首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Most filarial parasite species contain Wolbachia, obligatory bacterial endosymbionts that are crucial for filarial development and reproduction. They are targets for alternative chemotherapy, but their role in the biology of filarial nematodes is not well understood. Light microscopy provides important information on morphology, localization and potential function of these bacteria. Surprisingly, immunohistology and in situ hybridization techniques have not been widely used to monitor Wolbachia distribution during the filarial life cycle.

Methods/Principal Findings

A monoclonal antibody directed against Wolbachia surface protein and in situ hybridization targeting Wolbachia 16S rRNA were used to monitor Wolbachia during the life cycle of B. malayi. In microfilariae and vector stage larvae only a few cells contain Wolbachia. In contrast, large numbers of Wolbachia were detected in the lateral chords of L4 larvae, but no endobacteria were detected in the genital primordium. In young adult worms (5 weeks p.i.), a massive expansion of Wolbachia was observed in the lateral chords adjacent to ovaries or testis, but no endobacteria were detected in the growth zone of the ovaries, uterus, the growth zone of the testis or the vas deferens. Confocal laser scanning and transmission electron microscopy showed that numerous Wolbachia are aligned towards the developing ovaries and single endobacteria were detected in the germline. In inseminated females (8 weeks p.i.) Wolbachia were observed in the ovaries, embryos and in decreasing numbers in the lateral chords. In young males Wolbachia were found in distinct zones of the testis and in large numbers in the lateral chords in the vicinity of testicular tissue but never in mature spermatids or spermatozoa.

Conclusions

Immunohistology and in situ hybridization show distinct tissue and stage specific distribution patterns for Wolbachia in B. malayi. Extensive multiplication of Wolbachia occurs in the lateral chords of L4 and young adults adjacent to germline cells.  相似文献   

2.
We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression.  相似文献   

3.
Wolbachia is an intracellular endosymbiont of Brugia malayi parasite whose presence is essential for the survival of the parasite. Treatment of B. malayi‐infected jirds with tetracycline eliminates Wolbachia, which affects parasite survival and fitness. In the present study we have tried to identify parasite proteins that are affected when Wolbachia is targeted by tetracycline. For this Wolbachia depleted parasites (B. malayi) were obtained by tetracycline treatment of infected Mongolian jirds (Meriones unguiculatus) and their protein profile after 2‐DE separation was compared with that of untreated parasites harboring Wolbachia. Approximately 100 protein spots could be visualized followed by CBB staining of 2‐D gel and included for comparative analysis. Of these, 54 showed differential expressions, while two new protein spots emerged (of 90.3 and 64.4 kDa). These proteins were subjected to further analysis by MALDI‐TOF for their identification using Brugia coding sequence database composed of both genomic and EST sequences. Our study unravels two crucial findings: (i) the parasite or Wolbachia proteins, which disappeared/down‐regulated appear be essential for parasite survival and may be used as drug targets and (ii) tetracycline treatment interferes with the regulatory machinery vital for parasites cellular integrity and defense and thus could possibly be a molecular mechanism for the killing of filarial parasite. This is the first proteomic study substantiating the wolbachial genome integrity with its nematode host and providing functional genomic data of human lymphatic filarial parasite B. malayi.  相似文献   

4.
Wolbachia are endosymbiotic bacteria found in the majority of arthropods and filarial nematodes of medical and veterinary importance. They have evolved a wide range of symbiotic associations. In filarial nematodes that cause human lymphatic filariasis (Wuchereria bancrofti, Brugia malayi) or onchocerciasis (Onchocerca volvulus), Wolbachia are important for parasite development, reproduction and survival. The symbiotic bacteria rely in part on nutrients and energy sources provided by the host. Genomic analyses suggest that the strain of Wolbachia found in B. malayi (wBm) lacks the genes for two glycolytic enzymes—6-phosphofructokinase and pyruvate kinase—and is thus potentially unable to convert glucose into pyruvate, an important substrate for energy generation. The Wolbachia surface protein, wBm00432, is complexed to six B. malayi glycolytic enzymes, including aldolase. In this study we characterized two B. malayi aldolase isozymes and found that their expression is dependent on Wolbachia fitness and number. We confirmed by immuno-transmission electron microscopy that aldolase is associated with the Wolbachia surface. RNAi experiments suggested that aldolase-2 plays a significant role in both Wolbachia survival and embryogenesis in B. malayi. Treatment with doxycycline reduced Wolbachia fitness and increased the amount of both glucose and glycogen detected in the filarial parasite, indicating that glucose metabolism and glycogen storage in B. malayi are associated with Wolbachia fitness. This metabolic co-dependency between Wolbachia and its filarial nematode indicates that glycolysis could be a shared metabolic pathway between the bacteria and B. malayi, and thus a potential new target for anti-filarial therapy.  相似文献   

