首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In higher plants the gametophyte consists of a gamete in association with a small number of haploid cells, specialized for sexual reproduction. The female gametophyte or embryo sac, is contained within the ovule and develops from a single cell, the megaspore which is formed by meiosis of the megaspore mother cell. The dyad mutant of Arabidopsis, described herein, represents a novel class among female sterile mutants in plants. dyad ovules contain two large cells in place of an embryo sac. The two cells represent the products of a single division of the megaspore mother cell followed by an arrest in further development of the megaspore. We addressed the question of whether the division of the megaspore mother cell in the mutant was meiotic or mitotic by examining the expression of two markers that are normally expressed in the megaspore mother cell during meiosis. Our observations indicate that in dyad, the megaspore mother cell enters but fails to complete meiosis, arresting at the end of meiosis 1 in the majority of ovules. This was corroborated by a direct observation of chromosome segregation during division of the megaspore mother cell, showing that the division is a reductional and not an equational one. In a minority of dyad ovules, the megaspore mother cell does not divide. Pollen development and male fertility in the mutant is normal, as is the rest of the ovule that surrounds the female gametophyte. The embryo sac is also shown to have an influence on the nucellus in wild type. The dyad mutation therefore specifically affects a function that is required in the female germ cell precursor for meiosis. The identification and analysis of mutants specifically affecting female meiosis is an initial step in understanding the molecular mechanisms underlying early events in the pathway of female reproductive development.  相似文献   

2.
Meiotic prophase I is a complex process involving homologous chromosome (homolog) pairing, synapsis, and recombination. The budding yeast (Saccharomyces cerevisiae) RAD51 gene is known to be important for recombination and DNA repair in the mitotic cell cycle. In addition, RAD51 is required for meiosis and its Arabidopsis (Arabidopsis thaliana) ortholog is important for normal meiotic homolog pairing, synapsis, and repair of double-stranded breaks. In vertebrate cell cultures, the RAD51 paralog RAD51C is also important for mitotic homologous recombination and maintenance of genome integrity. However, the function of RAD51C in meiosis is not well understood. Here we describe the identification and analysis of a mutation in the Arabidopsis RAD51C ortholog, AtRAD51C. Although the atrad51c-1 mutant has normal vegetative and flower development and has no detectable abnormality in mitosis, it is completely male and female sterile. During early meiosis, homologous chromosomes in atrad51c-1 fail to undergo synapsis and become severely fragmented. In addition, analysis of the atrad51c-1 atspo11-1 double mutant showed that fragmentation was nearly completely suppressed by the atspo11-1 mutation, indicating that the fragmentation largely represents a defect in processing double-stranded breaks generated by AtSPO11-1. Fluorescence in situ hybridization experiments suggest that homolog juxtaposition might also be abnormal in atrad51c-1 meiocytes. These results demonstrate that AtRAD51C is essential for normal meiosis and is probably required for homologous synapsis.  相似文献   

3.
4.
A novel gene, prom-1, was isolated in a screen for Caenorhabditis elegans mutants with increased apoptosis in the germline. prom-1 encodes an F-box protein with limited homology to the putative human tumor suppressor FBXO47. Mutations in the prom-1 locus cause a strong reduction in bivalent formation, which results in increased embryonic lethality and a Him phenotype. Furthermore, retarded and asynchronous nuclear reorganization as well as reduced homologous synapsis occur during meiotic prophase. Accumulation of recombination protein RAD-51 in meiotic nuclei suggests disturbed repair of double-stranded DNA breaks. Nuclei in prom-1 mutant gonads timely complete mitotic proliferation and premeiotic replication, but they undergo prolonged delay upon meiotic entry. We, therefore, propose that prom-1 regulates the timely progression through meiotic prophase I and that in its absence the recognition of homologous chromosomes is strongly impaired.  相似文献   

5.
The Spo11 protein initiates meiotic recombination by generating DNA double-strand breaks (DSBs) and is required for meiotic synapsis in S. cerevisiae. Surprisingly, Spo11 homologs are dispensable for synapsis in C. elegans and Drosophila yet required for meiotic recombination. Disruption of mouse Spo11 results in infertility. Spermatocytes arrest prior to pachytene with little or no synapsis and undergo apoptosis. We did not detect Rad51/Dmc1 foci in meiotic chromosome spreads, indicating DSBs are not formed. Cisplatin-induced DSBs restored Rad51/Dmc1 foci and promoted synapsis. Spo11 localizes to discrete foci during leptotene and to homologously synapsed chromosomes. Other mouse mutants that arrest during meiotic prophase (Atm -/-, Dmc1 -/-, mei1, and Morc(-/-)) showed altered Spo11 protein localization and expression. We speculate that there is an additional role for Spo11, after it generates DSBs, in synapsis.  相似文献   

