首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Theobroma cacao L., declined embryogenic potential was observed in regenerated somatic embryos from long-term secondary somatic embryogenesis (SE). In order to explore the relationship between DNA methylation and the long-term secondary SE, the embryogenic potential and global DNA methylation levels in young (12 months-old), aged (36 months-old) and extra somatic embryogenesis (39 months-old) subjected to different 5-Azacytidine (5-azaC) treatments were comparatively assessed. Global DNA methylation levels increased in aged somatic embryos with long-term in vitro culture, but 5-azaC-supplemented treatments resulted in unaltered levels. In addition, DNA methylation pattern during SE was not affected by 5-azaC. DNA methylation increased during SE expression. Interestingly, the extra SE induction showed that aged somatic embryos can recovery the embryogenic potential in treatment supplemented with 5-azaC at specific concentration. The outcome of this study suggested that the long-term SE in cacao induced the decline on embryogenic potential, which can be reversible trough 5-azaC supplementation. Besides, increased DNA methylation levels might be a response to the stress conditions that plant cells were exposed to during SE.  相似文献   

2.
The level of DNA methylation in Daucus carota was found to be tissue specific, but no simple correlation between developmental stage or age of tissue and the level of DNA methylation was found. Among three different suspension culture lines from the same variety grown under identical conditions, large differences in the level of DNA methylation were observed. The highest and lowest levels were found in two embryogenic cell lines originating from the same clone. Suspension cells from one of the embryogenic cell lines were fractionated into three morphologically defined cell types using Percoll gradient density centrifugation, and the uniformity of these fractions was evaluated by image analysis. The three cell types showed different levels of DNA methylation. The lowest level was found in the fraction containing the precursor cells of somatic embryos.  相似文献   

3.
To investigate the involvement of methylation of DNA in somatic embryogenesis we initiated a comparative study using Medicago truncatula lines that have different capacities to produce somatic embryos. Treatment with the demethylating drug 5-azacytidine caused a loss of regeneration capacity in the embryogenic line by arresting the production of somatic embryos. Analysis with methylation-sensitive enzymes showed disruption of somatic embryogenesis competence to be correlated with rDNA demethylation. Our data suggest production of somatic embryos depends on a certain level of DNA methylation.  相似文献   

4.
Pinus pinaster (Ait.) somatic embryogenesis (SE) has been developed during the last decade, and its application in tree improvement programs is underway. Nevertheless, a few more or less important problems still exist, which have an impact on the efficiency of specific SE stages. One phenomenon, which had been observed in embryogenic tissue (embryonal mass, EM) initiated from immature seed, has been the loss of the ability to produce mature somatic embryos after the tissue had been cultured for several months. In an attempt to get insight into the differences between young cultures of EM (3-mo-old since the first subculture) of P. pinaster that produced mature somatic embryos and the same lines of significantly increased age (18-mo-old, aged EM) that stopped producing mature somatic embryos, we analyzed in both types of materials the levels of endogenous hormones, polyamines, the global DNA methylation, and associated methylation patterns. In addition, we included in the analysis secondary EM induced from mature somatic embryos. The analysis showed that the two tested genotypes displayed inconsistent hormonal and polyamine profiles in EM cultures of a similar phenotype and that it might be difficult to attribute one specific profile to a specific culture phenotype among genotypes. Experiments were also undertaken to determine if the global DNA methylation and/or the resulting methylation pattern could be manipulated by treatment of the cultures with a hypomethylating drug 5-azacytidine (5-azaC). An aged EM was exposed to different concentrations and durations of 5-azaC, and its response in culture was established by fresh mass increases and somatic embryo maturation potential. All of the analyses are new in maritime pine, and thus, they provide the first data on the biochemistry of EM in this species related to embryogenic potential.  相似文献   

5.

Key message

The long-term proliferation of embryogenic cell suspensions of oil palm is associated with changes in both genomic methylation rates and embryogenic capacities.