5.
6.
Lymphatic filarial nematodes are able to down-regulate parasite-specific and nonspecific responses of lymphocytes and APC. Lymphatic filariae are reliant on Wolbachia endosymbiotic bacteria for development and survival. We tested the hypothesis that repeated exposure to Wolbachia endosymbionts would drive macrophage tolerance in vitro and in vivo. We pre-exposed murine peritoneal-elicited macrophages to soluble extracts of Brugia malayi female worms (BMFE) before restimulating with BMFE or TLR agonists. BMFE tolerized macrophages (in terms of IFN-beta, IL-1beta, IL-6, IL-12p40, and TNF-alpha inflammatory cytokine production) in a dose-dependent manner toward self, LPS, MyD88-dependent TLR2 or TLR9 ligands (peptidoglycan, triacyl lipopeptide, CpG DNA) and the MyD88-independent/TRIF-dependent TLR3 ligand, polyinosinic-polycytidylic acid. This was accompanied with down-regulation in surface expression of TLR4 and up-regulation of CD14, CD40, and TLR2. BMFE tolerance extended to CD40 activation in vitro and systemic inflammation following lethal challenge in an in vivo model of endotoxin shock. The mechanism of BMFE-mediated macrophage tolerance was dependent on MyD88 and TLR2 but not TLR4. Evidence that desensitization was driven by Wolbachia-specific ligands was determined by use of extracts from Wolbachia-depleted B. malayi, aposymbiotic filarial species, and a cell line stably infected with Wolbachia pipientis. Our data promote a role for Wolbachia in contributing toward the dysregulated and tolerized immunological phenotype that accompanies the majority of human filarial infections.  相似文献   

7.
The Brugia malayi endosymbiont Wolbachia has recently been shown to be essential for its host’s survival and development. However, relatively little is known about Wolbachia proteins that interact with the filarial host and which might be important in maintaining the obligate symbiotic relationship. The Wolbachia surface proteins (WSPs) are members of the outer membrane protein family and we hypothesise that they might be involved in the Wolbachia-Brugia symbiotic relationship. Notably, immunolocalisation studies of two WSP members, WSP-0432 and WSP-0284 in B. malayi female adult worms showed that the corresponding proteins are not only present on the surface of Wolbachia but also in the host tissues, with WSP-0284 more abundant in the cuticle, hypodermis and the nuclei within the embryos. These results confirmed that WSPs might be secreted by Wolbachia into the worm’s tissue. Our present studies focus on the potential involvement of WSP-0284 in the symbiotic relationship of Wolbachia with its filarial host. We show that WSP-0284 binds specifically to B. malayi crude protein extracts. Furthermore, a fragment of the hypothetical B. malayi protein (Bm1_46455) was found to bind WSP-0284 by panning of a B. malayi cDNA library. The interaction of WSP-0284 and this protein was further confirmed by ELISA and pull-down assays. Localisation by immunoelectron microscopy within Wolbachia cells as well as in the worm’s tissues, cuticle and nuclei within embryos established that both proteins are present in similar locations within the parasite and the bacteria. Identifying such specific interactions between B. malayi and Wolbachia proteins should lead to a better understanding of the molecular basis of the filarial nematode and Wolbachia symbiosis.  相似文献   

8.

Background

Most filarial nematodes contain Wolbachia symbionts. The purpose of this study was to examine the effects of doxycycline on gene expression in Wolbachia and adult female Brugia malayi.

