首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Behaviors toward heterospecifics and conspecifics may be correlated because of shared mechanisms of expression in both social contexts (nonadaptive covariation) or because correlational selection favors adaptive covariation. We evaluated these hypotheses by comparing behavior toward conspecifics and heterospecifics in brook stickleback (Culaea inconstans) from three populations sympatric with and three allopatric from a competitor, the ninespine stickleback (Pungitius pungitius). Behavioral traits were classified into three multivariate components: overt aggression, sociability, and activity. The correlation of behavior between social contexts for both overt aggression and activity varied among populations in a way unrelated to sympatry with ninespine stickleback, while mean aggression was reduced in sympatry. Correlations in allopatric populations suggest that overt aggression and activity may genetically covary between social contexts for nonadaptive reasons. Sociability was rarely correlated in allopatry but was consistently correlated in sympatry despite reduced mean sociability, suggesting that correlational selection may favor a sociability syndrome in brook stickleback when they coexist with ninespine stickleback. Thus, interspecific competition may impose diversifying selection on behavior among populations, although the causes of correlated behavior toward conspecifics and heterospecifics and whether it can evolve in one social context independent of the other may depend on the type of behavior.  相似文献   

2.
Ecological character displacement (ECD) provides opportunities to test how resource competition generates diversifying selection that results in adaptive divergence. We quantify an association between phenotypic and ecological divergence between two similar small fishes, brook (Culaea inconstans) and ninespine (Pungitius pungitius) sticklebacks, in replicate northern Ontario lakes, Canada. The two species partition resources and habitat, where they coexist, and brooks that coexist with ninespines are more benthically specialized in body form and diet than brooks from local allopatric populations. Here we test various explanations for this pattern. Chance is unlikely to have been the primary cause because divergence is replicated in three separate populations. Preliminary comparisons indicate that resource availability and a variety of abiotic ecological conditions are generally similar between sympatric and allopatric sites, and so do not readily account for the divergence. Biased colonization or extinction is less likely to account for the divergence because character values in sympatry tend to exceed those in allopatry, as expected if they have repeatedly evolved under diversifying selection. Recent studies have also demonstrated that these two species compete, and that competitive effects are more severe for allopatric compared to sympatric brook forms, as predicted if divergence reflects the ghost of competition past. Ongoing studies indicate heritable variation in this system. Our results suggest that even small amounts of character shifts can influence competition and hence relative fitness, further implicating a role for ECD in the evolution of biodiversity.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

3.
The ecological character displacement hypothesis assumes that the effects of interspecific resource competition cause divergent selection to favour phenotypes that exploit non-shared resources. This model predicts that interspecific competition declines with increased divergence. Direct tests of this decline are rare despite much comparative evidence for character displacement. We tested this prediction using a pair of divergent brook sticklebacks. Brook sticklebacks sympatric with ninespine sticklebacks have diverged from local allopatric brook populations, and so the two types of brook sticklebacks potentially represent pre- and post-displacement forms. We used enclosures placed in a lake to compare short-term fitness (growth) of sympatric (post-displacement) and allopatric (pre-displacement) brook forms in the presence and absence of ninespine sticklebacks. Brook sticklebacks grew less in the presence vs. absence of ninespine sticklebacks, indicating that interspecific competition occurred. As expected, allopatric brook forms had lower growth than sympatric forms when ninespine sticklebacks were present. This result suggests that ecological character displacement has occurred.  相似文献   

4.
Character shifts in the defensive armor of sympatric sticklebacks   总被引:6,自引:0,他引:6  
Natural enemies may contribute to the morphological divergence of sympatric species, yet their role has received little attention to date. We tested for character shifts in defensive armor of sympatric threespine sticklebacks (Gasterosteus aculeatus complex) previously shown to exhibit ecological character displacement in traits related to resource use. We scored five defensive armor traits in sympatric benthic and limnetic stickleback species from southwestern British Columbia and compared them with the same traits in nearby allopatric populations in the presence of the same predatory fish (Oncorhynchus sp.). This approach is analogous to tests of ecological character displacement that compare trophic traits of sympatric and allopatric species in the presence of the same community of resource types. Three patterns consistent with character displacement in defensive armor were found. First, limnetics in different lakes had consistently more armor than sympatric benthics. Second, the average amount of armor, averaged over both species, was reduced in sympatry compared to allopatric populations. This reduction was almost entirely the result of shifts by benthic species, whereas armor in limnetics was more similar to that in allopatric populations. Third, differences between sympatric benthics and limnetics in total armor were greater than expected from comparisons with allopatric populations. We interpret these patterns as the result of differences in habitat-specific predation regimes accompanying ecological character displacement and indirect interactions between sympatric stickleback species mediated by their top predators. These results suggest that predation may facilitate, rather than hinder, the process of divergence in sympatry.  相似文献   

