs to another enzyme family, in which regulation is by a different mechanism from that for other isoforms of protein kinase C.  相似文献   

19.
Vinculin phosphorylation in both chick embryo fibroblasts and Swiss 3T3 cells was increased by either calcium or biologically active phorbol esters. Increased phosphorylation of vinculin was noted as early as 10 min following phorbol 12-myristate 13-acetate treatment and was maximal at about 1 h. Maximal increases in phosphorylation were noted at approximately 100 nM phorbol 12-myristate 13-acetate. Phorbol 12,13-dibutyrate (80 nM), a less potent phorbol ester, resulted in smaller increases in vinculin phosphorylation than phorbol 12-myristate 13-acetate at equimolar concentrations. Phorbol, dibutyryl cAMP, and dibutyryl cGMP had no significant effect on phosphorylation. No correlation was found between vinculin phosphorylation and the morphological changes induced by phorbol esters. Tryptic peptide analysis of vinculin revealed multisite phosphorylation. Phosphorylation of only three of the peptides was significantly increased following phorbol 12-myristate 13-acetate treatment. Phosphoamino acid analysis revealed increases at both serine and threonine residues. The low level of phosphotyrosine present in control cells was not significantly increased by phorbol 12-myristate 13-acetate treatment. These findings combined with studies of vinculin phosphorylation by purified protein kinase C (Werth, D. K., Niedel, J. E., and Pastan I. (1983) J. Biol. Chem. 258, 11423-11426) suggest the hypothesis that protein kinase C may be involved in regulation of phosphorylation of vinculin, a cytoskeletal protein.  相似文献   

20.
Exposure of freshly isolated rat hepatocytes to tumor-promoting phorbol esters like phorbol 12-myristate 13-acetate resulted in a time- and concentration-dependent translocation of protein kinase C from the soluble to the particulate fraction of the cells. No such disappearance of soluble protein kinase C activity was observed with either epidermal growth factor or insulin, indicating that activation of protein kinase C is not necessarily involved in the short-term metabolic action of physiological growth factors on rat hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号