Methods

Brugia malayi infected gerbils were treated with doxycycline for 6-weeks. This treatment largely cleared Wolbachia and arrested worm reproduction. RNA recovered from treated and control female worms was labeled by random priming and hybridized to the Version 2- filarial microarray to obtain expression profiles.

Results and discussion

Results showed significant changes in expression for 200 Wolbachia (29% of Wolbachia genes with expression signals in untreated worms) and 546 B. malayi array elements after treatment. These elements correspond to known genes and also to novel genes with unknown biological functions. Most differentially expressed Wolbachia genes were down-regulated after treatment (98.5%). In contrast, doxycycline had a mixed effect on B. malayi gene expression with many more genes being significantly up-regulated after treatment (85% of differentially expressed genes). Genes and processes involved in reproduction (gender-regulated genes, collagen, amino acid metabolism, ribosomal processes, and cytoskeleton) were down-regulated after doxycycline while up-regulated genes and pathways suggest adaptations for survival in response to stress (energy metabolism, electron transport, anti-oxidants, nutrient transport, bacterial signaling pathways, and immune evasion).

Conclusions

Doxycycline reduced Wolbachia and significantly decreased bacterial gene expression. Wolbachia ribosomes are believed to be the primary biological target for doxycycline in filarial worms. B. malayi genes essential for reproduction, growth and development were also down-regulated; these changes are consistent with doxycycline effects on embryo development and reproduction. On the other hand, many B. malayi genes involved in energy production, electron-transport, metabolism, anti-oxidants, and others with unknown functions had increased expression signals after doxycycline treatment. These results suggest that female worms are able to compensate in part for the loss of Wolbachia so that they can survive, albeit without reproductive capacity. This study of doxycycline induced changes in gene expression has provided new clues regarding the symbiotic relationship between Wolbachia and B. malayi.  相似文献   

9.
植物病毒病是危害我国蔬菜生产的第一大病害,而烟粉虱Bemisia tabaci Gennadius、蓟马和蚜虫等小型昆虫是蔬菜病毒病的主要传播媒介.虫传病毒病害的防控策略复杂且难度大,目前生产上主要依赖化学农药防治介体昆虫,预防与控制蔬菜病毒病.种植户化学杀虫药剂的不合理使用、甚至滥用,导致媒介昆虫抗药性、杀虫剂污染与...  相似文献   

10.
Complete genome DNA sequence and analysis is presented for Wolbachia, the obligate alpha-proteobacterial endosymbiont required for fertility and survival of the human filarial parasitic nematode Brugia malayi. Although, quantitatively, the genome is even more degraded than those of closely related Rickettsia species, Wolbachia has retained more intact metabolic pathways. The ability to provide riboflavin, flavin adenine dinucleotide, heme, and nucleotides is likely to be Wolbachia's principal contribution to the mutualistic relationship, whereas the host nematode likely supplies amino acids required for Wolbachia growth. Genome comparison of the Wolbachia endosymbiont of B. malayi (wBm) with the Wolbachia endosymbiont of Drosophila melanogaster (wMel) shows that they share similar metabolic trends, although their genomes show a high degree of genome shuffling. In contrast to wMel, wBm contains no prophage and has a reduced level of repeated DNA. Both Wolbachia have lost a considerable number of membrane biogenesis genes that apparently make them unable to synthesize lipid A, the usual component of proteobacterial membranes. However, differences in their peptidoglycan structures may reflect the mutualistic lifestyle of wBm in contrast to the parasitic lifestyle of wMel. The smaller genome size of wBm, relative to wMel, may reflect the loss of genes required for infecting host cells and avoiding host defense systems. Analysis of this first sequenced endosymbiont genome from a filarial nematode provides insight into endosymbiont evolution and additionally provides new potential targets for elimination of cutaneous and lymphatic human filarial disease.  相似文献   