5.
Abstract.— The role of reinforcement in speciation can be explained by two distinct models. In model I, two diverged populations hybridize and produce fertile hybrids that successfully backcross (hybridization with gene flow). In model II, two populations hybridize but succeeding backcrosses are unproductive (hybridization without gene flow). Using Drosophila persimilis and D. pseudoobscura , we have tested model I by comparing the extent of heterospecific introgression in sympatric versus allopatric populations. We show that certain expectations of this particular model of reinforcement, which is based on hybridization and gene flow between divergent populations after secondary contact, are not realized in these two species. The evidence consists of the similarity of genetic distances as well as proportions of unique/rare alleles between sympatric and allopatric heterospecific populations and a negative correlation between genetic distance and geographical distance between heterospecific populations, which suggests ecological differentiation. This approach in quantifying differential gene flow has important consequences to studies that compare sympatric and allopatric isolation using genetic distance. Following model I, one would expect a pattern of higher prezygotic isolation in sympatric species compared to allopatric species of the same genetic distance simply as a result of an underestimation of genetic distance due to introgression between sympatric populations. We suggest more parsimonious explanations such as reinforcement without genetic exchange (model II) and ecological differentiation, which require high levels of preexisting reproductive isolation between populations.  相似文献   

6.
The two European species of treecreepers, the short-toed treecreeper Certhia brachydactyla and the common treecreeper C. familiaris, occupy different habitats, but are sympatric to a certain extent. The response to specific and heterospecific song was studied both in a sympatric and in an allopatric population of short-toed treecreeper in the Iberian Mountains (Burgos, Castilla-León, Spain). Short-toed treecreepers in sympatry showed a more aggressive response towards the song of the common treecreeper than those in allopatry. Although strict interspecific territoriality was not found, the experimental data suggest that the altitudinal distribution pattern of the two species may be a consequence of the increased aggression. This interspecific aggression may be advantageous for the short-toed treecreeper, as it may achieve a loose interspecific territoriality resulting in some spacing. However, a non-adaptive hypothesis for this behaviour cannot be rejected.  相似文献   

7.
Intraguild predation--competition and predation by the same antagonist--is widespread, but its evolutionary consequences are unknown. Intraguild prey may evolve antipredator defenses, superior competitive ability on shared resources, or the ability to use an alternative resource, any of which may alter the structure of the food web. We tested for evolutionary responses by threespine stickleback to a benthic intraguild predator, prickly sculpin. We used a comparative morphometric analysis to show that stickleback sympatric with sculpin are more armored and have more limnetic-like body shapes than allopatric stickleback. To test the ecological implications of this shift, we conducted a mesocosm experiment that varied sculpin presence and stickleback population of origin (from one sympatric and one allopatric lake). Predation by sculpin greatly increased the mortality of allopatric stickleback. In contrast, sculpin presence did not affect the mortality of sympatric stickleback, although they did have lower growth rates suggesting increased nonpredatory effects of sculpin. Consistent with their morphology, sympatric stickleback included more pelagic prey in their diets, leading to depletion of zooplankton in the mesocosms. These findings suggest that intraguild prey evolution has altered food web structure by reducing both predation by the intraguild predator and diet overlap between species.  相似文献   

8.
Reproductive character displacement--the evolution of traits that minimize reproductive interactions between species--can promote striking divergence in male signals or female mate preferences between populations that do and do not occur with heterospecifics. However, reproductive character displacement can affect other aspects of mating behaviour. Indeed, avoidance of heterospecific interactions might contribute to spatial (or temporal) aggregation of conspecifics. We examined this possibility in two species of hybridizing spadefoot toad (genus Spea). We found that in Spea bombifrons sympatric males were more likely than allopatric males to associate with calling males. Moreover, contrary to allopatric males, sympatric S. bombifrons males preferentially associated with conspecific male calls. By contrast, Spea multiplicata showed no differences between sympatry and allopatry in likelihood to associate with calling males. Further, sympatric and allopatric males did not differ in preference for conspecifics. However, allopatric S. multiplicata were more variable than sympatric males in their responses. Thus, in S. multiplicata, character displacement may have refined pre-existing aggregation behaviour. Our results suggest that heterospecific interactions can foster aggregative behaviour that might ultimately contribute to clustering of conspecifics. Such clustering can generate spatial or temporal segregation of reproductive activities among species and ultimately promote reproductive isolation.  相似文献   