6.
A key step in pollen formation is the segregation of the products of male meiosis into a tetrad of microspores, each of which develops into a pollen grain. Separation of microspores does not occur in tetraspore (tes) mutants of Arabidopsis thaliana, owing to the failure of male meiotic cytokinesis. tes mutants thus generate large 'tetraspores' containing all the products of a single meiosis. Here, we report the positional cloning of the TES locus and details of the role played by the TES product in male cytokinesis. The predicted TES protein includes an N-terminal domain homologous to kinesin motors and a C-terminus with little similarity to other proteins except for a small number of plant kinesins. These include the Arabidopsis HINKEL protein and NACK1 and two from tobacco (Nishihama et al., 2002), which are involved in microtubule organization during mitotic cytokinesis. Immunocytochemistry shows that the characteristic radial arrays of microtubules associated with male meiotic cytokinesis fail to form in tes mutants. The TES protein therefore is likely to function as a microtubule-associated motor, playing a part either in the formation of the radial arrays that establish spore domains following meiosis, or in maintaining their stability.  相似文献   

7.
Cohesins are a group of conserved proteins responsible for cohesion between replicated sister chromatids during mitosis and meiosis and which are implicated in double-strand break repair and meiotic recombination. We describe here the identification and characterisation of an Arabidopsis gene - DETERMINATE, INFERTILE1 (DIF1), which is a homolog of the Schizosaccharomyces pombe REC8/RAD21 cohesin genes, and is essential for meiotic chromosome segregation. Five independent alleles of the DIF1 gene were isolated by transposon mutagenesis, and the mutants show complete male and female sterility. Pollen mother cells (PMCs) of dif1 mutants show multiple meiotic defects which are represented by univalent chromosomes and chromosome fragmentation at metaphase I, and acentric fragments and chromatin bridges in meiosis I and II. Consequently, chromosome segregation is strongly affected, resulting in meiotic products of uneven size, shape and of variable ploidy. The similarities in phenotype, and the sequence homology between DIF1 and the REC8/RAD21 cohesins suggests that cohesin function is largely conserved between eukaryotes and highlights the essential role cohesins play in plant meiosis.  相似文献   

8.
Mitogen-activated protein kinase (MAPK) cascades have been implicated in regulating various aspects of plant development, including somatic cytokinesis. The evolution of expanded plant MAPK gene families has enabled the diversification of potential MAPK cascades, but functionally overlapping components are also well documented. Here we report that Arabidopsis MPK4, an MAPK that was previously described as a regulator of disease resistance, can interact with and be phosphorylated by the cytokinesis-related MAP kinase kinase, AtMKK6. In mpk4 mutant plants, anthers can develop normal microspore mother cells (MMCs) and peripheral supporting tissues, but the MMCs fail to form a normal intersporal callose wall after male meiosis, and thus cannot complete meiotic cytokinesis. Nevertheless, the multinucleate mpk4 microspores subsequently proceed through mitotic cytokinesis, resulting in enlarged mature pollen grains that possess increased sets of the tricellular structure. This pollen development phenotype is reminiscent of those observed in both atnack2/tes/stud and anq1/mkk6 mutants, and protein-protein interaction analysis defines a putative signalling module linking AtNACK2/TES/STUD, AtANP3, AtMKK6 and AtMPK4 together as a cascade that facilitates male-specific meiotic cytokinesis in Arabidopsis.  相似文献   

9.
Recent studies of meiotic recombination in the budding yeast and the model plant Arabidopsis thaliana indicate that meiotic crossovers (COs) occur through two genetic pathways: the interference-sensitive pathway and the interference-insensitive pathway. However, few genes have been identified in either pathway. Here, we describe the identification of the PARTING DANCERS (PTD) gene, as a gene with an elevated expression level in meiocytes. Analysis of two independently generated transferred DNA insertional lines in PTD showed that the mutants had reduced fertility. Further cytological analysis of male meiosis in the ptd mutants revealed defects in meiosis, including reduced formation of chiasmata, the cytological appearance of COs. The residual chiasmata in the mutants were distributed randomly, indicating that the ptd mutants are defective for CO formation in the interference-sensitive pathway. In addition, transmission electron microscopic analysis of the mutants detected no obvious abnormality of synaptonemal complexes and apparently normal late recombination nodules at the pachytene stage, suggesting that the mutant's defects in bivalent formation were postsynaptic. Comparison to other genes with limited sequence similarity raises the possibility that PTD may present a previously unknown function conserved in divergent eukaryotic organisms.  相似文献   

