首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Galactinol synthase (GolS, EC 2.4.1.123), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), plays roles in plant growth and developmental processes. The in vitro roles of GolS in plant responses against heavy metal stress are not well clarified. In the present study, a suppression-subtractive hybridization (SSH) cDNA library has been constructed using RNA extracted from wheat cultivar Jinan 18 treated with ZnCl2 as the tester and RNA from untreated seedlings as the driver. Sixteen expressed sequence tags (ESTs) highly homologous with known proteins associated with stress tolerance have been obtained. Among these, a 1000-bp cDNA sequence encoding GolS protein has been isolated and designated as TaGolS3. Real-time quantitative PCR (qPCR) analysis revealed that TaGolS3 was mainly expressed in young roots and upregulated by exogenous ABA treatment and several abiotic stresses, such as ZnCl2, CuCl2, low temperature, and NaCl. Subcellular localization analysis showed that TaGolS3 protein is a nuclear-localized protein. A detailed analysis of Arabidopsis and rice transgenic plants overexpressing TaGolS3 gene displayed that transgenic plants exhibited increased lateral root number, primary root length, plant survival rate, and plant height. Moreover, in comparison with the wild-type (WT) plants, the TaGolS3-overexpressing lines showed a higher expression of ROS-scavenging genes, activities of antioxidative enzymes, proline contents, and a lower level of malondialdehyde (MDA) contents and electrolyte leakage under zinc stress. These results confirmed the positive roles of TaGolS3 in improving plant tolerance to heavy metal stress, indicating a potential resource in the transgenic breeding to enhance heavy metal stress tolerance in crop plants.  相似文献   

3.
A temperature-sensitive mutant of Capsicum chinense, sy-2, shows a normal developmental phenotype when grown above 24°C. However, when grown at 20°C, sy-2 exhibits developmental defects, such as chlorophyll deficiency and shrunken leaves. To understand the underlying mechanism of this temperature-dependent response, phenotypic characterization and genetic analysis were performed. The results revealed abnormal chloroplast structures and cell collapse in leaves of the sy-2 plants grown at 20°C. Moreover, an excessive accumulation of reactive oxygen species (ROS) resulting in cell death was detected in the chlorophyll-deficient sectors of the leaves. However, the expression profile of the ROS scavenging genes did not alter in sy-2 plants grown at 20°C. A further analysis of fatty acid content in the leaves showed the impaired pathway of linoleic acid (18:2) to linolenic acid (18:3). Additionally, the Cafad7 gene was downregulated in sy-2 plants. This change may lead to dramatic physiological disorder and alteration of leaf morphology in sy-2 plants by losing low-temperature tolerance. Genetic analysis of an F2 population from a cross between C. chinensesy-2’ and wild-type C. chinense ‘No. 3341’ showed that the sy-2 phenotype is controlled by a single recessive gene. Molecular mapping revealed that the sy-2 gene is located at a genomic region of the pepper linkage group 1, corresponding to the 300 kb region of the Ch1_scaffold 00106 in tomato chromosome 1. Candidate genes in this region will reveal the identity of sy-2 and the underlying mechanism of the temperature-dependent plant response.  相似文献   

4.
The Bacteroides genus, the most prevalent anaerobic bacteria of the intestinal tract, carries a plethora of the mobile elements, such as plasmids and conjugative and mobilizable transposons, which are probably responsible for the spreading of resistance genes. Production of β-lactamases is the most important resistance mechanism including cephalosporin resistance to β-lactam agents in species of the Bacteroides fragilis group. In our previous study, the cfxA gene was detected in B. distasonis species, which encodes a clinically significant broad-spectrum β-lactamase responsible for widespread resistance to cefoxitin and other β-lactams. Such gene has been associated with the mobilizable transposon Tn4555. Therefore, the aim of this study was to detect the association between the cfxA gene and the presence of transposon Tn4555 in 53 Bacteroides strains isolated in Rio de Janeiro, Brazil, by PCR assay. The cfxA gene was detected in 11 strains and the Tn4555 in 15. The transposon sequence revealed similarities of approximately 96% with the B. vulgatus sequence which has been deposited in GenBank. Hybridization assay was performed in attempt to detect the cfxA gene in the transposon. It was possible to associate the cfxA gene in 11 of 15 strains that harbored Tn4555. Among such strains, 9 presented the cfxA gene as well as Tn4555, but in 2 strains the cfxA gene was not detected by PCR assay. Our results confirm the involvement of Tn4555 in spreading the cfxA gene in Bacteroides species.  相似文献   