9.
Although similar patterns of phenotypic diversification are often observed in phylogenetically independent lineages, differences in the magnitude and direction of phenotypic divergence have been also observed among independent lineages, even when exposed to the same ecological gradients. The stickleback family is a good model with which to explore the ecological and genetic basis of parallel and nonparallel patterns of phenotypic evolution, because there are a variety of populations and species that are locally adapted to divergent environments. Although the patterns of phenotypic divergence as well as the genetic and ecological mechanisms have been well characterized in threespine sticklebacks, Gasterosteus aculeatus, we know little about the patterns of phenotypic diversification in other stickleback lineages. In eastern Hokkaido, Japan, there are three species of ninespine sticklebacks, Pungitius tymensis and the freshwater type and the brackish‐water type of the P. pungitiusP. sinensis species complex. They utilize divergent habitats along coast–stream gradients of rivers. Here, we investigated genetic, ecological and phenotypic divergence among three species of Japanese ninespine sticklebacks. Divergence in trophic morphology and salinity tolerance occurred in the direction predicted by the patterns observed in threespine sticklebacks. However, the patterns of divergence in armour plate were different from those previously found in threespine sticklebacks. Furthermore, the genetic basis of plate variation may differ from that in threespine sticklebacks. Because threespine sticklebacks are well‐established model for evolutionary research, the sympatric trio of ninespine sticklebacks will be an invaluable resource for ecological and genetic studies on both common and lineage‐specific patterns of phenotypic diversification.  相似文献   

10.
Intraguild predation is a common ecological interaction that occurs when a species preys upon another species with which it competes. The interaction is potentially a mechanism of divergence between intraguild prey (IG‐prey) populations, but it is unknown if cases of character shifts in IG‐prey are an environmental or evolutionary response. We investigated the genetic basis and inducibility of character shifts in threespine stickleback from lakes with and without prickly sculpin, a benthic intraguild predator (IG‐predator). Wild populations of stickleback sympatric with sculpin repeatedly show greater defensive armor and water column height preference. We laboratory‐raised stickleback from lakes with and without sculpin, as well as marine stickleback, and found that differences between populations in armor, body shape, and behavior persisted in a common garden. Within the common garden, we raised stickleback half‐families from multiple populations in the presence and absence of sculpin. Although the presence of sculpin induced trait changes in the marine stickleback, we did not observe an induced response in the freshwater stickleback. Behavioral and morphological trait differences between freshwater populations thus have a genetic basis and suggest an evolutionary response to intraguild predation.  相似文献   

11.
The current geographical distribution of the ninespine stickleback (Pungitius pungitius) was shaped in large part by the glaciation events of the Pleistocene epoch (2.6 Mya–10 Kya). Previous efforts to elucidate the phylogeographical history of the ninespine stickleback in North America have focused on a limited set of morphological traits, some of which are likely subject to widespread convergent evolution, thereby potentially obscuring relationships among populations. In this study, we used genetic information from both mitochondrial DNA (mtDNA) sequences and nuclear microsatellite markers to determine the phylogenetic relationships among ninespine stickleback populations. We found that ninespine sticklebacks in North America probably dispersed from at least three glacial refugia—the Mississippi, Bering, and Atlantic refugia—not two as previously thought. However, by applying a molecular clock to our mtDNA data, we found that these three groups diverged long before the most recent glacial period. Our new phylogeny serves as a critical framework for examining the evolution of derived traits in this species, including adaptive phenotypes that evolved multiple times in different lineages. In particular, we inferred that loss of the pelvic (hind fin) skeleton probably evolved independently in populations descended from each of the three putative North American refugia.  相似文献   