11.
Prior studies have shown that intracellular Wolbachia endobacteria are necessary for the normal development, reproduction, and survival of filarial nematodes. The purpose of this study was to examine effects of gamma radiation on Wolbachia and reproduction in Brugia malayi adult worms. Worms were exposed to 0, 10, 25, 45, 75, and 105 krad of gamma radiation from a 137cesium source and cultured in vitro for 10 days. Irradiation reduced production of microfilariae in a dose-dependent manner. Embryograms of irradiated female worms showed dose-related abnormalities with arrested development at the early embryo stage. Irradiation reduced the viability of adult worms in a dose-dependent manner, but no lethal effect was observed. Electron microscopy studies showed that irradiation cleared Wolbachia from worm tissues. Real-time polymerase chain reaction studies demonstrated greatly reduced Wolbachia DNA in irradiated worms. These effects are essentially the same as those observed in adult worms treated with doxycycline. These studies suggest that effects of irradiation on reproduction in Brugia malayi may be caused by effects of irradiation on Wolbachia.  相似文献   

12.
Filariasis remains a health problem in tropical countries. Identification of immunogens from its causative organism would lead to development of a better diagnostic test, as well as vaccine discovery to effectively prevent this disease. We applied immunoproteomics to define potential immunogens of adult Brugia malayi that were recognized by IgM, IgG1 and IgG4 in sera of patients with four distinct clinical spectra of filariasis, including endemic asymptomatic, lymphangitis, elephantiasis and microfilaremia (n=5/group). Sera of healthy individuals (n=5) from non-endemic area served as the negative control. Brugian proteins were resolved by 2-DE and subjected to 2-D Western blot analysis probed with these sera. A total of 30 immunoreactive proteins recognized by IgM, IgG1 and IgG4 in sera from all four filarial groups were identified by Q-TOF MS and MS/MS analyses. Interestingly, only three immunogens were recognized by IgM in lymphangitis, elephantiasis and microfilaremia, but not in endemic asymptomatic group. IgG1 recognized 20 immunogens in endemic asymptomatic, lymphangitis and microfilaremia (mostly in endemic asymptomatic group), but not in elephantiasis, whereas IgG4 recognized 28 immunogens in all four filarial groups (mostly in microfilaremia). This large data set is an important resource for further development of a new diagnostic test and/or vaccine for filariasis.  相似文献   

13.
Lymphatic filariasis is a debilitating disease that affects over 890 million people in 49 countries. A lack of vaccines, non-availability of adulticidal drugs, the threat of emerging drug resistance against available chemotherapeutics and an incomplete understanding of the immunobiology of the disease have sustained the problem. Characterization of Wolbachia proteins, the bacterial endosymbiont which helps in the growth and development of filarial worms, regulates fecundity in female worms and mediates immunopathogenesis of Lymphatic Filariasis, is an important approach to gain insights into the immunopathogenesis of the disease. In this study, we carried out extensive biochemical characterization of Recombinase A from Wolbachia of the filarial nematode Brugia malayi (wBmRecA) using an Electrophoretic Mobility Shift Assay, an ATP binding and hydrolysis assay, DNA strand exchange reactions, DAPI displacement assay and confocal microscopy, and evaluated anti-filarial activity of RecA inhibitors. Confocal studies showed that wBmRecA was expressed and localised within B. malayi microfilariae (Mf) and uteri and lateral chord of adult females. Recombinant wBmRecA was biochemically active and showed intrinsic binding capacity towards both single-stranded DNA and double-stranded DNA that were enhanced by ATP, suggesting ATP-induced cooperativity. wBmRecA promoted ATP hydrolysis and DNA strand exchange reactions in a concentration-dependent manner, and its binding to DNA was sensitive to temperature, pH and salt concentration. Importantly, the anti-parasitic drug Suramin, and Phthalocyanine tetrasulfonate (PcTs)-based inhibitors Fe-PcTs and 3,4-Cu-PcTs, inhibited wBmRecA activity and affected the motility and viability of Mf. The addition of Doxycycline further enhanced microfilaricidal activity of wBmRecA, suggesting potential synergism. Taken together, the omnipresence of wBmRecA in B. malayi life stages and the potent microfilaricidal activity of RecA inhibitors suggest an important role of wBmRecA in filarial pathogenesis.  相似文献   