5.
To elucidate the physiological adaptation of Escherichia coli due to cra gene knockout, a total of 3,911 gene expressions were investigated by DNA microarray for continuous culture. About 50 genes were differentially regulated for the cra mutant. TCA cycle and glyoxylate shunt were down-regulated, while pentose phosphate (PP) pathway and Entner Doudoroff (ED) pathway were up-regulated in the cra mutant. The glucose uptake rate and the acetate production rate were increased with less acetate consumption for the cra mutant. To identify the genes controlled by Cra protein, the Cra recognition weight matrix from foot-printing data was developed and used to scan the whole genome. Several new Cra-binding sites were found, and some of the result was consistent with the DNA microarray data. The ED pathway was active in the cra mutant; we constructed cra.edd double genes knockout mutant to block this pathway, where the acetate overflowed due to the down-regulation of aceA,B and icd gene expressions. Then we further constructed cra.edd.iclR triple genes knockout mutant to direct the carbon flow through the glyoxylate pathway. The cra.edd.iclR mutant showed the least acetate production, resulting in the highest cell yield together with the activation of the glycolysis pathway, but the glucose consumption rate could not be improved. Dayanidhi Sarkar and Khandaker Al Zaid Siddiquee have contributed equally.  相似文献   

6.
The mitochondrial cytochrome c oxidase subunit I gene sequence was recently developed for DNA barcoding of red algal species. We determined the 1245 base pairs of the gene from 27 taxa of an agar-producing species, Gracilaria vermiculophylla, and putative relatives and compared the results with rbcL data from the same species. A total of 392 positions (31.5%) were variable, 282 positions (22.6%) were parsimoniously informative, and average sequence divergence was 13% in an ingroup. Within G. vermiculophylla, pairwise divergence of the gene was variable up to 11 bp (0.9%). Seven recognized haplotypes of cox1 tended to be geographically related. In the aligned 1386 bp of rbcL, three haplotypes were recognized. These results suggest that cox1 is a valuable molecular marker within species and will be very useful in haplotype analyses.  相似文献   

7.
An Agrobacterium tumefaciens-based transformation procedure was developed for the desiccation tolerant species Lindernia brevidens. Leaf explants were infected with A. tumefaciens strain GV3101 harbouring a binary vector that carried the hygromycin resistance gene and an eGFP reporter gene under the control of a native dehydration responsive LEA promoter (Lb2745pro). PCR analysis of the selected hygromycin-resistant plants revealed that the transformation rates were high (14/14) and seeds were obtained from 13/14 of the transgenic lines. A combination of RNA gel blot and microscopic analyses demonstrated that eGFP expression was induced upon dehydration and ABA treatment. Comparison with existing procedures used to transform the well studied resurrection plant and close relative, Craterostigma plantagineum, revealed that the transformation process is both rapid and leads to the production of viable seed thus making L. brevidens a candidate species for functional genomics approaches to determine the genetic basis of desiccation tolerance.  相似文献   

8.
Summary 1. This study presents a time course analysis of the messenger RNA (mRNA) levels of c-fos, vasopressin (VP), and oxytocin (OT) in the paraventricular (PVN) and supraoptic nucleus (SON), following acute and chronic dehydration by water deprivation. 2. Male Wistar rats were separated into five groups: nondehydrated (control group) and dehydrated for 6, 24, 48 and 72 h. Following water deprivation, animals were decapitated, their blood was collected for hematocrit, osmolality, and plasma sodium measurements, and brains were removed for dissection of both PVN and SON. 3. As expected, the hematocrit, osmolality, plasma sodium, and weight loss were increased after water deprivation. In SON, a significant increase in both VP and OT mRNA expression was observed 6 h after dehydration reaching a peak at 24 h and returning to basal levels of expression at 72 h. In the PVN, an increase in both VP and OT mRNA expression occurred 24 h after dehydration. At 72 h the VP and OT mRNA expression levels had decreased but they were still at higher levels than those detected in control animals. 4. These results suggest that SON is the first nucleus to respond to the dehydration stimulus. Additionally, we also observed an increase in c-fos mRNA expression in both PVN and SON 6 h after water deprivation, which progressively decreased 24, 48, and 72 h after the onset of water deprivation. Therefore, it is possible that c-fos may be involved in the modulation of VP and OT genes, regulating the mRNA expression levels on a temporally distinct basis within the PVN and SON.  相似文献   