Abstract

In the aim of exploring the relationship between epigenetic stability and the long-term in vitro proliferation of plant tissues, we have studied changes in genomic DNA methylation levels in embryogenic suspensions of oil palm (Elaeis guineensis Jacq.). Five embryogenic callus lines were obtained from selected hybrid seeds and then proliferated as suspension cultures. Each clonal line obtained from a single genotype was subdivided into three independent subclonal lines. Once established, cultures proliferated for 12 months and genomic DNA was sampled at 4 months intervals for the estimation of global DNA methylation rates through high performance liquid chromatography (HPLC) quantitation of deoxynucleosides. Our results show that in vitro proliferation induces DNA hypermethylation in a time-dependent fashion. Moreover, this trend is statistically significant in several clonal lines and shared between subclonal lines originating from the same genotype. Interestingly, the only clonal line undergoing loss of genomic methylation in the course of proliferation has been found unable to generate somatic embryos. We discuss the possible implications of genome-wide DNA methylation changes in proliferating cells with a view to the maintenance of genomic and epigenomic stability.  相似文献   

6.
The aim of this study was to evaluate the effect of arginine on sugarcane (Saccharum sp.) somatic embryogenesis, free polyamines and other nitrogenous compounds contents. Segments of leaves were used as explants to establish embryogenic cultures on media with 0 and 50.0 mg l−1 arginine. Somatic embryos formation and free polyamines, free proline and total soluble proteins contents were compared. Arginine significantly induced sugarcane somatic embryogenesis. Free proline and protein levels determined in embryogenic cell masses during embryo differentiation-maturation, showed an arginine-induced promotion associated to the enhancement of the embryogenic process. In addition, free putrescine and, in a minor extent, spermidine and spermine contents were enhanced by arginine.  相似文献   

7.
Levels of free-radical-mediated lipid peroxidation were monitored in cell-suspension cultures of Oryza sativa L. possessing different embryogenic potentials. Oxidative stress was evaluated using assays which sequentially assessed the stages of lipid peroxidation (diene conjugation, peroxidation, and the formation of secondary lipid-peroxidation products). Lipid peroxidation was significantly higher in a cell line which had lost embryogenic ability compared with lines which still retained this capacity. Superoxide dismutase (EC 1.15.1.1) activity did not vary significantly between the embryogenic and previously embryogenic lines; however, catalase (EC 1.11.1.6) and peroxidase (EC 1.11.1.7) activities were significantly lower in the line which had lost embryogenic ability. Metabolic activity as estimated by reduction of triphenyl tetrazolium chloride decreased with diminishing embryogenic potential and was especially low in cell lines which never exhibited embryogenic capabilities. The possible involvement of free radicals in the loss of embryogenic potential of rice cells is discussed.  相似文献   

8.
Embryogenic cultures were initiated from mature zygotic embryos of Picea abies. The somatic embryos in the embryogenic cultures were first stimulated to mature and then either to develop further into plantlets or to differentiate new embryogenic cultures. The procedure was repeated three times during two years. The ability to give rise to new embryogenic cultures or to develop into plantlets was similar for all somatic embryos irrespective of how long they had been cultured in vitro. The nuclear DNA content, measured in a flow cytometer, was estimated at 32 pg/G1 nuclei in seedings developed from zygotic embryos. Nuclei isolated from embryogenic cultures and from plantlets regenerated from somatic embryos had the same DNA content as those isolated from seedlings.Abbreviations N6-benzyladenine BA - 2,4-dichlorophenoxyacetic acid 2,4-D - abscisic acid ABA  相似文献   

9.
A global DNA methylation and proteomics approach was used to investigate somatic embryo maturation in hybrid larch. Each developmental step during somatic embryogenesis was associated with a distinct and significantly different global DNA methylation level: from 45.8% mC for undifferentiated somatic embryos (1‐week proliferation) to 61.5% mC for immature somatic embryos (1‐week maturation), while maturation was associated with a decrease in DNA methylation to 53.4% for mature cotyledonary somatic embryos (8‐weeks maturation). The presence of 5‐azacytidine (hypo‐methylating agent) or hydroxyurea (hyper‐methylating agent) in the maturation medium altered the global DNA methylation status of the embryogenic cultures, and significantly reduced both their relative growth rate and embryogenic potential, suggesting an important role for DNA methylation in embryogenesis. Maturation was also assessed by examining changes in the total protein profile. Storage proteins, identified as legumin‐ and vicilin‐like, appeared at the precotyledonary stage. In the proteomic study, total soluble proteins were extracted from embryos after 1 and 8 weeks of maturation, and separated by two‐dimensional gel electrophoresis. There were 147 spots which showed significant differences between the stages of maturation; they were found to be involved mainly in primary metabolism and the stabilization of the resulting metabolites. This indicated that the somatic embryo was still metabolically active at 8 weeks of maturation. This is the first report of analyses of global DNA methylation (including the effects of hyper‐ and hypo‐treatments) and proteome during somatic embryogenesis in hybrid larch, and thus provides novel insights into maturation of conifer somatic embryos.  相似文献   