12.
Ecological character displacement—trait evolution stemming from selection to lessen resource competition between species—is most often inferred from a pattern in which species differ in resource-use traits in sympatry but not in allopatry, and in which sympatric populations within each species differ from conspecific allopatric populations. Yet, without information on population history, the presence of a divergent phenotype in multiple sympatric populations does not necessarily imply that there has been repeated evolution of character displacement. Instead, such a pattern may arise if there has been character displacement in a single ancestral population, followed by gene flow carrying the divergent phenotype into multiple, derived, sympatric populations. Here, we evaluate the likelihood of such historical events versus ongoing ecological selection in generating divergence in trophic morphology between multiple populations of spadefoot toad (Spea multiplicata) tadpoles that are in sympatry with a heterospecific and those that are in allopatry. We present both phylogenetic and population genetic evidence indicating that the same divergent trait, which minimizes resource competition with the heterospecific, has arisen independently in multiple sympatric populations. These data, therefore, provide strong indirect support for competition''s role in divergent trait evolution.  相似文献   

13.
Detailed studies of reproductive isolation and how it varies among populations can provide valuable insight into the mechanisms of speciation. Here we investigate how the strength of premating isolation varies between sympatric and allopatric populations of threespine sticklebacks to test a prediction of the hypothesis of reinforcement: that interspecific mate discrimination should be stronger in sympatry than in allopatry. In conducting such tests, it is important to control for ecological character displacement between sympatric species because ecological character divergence may strengthen prezygotic isolation as a by-product. We control for ecological character displacement by comparing mate preferences of females from a sympatric population (benthics) with mate preferences of females from two allopatric populations that most closely resemble the sympatric benthic females in ecology and morphology. No-choice mating trials indicate that sympatric benthic females mate less readily with heterospecific (limnetic) than conspecific (benthic) males, whereas two different populations of allopatric females resembling benthics show no such discrimination. These differences demonstrate reproductive character displacement of benthic female mate choice. Previous studies have established that hybridization between sympatric species occurred in the past in the wild and that hybrid offspring have lower fitness than either parental species, thus providing conditions under which natural selection would favor individuals that do not hybridize. Results are therefore consistent with the hypothesis that female mate preferences have evolved as a response to reduced hybrid fitness (reinforcement), although direct effects of sympatry or a biased extinction process could also produce the pattern. Males of the other sympatric species (limnetics) showed a preference for smaller females, in contrast to the inferred ancestral preference for larger females, suggesting reproductive character displacement of limnetic male mate preferences as well.  相似文献   

14.
Prolonged periods of allopatry might result in loss of the ability to discriminate against other formerly sympatric species, and can lead to heterospecific matings and hybridization upon secondary contact. Loss of premating isolation during prolonged allopatry can operate in the opposite direction of reinforcement, but has until now been little explored. We investigated how premating isolation between two closely related damselfly species, Calopteryx splendens and C. virgo , might be affected by the expected future northward range expansion of C. splendens into the allopatric zone of C. virgo in northern Scandinavia. We simulated the expected secondary contact by presenting C. splendens females to C. virgo males in the northern allopatric populations in Finland. Premating isolation toward C. splendens in northern allopatric populations was compared to sympatric populations in southern Finland and southern Sweden. Male courtship responses of C. virgo toward conspecific females showed limited geographic variation, however, courtship attempts toward heterospecific C. splendens females increased significantly from sympatry to allopatry. Our results suggest that allopatric C. virgo males have partly lost their ability to discriminate against heterospecific females. Reduced premating isolation in allopatry might lead to increased heterospecific matings between taxa that are currently expanding and shifting their ranges in response to climate change.  相似文献   

15.
Reinforcement of species boundaries may alter mate recognition in a way that also affects patterns of mate preference among conspecific populations. In the fly Drosophila subquinaria, females sympatric with the closely related species D. recens reject mating with heterospecific males as well as with conspecific males from allopatric populations. Here, we assess geographic variation in behavioral isolation within and among populations of D. subquinaria and use cline theory to understand patterns of selection on reinforced discrimination and its consequences for sexual isolation within species. We find that selection has fixed rejection of D. recens males in sympatry, while significant genetic variation in this behavior occurs within allopatric populations. In conspecific matings sexual isolation is also asymmetric and stronger in populations that are sympatric with D. recens. The clines in behavioral discrimination within and between species are similar in shape and are maintained by strong selection in the face of gene flow, and we show that some of their genetic basis may be either shared or linked. Thus, while reinforcement can drive extremely strong phenotypic divergence, the long‐term consequences for incipient speciation depend on gene flow, genetic linkage of discrimination traits, and the cost of these behaviors in allopatry.  相似文献   