10.
In yeast, the DMC1 gene is required for interhomolog recombination, which is an essential step for bivalent formation and the correct partition of chromosomes during meiosis I. By using a reverse genetics approach, we were able to identify a T-DNA insertion in AtDMC1, the Arabidopsis homolog of DMC1. Homozygotes for the AtDMC1 insertion failed to express AtDMC1, and their residual fertility was 1.5% that of the wild type. Complete fertility was restored in mutant plants when a wild-type copy of the AtDMC1 gene was reintroduced. Cytogenetical analysis points to a correlation of the sterility phenotype with severely disturbed chromosome behavior during both male and female meiosis. In this study, our data demonstrate that AtDMC1 function is crucial for meiosis in Arabidopsis. However, meiosis can be completed in the Arabidopsis dmc1 mutant, which is not the case for mouse or some yeast mutants.  相似文献   

11.
Telomere-led chromosome movements are a conserved feature of meiosis I (MI) prophase. Several roles have been proposed for such chromosome motion, including promoting homolog pairing and removing inappropriate chromosomal interactions. Here, we provide evidence in budding yeast that rapid chromosome movements affect homolog pairing and recombination. We found that csm4Δ strains, which are defective for telomere-led chromosome movements, show defects in homolog pairing as measured in a "one-dot/two-dot tetR-GFP" assay; however, pairing in csm4Δ eventually reaches near wild-type (WT) levels. Charged-to-alanine scanning mutagenesis of CSM4 yielded one allele, csm4-3, that confers a csm4Δ-like delay in meiotic prophase but promotes high spore viability. The meiotic delay in csm4-3 strains is essential for spore viability because a null mutation (rad17Δ) in the Rad17 checkpoint protein suppresses the delay but confers a severe spore viability defect. csm4-3 mutants show a general defect in chromosome motion but an intermediate defect in chromosome pairing. Chromosome velocity analysis in live cells showed that while average chromosome velocity was strongly reduced in csm4-3, chromosomes in this mutant displayed occasional rapid movements. Lastly, we observed that spo11 mutants displaying lower levels of meiosis-induced double-strand breaks showed higher spore viability in the presence of the csm4-3 mutation compared to csm4Δ. On the basis of these observations, we propose that during meiotic prophase the presence of occasional fast moving chromosomes over an extended period of time is sufficient to promote WT levels of recombination and high spore viability; however, sustained and rapid chromosome movements are required to prevent a checkpoint response and promote efficient meiotic progression.  相似文献   

12.
In this study, the meiotic role of MEIOTIC CONTROL OF CROSSOVERS1 (MCC1), a GCN5‐related histone N‐acetyltransferase, is described in Arabidopsis. Analysis of the over‐expression mutant obtained by enhancer activation tagging revealed that acetylation of histone H3 increased in male prophase I. MCC1 appeared to be required in meiosis for normal chiasma number and distribution and for chromosome segregation. Overall, elevated MCC1 did not affect crossover number per cell, but has a differential effect on individual chromosomes elevating COs for chromosome 4, in which there is also a shift in chiasma distribution, and reducing COs for chromosome 1 and 2. For the latter there is a loss of the obligate CO/chiasma in 8% of the male meiocytes. The meiotic defects led to abortion in about half of the male and female gametes in the mutant. In wild type, the treatment with trichostatin A, an inhibitor of histone deacetylases, phenocopies MCC1 over‐expression in meiosis. Our results provide evidence that histone hyperacetylation has a significant impact on the plant meiosis.  相似文献   

13.
14.
Mutations in the Drosophila gene greatwall cause improper chromosome condensation and delay cell cycle progression in larval neuroblasts. Chromosomes are highly undercondensed, particularly in the euchromatin, but nevertheless contain phosphorylated histone H3, condensin, and topoisomerase II. Cells take much longer to transit the period of chromosome condensation from late G2 through nuclear envelope breakdown. Mutant cells are also subsequently delayed at metaphase, due to spindle checkpoint activity. These mutant phenotypes are not caused by spindle aberrations, by global defects in chromosome replication, or by activation of a caffeine-sensitive checkpoint. The Greatwall proteins in insects and vertebrates are located in the nucleus and belong to the AGC family of serine/threonine protein kinases; the kinase domain of Greatwall is interrupted by a long stretch of unrelated amino acids.  相似文献   