10.
Somatic embryogenesis of Panax ginseng CA Meyer was initiated from suspension aggregates of an embryogenic callus, in a liquid medium consisting of half strength Murashige and Skoog (1962) supplemented with the synthetic auxin benzoselenienyl-3 acetic acid. The addition of spermidine to this initiation medium significantly increased the production of somatic embryos. In this case, the total polyamine content of the embryogenic mass was higher than that of cultures without spermidine. At day 6 of the culture, a transient accumulation of free polyamines, mainly spermidine, was observed. After this peak, free and conjugated polyamines levels did not show significant variation nor did the polyamine oxidase activity. The results clearly demonstrated that spermidine supplied to the medium was oxidised by polyamine oxidase and partially metabolised into putrescine. The role of spermidine and its interaction with auxin in the initiation of the embryogenic process in Panax ginseng are discussed in relation to embryogenic potential.  相似文献   

11.
ABA和NAA联合使用能有效地诱导水稻原生质体再生的愈伤组织向胚性发展。通过液体浅层培养由原生质体得到的愈伤组织,在含ABA和NAA的N_6培养基上培养一段时间,可以诱导原来呈非胚性状态的愈伤组织形成胚性愈伤组织,并在含ZT的N_6分化陪养基上产生绿点。通过对这两种愈伤组织的生化分析,表明二者在游离氨基酸、DNA、RNA、核酸及蛋白质含量等方面,特别是SDS-PAGE谱带存在明显的差异,其细胞的形态与结构也有显著差别,其中经ABA NAA诱导后的愈伤组织其细胞形态与结构特征与来源于种胚的胚性愈伤组织基本类似,所分析的生化指标也大多数相近。结果表明,ABA和NAA联合使用得当,能促进形成胚性愈伤组织。  相似文献   

12.
DNA methylation has been studied in many eukaryotic organisms, in particular vertebrates, and was implicated in developmental and phenotypic variations. Little is known about the role of DNA methylation in invertebrates, although insects are considered as excellent models for studying the evolution of DNA methylation. In the red flour beetle, Tribolium castaneum (Tenebrionidae, Coleoptera), no evidence of DNA methylation has been found till now. In this paper, a cytosine methylation in Tribolium castaneum embryos was detected by methylation sensitive restriction endonucleases and immuno-dot blot assay. DNA methylation in embryos is followed by a global demethylation in larvae, pupae and adults. DNA demethylation seems to proceed actively through 5-hydroxymethylcytosine, most probably by the action of TET enzyme. Bisulfite sequencing of a highly abundant satellite DNA located in pericentromeric heterochromatin revealed similar profile of cytosine methylation in adults and embryos. Cytosine methylation was not only restricted to CpG sites but was found at CpA, CpT and CpC sites. In addition, complete cytosine demethylation of heterochromatic satellite DNA was induced by heat stress. The results reveal existence of DNA methylation cycling in T. castaneum ranging from strong overall cytosine methylation in embryos to a weak DNA methylation in other developmental stages. Nevertheless, DNA methylation is preserved within heterochromatin during development, indicating its role in heterochromatin formation and maintenance. It is, however, strongly affected by heat stress, suggesting a role for DNA methylation in heterochromatin structure modulation during heat stress response.  相似文献   