14.
The discovery that endosymbiotic Wolbachia bacteria play an important role in the pathophysiology of diseases caused by filarial nematodes, including lymphatic filariasis and onchocerciasis (river blindness) has transformed our approach to these disabling diseases. Because these parasites infect hundreds of millions of individuals worldwide, understanding host factors involved in the pathogenesis of filarial-induced diseases is paramount. However, the role of early innate responses to filarial and Wolbachia ligands in the development of filarial diseases has not been fully elucidated. To determine the role of TLRs, we used cell lines transfected with human TLRs and macrophages from TLR and adaptor molecule-deficient mice and evaluated macrophage recruitment in vivo. Extracts of Brugia malayi and Onchocerca volvulus, which contain Wolbachia, directly stimulated human embryonic kidney cells expressing TLR2, but not TLR3 or TLR4. Wolbachia containing filarial extracts stimulated cytokine production in macrophages from C57BL/6 and TLR4(-/-) mice, but not from TLR2(-/-) or TLR6(-/-) mice. Similarly, macrophages from mice deficient in adaptor molecules Toll/IL-1R domain-containing adaptor-inducing IFN-beta and Toll/IL-1R domain-containing adaptor-inducing IFN-beta-related adaptor molecule produced equivalent cytokines as wild-type cells, whereas responses were absent in macrophages from MyD88(-/-) and Toll/IL-1R domain-containing adaptor protein (TIRAP)/MyD88 adaptor-like (Mal) deficient mice. Isolated Wolbachia bacteria demonstrated similar TLR and adaptor molecule requirements. In vivo, macrophage migration to the cornea in response to filarial extracts containing Wolbachia was dependent on TLR2 but not TLR4. These results establish that the innate inflammatory pathways activated by endosymbiotic Wolbachia in B. malayi and O. volvulus filaria are dependent on TLR2-TLR6 interactions and are mediated by adaptor molecules MyD88 and TIRAP/Mal.  相似文献   

15.
The lymphatic filarial parasite, Brugia malayi contains Wolbachia endobacteria that are essential for development, viability and fertility of the parasite. Therefore, wolbachial proteins have been currently seen as the potential antifilarial drug targets. NAD(+)-dependent DNA ligase is characterized as a promising drug target in several organisms due to its crucial, indispensable role in DNA replication, recombination and DNA repair. We report here the cloning, expression and purification of NAD(+)-dependent DNA ligase of Wolbachia endosymbiont of B. malayi (wBm-LigA) for its molecular characterization. wBm-LigA has all the domains that are present in nearly all the eubacterial NAD(+)-dependent DNA ligases such as N-terminal adenylation domain, OB fold, helix-hairpin-helix (HhH) and BRCT domain except zinc-binding tetracysteine domain. The purified recombinant protein (683-amino acid) was found to be biochemically active and was present in its native form as revealed by the circular dichroism and fluorescence spectra. The purified recombinant enzyme was able to catalyze intramolecular strand joining on a nicked DNA as well as intermolecular joining of the cohesive ends of BstEII restricted lamda DNA in an in vitro assay. The enzyme was localized in the various life-stages of B. malayi parasites by immunoblotting and high enzyme expression was observed in Wolbachia within B. malayi microfilariae and female adult parasites along the hypodermal chords and in the gravid portion as evident by the confocal microscopy. Ours is the first report on this enzyme of Wolbachia and these findings would assist in validating the antifilarial drug target potential of wBm-LigA in future studies.  相似文献   

16.
DNA sequence analysis of genes encoding 5S rRNA in the human parasitic nematode Brugia malayi (B. malayi) indicates a surprising degree of heterogeneity. This variation in coding sequence is not accompanied by corresponding heterogeneity in flanking regions which are highly conserved. Six out of eight potential 5S coding regions differed; of these sequence variants, two were abundant in the B. malayi genome. Direct RNA sequence analysis indicated that one of these abundant variants accounts for most if not all of expressed 5S RNA at two stages of development.  相似文献   

17.
18.
19.
20.
To determine biologically important effects of the cytoplasmic endosymbiont Wolbachia, two substrains of the same Drosophila melanogaster strain have been studied, one of them infected with Wolbachia and the other treated with tetracycline to eliminate the bacterium. Female D. melanogaster infected with Wolbachia are more resistant to the fungus Bauveria bassiana (an insect pathogen) than uninfected females; infected females also exhibited changes in oviposition substrate preference. Males infected with the bacterium are more competitive than uninfected males. The possible role of Wolbachia in the formation of alternative ecological strategies of D. melanogaster is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号