15.
We have determined the structural organization and functional roles of centromere-specific DNA sequence repeats in cen1, the centromere region from chromosome I of the fission yeast Schizosaccharomyces pombe. cen1 is composed of various classes of repeated sequences designated K', K"(dgl), L, and B', arranged in a 34-kb inverted repeat surrounding a 4- to 5-kb nonhomologous central core. Artificial chromosomes containing various portions of the cen1 region were constructed and assayed for mitotic and meiotic centromere function in S. pombe. Deleting K' and L from the distal portion of one arm of the inverted repeat had no effect on mitotic centromere function but resulted in greatly increased precocious sister chromatid separation in the first meiotic division. A centromere completely lacking K' and L, but containing the central core, one copy of B' and K" in one arm, and approximately 2.5 kb of the core-proximal portion of B' in the other arm, was also fully functional mitotically but again did not maintain sister chromatid attachment in meiosis I. However, deletion of K" from this minichromosome resulted in complete loss of centromere function. Thus, one copy of at least a portion of the K" (dgl) repeat is absolutely required but is not sufficient for S. pombe centromere function. The long centromeric inverted-repeat region must be relatively intact to maintain sister chromatid attachment in meiosis I.  相似文献   

16.
17.
The initiation of meiotic recombination by the formation of DNA double-strand breaks (DSBs) catalysed by the Spo11 protein is strongly evolutionary conserved. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation, but, unlike Spo11, few of these proteins seem to be conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we have isolated a new gene, AtPRD1, whose mutation affects meiosis in Arabidopsis thaliana. In Atprd1 mutants, meiotic recombination rates fall dramatically, early recombination markers (e.g., DMC1 foci) are absent, but meiosis progresses until achiasmatic univalents are formed. Besides, Atprd1 mutants suppress DSB repair defects of a large range of meiotic mutants, showing that AtPRD1 is involved in meiotic recombination and is required for meiotic DSB formation. Furthermore, we showed that AtPRD1 and AtSPO11-1 interact in a yeast two-hybrid assay, suggesting that AtPRD1 could be a partner of AtSPO11-1. Moreover, our study reveals similarity between AtPRD1 and the mammalian protein Mei1, suggesting that AtPRD1 could be a Mei1 functional homologue.  相似文献   

18.
The assembly and disassembly of the synaptonemal complexes (SCs) correlate with the progression of meiotic prophase I. Using immunostaining of the cohesin component SMC3, which is present in the axial elements of the SC, we characterized the synaptic process in chicken oocytes and quantified the frequency of the different prophase stages at hatching and at 3 different ages after hatching. The analysis provides detailed quantitative data regarding the meiotic stages in the chicken ovary showing that the maximum amount of pachytene oocytes is found around hatching and that oocytes reach the diplotene stage 5 days after entering into meiosis. We confirmed the asynchrony of the meiotic development in the female chicken gonad showing that the ovary has a composite population of cells at different stages from day 17 before hatching and for several days after hatching. The significance of these results is discussed in relationship to functional experimental procedures that involve avian oocytes.  相似文献   

19.
20.
The kinase VRK1 has been implicated in mitotic and meiotic progression in invertebrate species, but whether it mediates these events during mammalian gametogenesis is not completely understood. Previous work has demonstrated a role for mammalian VRK1 in proliferation of male spermatogonia, yet whether VRK1 plays a role in meiotic progression, as seen in Drosophila, has not been determined. Here, we have established a mouse strain bearing a gene trap insertion in the VRK1 locus that disrupts Vrk1 expression. In addition to the male proliferation defects, we find that reduction of VRK1 activity causes a delay in meiotic progression during oogenesis, results in the presence of lagging chromosomes during formation of the metaphase plate, and ultimately leads to the failure of oocytes to be fertilized. The activity of at least one phosphorylation substrate of VRK1, p53, is not required for these defects. These results are consistent with previously defined functions of VRK1 in meiotic progression in Drosophila oogenesis, and indicate a conserved role for VRK1 in coordinating proper chromosomal configuration in female meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号