13.
Cultures derived from domestic carrot (Daucus carota L.) inbreds were found to vary with respect to regeneration potential as measured by the production of somatic embryos in suspension cultures. A number of biochemical parameters previously reported to distinguish embryogenic from non-embryogenic cultures of other species were measured in these carrot cell lines. Ethylene production was found to be inversely related to regeneration potential. The cell line producing the greatest number of somatic embryos exhibited the lowest rate of ethylene biosynthesis, even when grown on 2, 4-D-containing maintenance medium. A specific isozyme of acid phosphatase was associated with embryogenic calli. Proteins visualized by SDS-PAGE did not discriminate between embryo-forming and proliferating calli in all inbreds.  相似文献   

14.
The association between DNA methylation status and embryogenic competency in oil palm tissue culture was examined through Representational Difference Analysis (RDA) approach, using methylation-sensitive restriction endonucleases. “Difference Products” (DPs) of RDA derived from palms of similar genetic backgrounds but exhibiting different embryogenesis rates during the regeneration process were isolated. The DPs were sequenced using a pyrosequencing platform. To our knowledge, this is the first study profiling partial HpaII methylation sites in oil palm young leaf tissues which are potentially associated with embryogenic amenability through a genomic subtractive approach. Quantitative real-time PCR analysis demonstrated that the methylation status of a novel fragment, EgNB3, was higher in highly embryogenic leaf explants compared to low embryogenesis rate materials. These differences are likely to be contributed by the 5′-mCCGG-3′ and/or 5′-mCmCGG-3′ methylation patterns. Our data suggest that the differentially methylated site in EgNB3 has potential as a molecular biomarker for the screening of oil palm leaf explants for their embryogenic potentials.  相似文献   

15.
Using a direct somatic embryogenesis system in carrot, we examined the role of DNA methylation in the change of cellular differentiation state, from somatic to embryogenic. 5-Azacytidine (aza-C), an inhibitor of DNA methylation suppressed the formation of embryogenic cell clumps from epidermal carrot cells. Aza-C also downregulated the expression of DcLEC1c, a LEC1-like embryonic gene in carrot, during morphogenesis of embryos. A carrot DNA methyltransferase gene, Met1-5 was expressed transiently after the induction of somatic embryogenesis by 2,4-dichlorophenoxyacetic acid (2,4-D), before the formation of embryogenic cell clumps. These findings suggested the significance of DNA methylation in acquiring the embryogenic competence in somatic cells in carrot.  相似文献   

16.
Embryogenic suspension cultures of domesticated carrot (Daucus carota L.) are characterized by the presence of proembryogenic masses (PEMs) from which somatic embryos develop under conditions of low cell density in the absence of phytohormones. A culture system, referred to as starting cultures, was developed that allowed analysis of the emergence of PEMs in newly initiated hypocotyl-derived suspension cultures. Embryogenic potential, reflected by the number of FEMs present, slowly increased in starting cultures over a period of six weeks. Addition of excreted, high-molecular-weight, heat-labile cell factors from an established embryogenic culture considerably accelerated the acquisition of embryogenic potential in starting cultures. Analysis of [35S]methionine-labeled proteins excreted into the medium revealed distinct changes concomitant with the acquisition of embryogenic potential in these cultures. Analysis of the pattern of gene expression by in-vitro translation of total cellular mRNA from starting cultures with different embryogenic potential and subsequent separation of the [35S]methionine-labeled products by two-dimensional polyacrylamide gel electrophoresis demonstrated a small number of abundant in-vitro-translation products to be present in somatic embryos and in embryogenic cells but absent in nonembryogenic cells. Several other in-vitro-translation products were present in explants, non-embryogenic and embryogenic cells but were absent in somatic embryos. Hybridization of an embryoregulated complementary-DNA sequence, Dc3, to RNA extracted from starting cultures showed that the corresponding gene is expressed in somatic embryos and PEMs but not in non-embryogenic cells.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - cDNA complementary DNA - PAGE polyacrylamide gel electrophoresis - PEM proembryogenic mass  相似文献   