9.
Phylogenetic relations within the genus Gordonia were analyzed using partial gyrB and secA1 gene sequences of 23 type species in comparison with those of 16S rRNA gene. The gyrB and secA1 phylogenies showed agreement with that constructed using 16S rRNA gene sequences. The degrees of divergence of the gyrB and secA1 genes were approximately 3.4 and 1.7 times greater, respectively, than that of 16S rRNA gene. The gyrB gene showed more discriminatory power than either the secA1 or 16S rRNA gene, facilitating clear differentiation of any two Gordonia species using gyrB gene analysis. Our data indicate that gyrB and secA1 gene sequences are useful as markers for phylogenetic study and identification at the species level of the genus Gordonia.  相似文献   

10.
The Gossypium MIC-3 (Meloidogyne Induced Cotton-3) gene family is of great interest for molecular evolutionary studies because of its uniqueness to Gossypium species, multi-gene content, clustered localization, and root-knot nematode resistance-associated features. Molecular evolution of the MIC-3 gene family was studied in 15 tetraploid and diploid Gossypium genotypes that collectively represent seven phylogenetically distinct genomes. Synonymous (dS) and non-synonymous (dN) nucleotide substitution rates suggest that the second of the two exons of the MIC-3 genes has been under strong positive selection pressure, while the first exon has been under strong purifying selection to preserve function. Based on nucleotide substitution rates, we conclude that MIC-3 genes are evolving by a birth-and-death process and that a ‘gene amplification’ mechanism has helped to retain all duplicate copies, which best fits with the “bait and switch” model of R-gene evolution. The data indicate MIC-3 gene duplication events occurred at various rates, once per 1 million years (MY) in the allotetraploids, once per ~2 MY in the A/F genome clade, and once per ~8 MY in the D-genome clade. Variations in the MIC-3 gene family seem to reflect evolutionary selection for increased functional stability, while also expanding the capacity to develop novel “switch” pockets for responding to diverse pests and pathogens. Such evolutionary roles are congruent with the hypothesis that members of this unique resistance gene family provide fitness advantages in Gossypium.  相似文献   

11.
Allele mining facilitates the discovery of novel resistance (R) genes that can be used in breeding programs and sheds light on the evolution of R genes. Here we focus on two R genes, Rpi-blb1 and Rpi-blb2, originally derived from Solanum bulbocastanum. The Rpi-blb1 gene is part of a cluster of four paralogues and is flanked by RGA1-blb and RGA3-blb. Highly conserved RGA1-blb homologues were discovered in all the tested tuber-bearing (TB) and non-tuber-bearing (NTB) Solanum species, suggesting RGA1-blb was present before the divergence of TB and NTB Solanum species. The frequency of the RGA3-blb gene was much lower. Interestingly, highly conserved Rpi-blb1 homologues were discovered not only in S. bulbocastanum but also in Solanum stoloniferum that is part of the series Longipedicellata. Resistance assays and genetic analyses in several F1 populations derived from the relevant late blight resistant parental genotypes harbouring the conserved Rpi-blb1 homologues, indicated the presence of four dominant R genes, designated as Rpi-sto1, Rpi-plt1, Rpi-pta1 and Rpi-pta2. Furthermore, Rpi-sto1 and Rpi-plt1 resided at the same position on chromosome VIII as Rpi-blb1 in S. bulbocastanum. Segregation data also indicated that an additional unknown late blight resistance gene was present in three populations. In contrast to Rpi-blb1, no homologues of Rpi-blb2 were detected in any material examined. Hypotheses are proposed to explain the presence of conserved Rpi-blb1 homologues in S. stoloniferum. The discovery of conserved homologues of Rpi-blb1 in EBN 2 tetraploid species offers the possibility to more easily transfer the late blight resistance genes to potato varieties by classical breeding.  相似文献   