16.
Phenotypic plasticity may be favored in generalist populations if it increases niche width, even in temporally constant environments. Phenotypic plasticity can increase the frequency of extreme phenotypes in a population and thus allow it to make use of a wide resource spectrum. Here we test the prediction that generalist populations should be more plastic than specialists. In a common-garden experiment, we show that solitary, generalist populations of threespine sticklebacks inhabiting small coastal lakes of British Columbia have a higher degree of morphological plasticity than the more specialized sympatric limnetic and benthic species. The ancestral marine stickleback showed low levels of plasticity similar to those of sympatric sticklebacks, implying that the greater plasticity of the generalist population has evolved recently. Measurements of wild populations show that those with mean trait values intermediate between the benthic and limnetic values indeed have higher morphological variation. Our data indicate that plasticity can evolve rapidly after colonization of a new environment in response to changing niche use.  相似文献   

17.
Breeding male ninespine sticklebacks, Pungilius pungitius , are highly aggressive toward juvenile brook charr. Salvelinus fontinalis , in the Matamek River, Québec. Field observations revealed that such aggression was always initiated by the sticklebacks and only if the charr approached their nests or free-swimming fry. There was considerable overlap in diet in August, but not in June and July, suggesting competition for food is possible under some circumstances.
In laboratory stream tanks, we compared frequency of intraspecific and interspecific aggression of single and mixed species groups over a range of densities. There was no simple relationship between aggression and density for either species, although significant differences in aggression occurred among fish in some of the different density conditions.  相似文献   

18.
Interspecific competition can occur when species are unable to distinguish between conspecific and heterospecific mates or competitors when they occur in sympatry. Selection in response to interspecific competition can lead to shifts in signalling traits—a process called agonistic character displacement. In two fan-throated lizard species—Sitana laticeps and Sarada darwini—females are morphologically indistinguishable and male agonistic signalling behaviour is similar. Consequently, in areas where these species overlap, males engage in interspecific aggressive interactions. To test whether interspecific male aggression between Si. laticeps and Sa. darwini results in agonistic character displacement, we quantified species recognition and signalling behaviour using staged encounter assays with both conspecifics and heterospecifics across sympatric and allopatric populations of both species. We found an asymmetric pattern, wherein males of Si. laticeps but not Sa. darwini showed differences in competitor recognition and agonistic signalling traits (morphology and behaviour) in sympatry compared with allopatry. This asymmetric shift in traits is probably due to differences in competitive abilities between species and can minimize competitive interactions in zones of sympatry. Overall, our results support agonistic character displacement, and highlight the role of asymmetric interspecific competition in driving shifts in social signals.  相似文献   

19.
The question we address in this article is how hybridization in the recent past can be detected in recently evolved species. Such species may not have evolved genetic incompatibilities and may hybridize with little or no fitness loss. Hybridization can be recognized by relatively small genetic differences between sympatric populations because sympatric populations have the opportunity to interbreed whereas allopatric populations do not. Using microsatellite DNA data from Darwin's finches in the Galapagos archipelago, we compare sympatric and allopatric genetic distances in pairs of Geospiza and Camarhynchus species. In agreement with the hybridization hypothesis, we found a statistically strong tendency for a species to be more similar genetically to a sympatric relative than to allopatric populations of that relative. Hybridization has been studied directly on two islands, but it is evidently more widespread in the archipelago. We argue that introgressive hybridization may have been a persistent feature of the adaptive radiation through most of its history, facilitating evolutionary diversification and occasionally affecting both the speed and direction of evolution.  相似文献   

20.
The effects of competition on the evolution of interspecific interference mechanisms were studied by comparing the aggressive behavior of two terrestrial salamander species from two localities that differ in the intensity of interspecific competition. Plethodon jordani and P. glutinosus are closely related, ecologically similar species that are sympatric at intermediate elevations in the southern Appalachian Mountains. Previous removal and transplant experiments showed that interspecific competition is more intense in the northeastern Great Smoky Mountains, where the species are narrowly sympatric, than in the nearby Balsam Mountains, where sympatry is broader. In laboratory encounters, P. glutinosus from the Great Smoky Mountains were more aggressive to heterospecific and conspecific intruders than were P. glutinosus from the Balsam Mountains. For P. jordani, however, the variation in interspecific and intraspecific aggressive behavior among individuals within populations was as great as the variation between populations. Alpha-selection (i.e., improved competitive ability by the acquisition of interspecific interference mechanisms) has occurred in populations of P. glutinosus under conditions of intense interspecific competition. The evolution of aggressive behavior appears to have been influenced by the intensity of intraspecific competition as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号