17.
The effects of exogenous polyamines (PAs) on enhancement of somatic embryogenic calli was investigated in Momordica charantia L. in vitro. Induction of somatic embryogenesis (SE) in leaf explants of M. charantia after 21 days of culture in Murashige and Skoog (MS) medium was determined using scanning electron microscopy. During induction of SE there were high titers of Putrescine (Put) as compared to Spermidine (Spd) and Spermine (Spm), a prerequisite for cell division. Addition of PAs to the embryogenic media resulted in an increase in fresh weights and number of somatic embryos of 21-day old embryogenic calli. Put at a concentration of 1 mM showed maximum increase in fresh weights of embryogenic calli (5 fold) and number of somatic embryos produced per 0.2 g of callus (2.5 fold). Moreover addition of PAs to the embryogenic media resulted in lowering of endogenous free PA level of 21-day old embryogenic calli. Thus, when the media was supplemented with exogenous PAs a positive correlation was found to exist between Somatic Embryogenesis enhancement and decrease in endogenous free PA levels.  相似文献   

18.
Summary The usefulness of random amplified polymorphic DNA (RAPD) in assessing the genetic stability of somatic embryogenesis-derived populations of black spruce [Picea mariana (Mill.) B.S.P.] was evaluated. Three arbitrary 11-mer primers were successfully used to amplify DNA from both in-vivo and in-vitro material. Twenty-five embryogenic cell lines, additional zygotic embryos and megagametophytes from three controlled crosses involving four selected genotypes of black spruce were used for the segregation analysis of RAPD variants. Ten markers were genetically characterized and used to evaluate the genetic stability of somatic embryos derived from three embryogenic cell lines (one cell line per cross, 30 somatic embryos per cell line). No variation was detected within clones. The utilization of RAPD markers both for the assessment of genetic stability of clonal materials and to certify genetic stability throughout the process of somatic embryogenesis is discussed.  相似文献   

19.
利用小鼠抗5-甲基胞嘧啶(5MeC)单克隆抗体检测了体外培养小鼠四倍体早期胚胎的基因组甲基化模式。结果表明: 利用电融合方法制备的小鼠四倍体胚胎在体外培养体系中经历细胞质融合、细胞核融合及细胞继续分裂发育直到囊胚期的过程, 在细胞质融合的时候胚胎卵裂球同体内体外培养二倍体胚胎一样, 呈现高度甲基化状态; 在细胞核开始融合的时候, 甲基化水平急速下降, 在细胞核完全融合的时候甲基化水平达到最低点; 随着胚胎继续分裂, 胚胎甲基化水平逐渐增加, 在桑葚胚期甲基化水平最高; 但是囊胚期四倍体胚胎内细胞团同滋养层细胞甲基化荧光信号没有差别, 这与体内体外培养二倍体囊胚内细胞团细胞甲基化荧光强度高于滋养层细胞甲基化荧光强度不同。因此, 小鼠体外培养四倍体胚胎的甲基化模式是不正常的, 这可能是四倍体小鼠难以发育到妊娠足月的原因之一。这是对小鼠四倍体早期胚胎基因组甲基化模式的首次报道。  相似文献   

20.
Summary Examination of unfixed immature somatic embryos of white spruce (Picea glauca) with fluorescent rhodamine-labeled phalloidin revealed an extensive network of fine actin microfilaments (MFs) in the embryonal region which were not detected in specimens fixed with formaldehyde. Transition cells linking the embryonal region and suspensor cells contained fine MFs as well as bundles of MFs. The large, highly vacuolated suspensor cells were characterized by actin MF cables only. Treatment of embryos with cytochalasin B (CB) removed the fine MFs from the embryonal region and transition cells, but many MF cables in suspensor cells were resistant. Full recovery from CB treatment was observed in most somatic embryos. Embryogenic protoplasts capable of regenerating to somatic embryos in culture were released from only the embryonal region of somatic embryos. Both uninucleate and multinucleate embryogenic protoplasts retained the extensive network of fine actin MFs. In contrast, protoplasts derived from vacuolated suspensor cells and vacuolated free-floating cells contained thick MF bundles and were not embryogenic. Distinct MF cages enclosed nuclei in multinucleate protoplasts and may be responsible for preventing nuclear fusion. Microspectrophotometric analyses showed that the DNA contents of embryonal cells in the embryo and embryogenic protoplasts were similar and characteristic of rapidly dividing cell populations. However, transition and suspensor cells which released nonembryogenic protoplasts appeared to be arrested in G1, and suspensor cells showed signs of DNA degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号