12.
The FDH1 gene of Candida boidinii encodes an NAD+-dependent formate dehydrogenase, which catalyzes the last reaction in the methanol dissimilation pathway. FDH1 expression is strongly induced by methanol, as are the promoters of the genes AOD1 (alcohol oxidase) and DAS1 (dihydroxyacetone synthase). FDH1 expression can be induced by formate when cells are grown on a medium containing glucose as a carbon source, whereas expression of AOD1 and DAS1 is completely repressed in the presence of glucose. Using deletion analyses, we identified two cis-acting regulatory elements, termed UAS-FM and UAS-M, respectively, in the 5 non-coding region of the FDH1 gene. Both elements were necessary for full induction of the FDH1 promoter by methanol, while only the UAS-FM element was required for full induction by formate. Irrespective of whether induction was achieved with methanol or formate, the UAS-FM element enhanced the level of induction of the FDH1 promoter in a manner dependent on the number of copies, but independent of their orientation, and also converted the ACT1 promoter from a constitutive into an inducible element. Our results not only provide a powerful promoter for heterologous gene expression, but also yield insights into the mechanism of regulation of FDH1 expression at the molecular level.Communicated by C. P. Hollenberg  相似文献   

13.
Plants have evolved several defense mechanisms, including resistance genes. Resistance to the root-knot nematode Meloidogyne incognita has been found in wild plant species. The molecular basis for this resistance has been best studied in the wild tomato Solanum peruvianum and it is based on a single dominant gene, Mi-1.2, which is found in a cluster of seven genes. This nematode attacks fiercely several crops, including potatoes. The genomic arrangement, number of copies, function and evolution of Mi-1 homologs in potatoes remain unknown. In this study, we analyzed partial genome sequences of the cultivated potato species S. tuberosum and S. phureja and identified 59 Mi-1 homologs. Mi-1 homologs in S. tuberosum seem to be arranged in clusters and located on chromosome 6 of the potato genome. Previous studies have suggested that Mi-1 genes in tomato evolved rapidly by frequent sequence exchanges among gene copies within the same cluster, losing orthologous relationships. In contrast, Mi-1 homologs from cultivated potato species (S. tuberosum and S. phureja) seem to have evolved by a birth-and-death process, in which genes evolve mostly by mutations and interallelic recombinations in addition to sequence exchanges.  相似文献   

14.
A major limitation on the expression of some foreign proteins in transgenic plants is the toxic effect of such proteins on the host plant resulting in inhibition of normal growth and development. A solution to this problem is to control the expression of genes for such proteins by means of inducible promoters, as is frequently done in microbial systems. A cDNA clone was obtained from subtractive hybridization of non-harvested and harvested alfalfa leaf tissue, named hi12. The hi12 cDNA was identified as part of the S-adenosyl-l-methionine: trans-caffeoyl-CoA3-O-methyltransferase gene of alfalfa, a gene encoding an essential key enzyme in lignin synthesis. The hi12 gene was strongly induced by harvesting and wounding but not by heat shock. The promoter of the hi12 gene, isolated by genomic walking, contained several stress response cis-elements. Transgenic plants of tobacco and Medicago truncatula containing the GUS gene driven by the promoter showed GUS expression following harvesting, demonstrating the activity of these regulatory regions in other plant species.  相似文献   

15.
Ogataea parapolymorpha sp. n. (NRRL YB-1982, CBS 12304, type strain), the ascosporic state of Candida parapolymorpha, is described. The species appears homothallic, assimilates methanol as is typical of most Ogataea species and forms hat-shaped ascospores in asci that become deliquescent. O. parapolymorpha is closely related to Ogataea angusta and Ogataea polymorpha. The three species can be resolved from gene sequence analyses but are unresolved from fermentation and growth reactions that are typically used for yeast identification. On the basis of multiple isolates, O. angusta is known only from California, USA, in association with Drosophila and Aulacigaster flies, O. parapolymorpha is predominantly associated with insect frass from trees in the eastern USA but O. polymorpha has been isolated from various substrates in the USA, Brazil, Spain and Costa Rica.  相似文献   

16.
Corynebacterium glutamicum strains are used for the fermentative production of l-glutamate. Five C. glutamicum deletion mutants were isolated by two rounds of selection for homologous recombination and identified by Southern blot analysis. The growth, glucose consumption and glutamate production of the mutants were analyzed and compared with the wild-type ATCC 13032 strain. Double disruption of dtsR1 (encoding a subunit of acetyl-CoA carboxylase complex) and pyc (encoding pyruvate carboxylase) caused efficient overproduction of l-glutamate in C. glutamicum; production was much higher than that of the wild-type strain and ΔdtsR1 strain under glutamate-inducing conditions. In the absence of any inducing conditions, the amount of glutamate produced by the double-deletion strain ΔdtsR1Δpyc was more than that of the mutant ΔdtsR1. The activity of phosphoenolpyruvate carboxylase (PEPC) was found to be higher in the ΔdtsR1Δpyc strain than in the ΔdtsR1 strain and the wild-type strain. Therefore, PEPC appears to be an important anaplerotic enzyme for glutamate synthesis in ΔdtsR1 derivatives. Moreover, this conclusion was confirmed by overexpression of ppc and pyc in the two double-deletion strains (ΔdtsR1Δppc and ΔdtsR1Δpyc), respectively. Based on the data generated in this investigation, we suggest a new method that will improve glutamate production strains and provide a better understanding of the interaction(s) between the anaplerotic pathway and fatty acid synthesis.  相似文献   

17.
Zhong X  Dai X  Xv J  Wu H  Liu B  Li H 《Molecular biology reports》2012,39(6):6967-6974
A MADS box gene AGL20/SOC1 is a main integrator in Arabidopsis flowering pathway whose structure and function are highly conserved in many plant species. A soybean MADS box gene GmGAL1 (G lycine max A GAMOUS L ike 1) as a homolog of AGL20/SOC1, was cloned from soybean cultivar Kennong18 and its function was investigated in transgenic Arabidopsis lines. Sequence comparisons showed that the closest homolog gene to GmGAL1 is AGL20/SOC1 in Arabidopsis and VuSOC1 in Vigna unguiculata. We investigated the expression level of GmGAL1 using quantitative real-time PCR, and the result showed that GmGAL1 was regulated by a circadian mechanism and its expression oscillated at a cycle of 24 h. The expression level of GmGAL1 was fluctuated in diverse tissues/organs and developmental stages. Considering its expression can be detected in different tissues throughout the life cycle and its protein localized in cytoplasm in Arabidopsis protoplasm, we proposed that GmGAL1 may be a multifunctional gene in the context of the soybean development. Ectopic expression of GmGAL1 in Arabidopsis enhanced flowering under long-day condition and partially rescued soc1 late flowering type.  相似文献   

18.
P transposons belong to the eukaryotic DNA transposons, which are transposed by a cut and paste mechanism using a P-element-coded transposase. They have been detected in Drosophila, and reside as single copies and stable homologous sequences in many vertebrate species. We present the P elements Pcin1, Pcin2 and Pcin3 from Ciona intestinalis, a species of the most primitive chordates, and compare them with those from Ciona savignyi. They showed typical DNA transposon structures, namely terminal inverted repeats and target site duplications. The coding region of Pcin1 consisted of 13 small exons that could be translated into a P-transposon-homologous protein. C. intestinalis and C. savignyi displayed nearly the same phenotype. However, their P elements were highly divergent and the assumed P transposase from C. intestinalis was more closely related to the transposase from Drosophila melanogaster than to the transposase of C. savignyi. The present study showed that P elements with typical features of transposable DNA elements may be found already at the base of the chordate lineage. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.
An S-adenosylmethionine synthetase gene (metK) from Streptomyces spectabilis was cloned into an expression plasmid under the control of an inducible T7 promoter and introduced into a strain of Escherichia coli (BAP1(pBP130/pBP144)) capable of producing the polyketide product 6-deoxyerythronolide B (6-dEB). The metK coexpression in BAP1(pBP130/pBP144) improved the specific production of 6-dEB from 10.86 to 20.08 mg l−1 . In an effort to probe the reason for this improvement, a series of gene deletion and expression experiments were conducted based on a metK metabolic pathway that branches between propionyl-CoA (a 6-dEB precursor) and autoinducer compounds. The deletion and expression studies suggested that the autoinducer pathway had a larger impact on improved 6-dEB biosynthesis. Supporting these results were experiments demonstrating the positive effect conditioned media (the suspected location of the autoinducer compounds) had on 6-dEB production. Taken together, the results of this study show an increase in heterologous 6-dEB production concomitant with heterologous metK gene expression and suggest that the mechanism for this improvement is linked to native autoinducer compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号