首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Pseudomonas aeruginosa causes lung infections in patients suffering from the genetic disorder Cystic Fibrosis (CF). Once a chronic lung infection is established, P. aeruginosa cannot be eradicated by antibiotic treatment. Phage therapy is an alternative to treat these chronic P. aeruginosa infections. However, little is known about the factors which influence phage infection of P. aeruginosa under infection conditions and suitable broad host range phages.  相似文献   

2.

Aims

This study aimed to characterize the impact of lytic and temperate bacteriophages on the genetic and phenotypic diversity of Mannheimia haemolytica from feedlot cattle.

Methods and Results

Strictly lytic phages were not detected from bovine nasopharyngeal (n = 689) or water trough (n = 30) samples, but Myoviridae‐ or Siphoviridae‐like phages were induced from 54 of 72 M. haemolytica strains by mitomycin C, occasionally from the same strain. Phages with similar restriction fragment length polymorphism profiles (RFLP ≥70% relatedness) shared common host serotypes 1 or 2 (< 0·000 1). Likewise, phages with similar RFLP tended to occur in genetically related host bacteria (70–79% similarity). Host range assays showed that seven phages from host serotypes 1, 2 and 6 lysed representative strains of serotypes 1, 2 or 8. The genome of vB_MhM_1152AP from serotype 6 was found to be collinear with P2‐like phage φMhaA1‐PHL101.

Conclusions

Prophages are a significant component of the genome of M. haemolytica and contribute significantly to host diversity. Further characterization of the role of prophage in virulence and persistence of M. haemolytica in cattle could provide insight into approaches to control this potential respiratory pathogen.

Significance and Impact of the Study

This study demonstrated that prophages are widespread within the genome of M. haemolytica isolates and emphasized the challenge of isolating lytic phage as a therapeutic against this pathogen.  相似文献   

3.

Background

Hyperemesis gravidarum remains a common, distressing, and significant yet poorly understood disorder during pregnancy. The association between maternal Helicobacter pylori (H. pylori) infection and hyperemesis gravidarum has been increasingly recognized and investigated. This study thus aimed to provide an updated review and meta‐analysis of the topic.

Methods

Using the search terms (H. pyloriOR Helicobacter ORHelicobacter pyloriOR infection) AND (pregnancy OR emesis OR hyperemesis gravidarum OR nausea OR vomiting), a preliminary search on the PubMed, Ovid, Web of Science, Google Scholar, and WanFang database yielded 372 papers published in English between January 1st, 1960 and June 1st, 2017.

Results

A total of 38 cross‐sectional and case‐control studies, with a total of 10 289 patients were eligible for review. Meta‐analysis revealed a significant association between H. pylori infection and hyperemesis gravidarum during pregnancy, with a pooled odds ratio of 1.348 (95% CI: 1.156‐1.539, P < .001). Subgroup analysis found that serologic and stool antigen tests were comparable methods of detecting H. pylori as they yielded similar odds ratios.

Limitations

Although the studies did not have high heterogeneity (I2 = 28%), publication bias was observed, and interstudy discrepancies in the diagnostic criteria adopted for hyperemesis gravidarum limit the reliability of findings. Also, 15 of the included studies were from the same country (Turkey), which could limit the generalizability of current findings. The prevalence of H. pylori infection varies throughout the world, and there may also be pathogenic differences as most strains of H. pylori in East Asia carry the cytotoxin‐associated gene A gene.

Conclusion

H. pylori infection was associated with an increased likelihood of hyperemesis gravidarum during pregnancy. Given the high prevalence of H. pylori infections worldwide, detecting H. pylori infection and the eradication of maternal H. pylori infection could be part of maternal hyperemesis gravidarum management. Further confirmation with robust longitudinal studies and mechanistic investigations are needed.  相似文献   

4.

Background  

Urease B is an important virulence factor that is required for Helicobacter pylori to colonise the gastric mucosa. Mouse monoclonal antibodies (mAbs) that inhibit urease B enzymatic activity will be useful as vaccines for the prevention and treatment of H. pylori infection. Here, we produced murine mAbs against urease B that neutralize the enzyme's activity. We mapped their epitopes by phage display libraries and investigated the immunogenicity of the selected mimotopes in vivo.  相似文献   

5.
Bragg JG  Chisholm SW 《PloS one》2008,3(10):e3550

Background

Phages infecting marine picocyanobacteria often carry a psbA gene, which encodes a homolog to the photosynthetic reaction center protein, D1. Host encoded D1 decays during phage infection in the light. Phage encoded D1 may help to maintain photosynthesis during the lytic cycle, which in turn could bolster the production of deoxynucleoside triphosphates (dNTPs) for phage genome replication.

Methodology / Principal Findings

To explore the consequences to a phage of encoding and expressing psbA, we derive a simple model of infection for a cyanophage/host pair — cyanophage P-SSP7 and Prochlorococcus MED4— for which pertinent laboratory data are available. We first use the model to describe phage genome replication and the kinetics of psbA expression by host and phage. We then examine the contribution of phage psbA expression to phage genome replication under constant low irradiance (25 µE m−2 s−1). We predict that while phage psbA expression could lead to an increase in the number of phage genomes produced during a lytic cycle of between 2.5 and 4.5% (depending on parameter values), this advantage can be nearly negated by the cost of psbA in elongating the phage genome. Under higher irradiance conditions that promote D1 degradation, however, phage psbA confers a greater advantage to phage genome replication.

Conclusions / Significance

These analyses illustrate how psbA may benefit phage in the dynamic ocean surface mixed layer.  相似文献   

6.

Background  

Bacteriophage infections of bacterial cultures cause serious problems in genetic engineering and biotechnology. They are dangerous not only because of direct effects on the currently infected cultures, i.e. their devastation, but also due to a high probability of spreading the phage progeny throughout a whole laboratory or plant, which causes a real danger for further cultivations. Therefore, a simple method for quick inhibition of phage development after detection of bacterial culture infection should be very useful.  相似文献   

7.
Summary Phage H is a temperate phage, i.e., it can establish lysogeny in the archaebacterium Halobacterium halobium. H-lysogens are immune to phage infection and phage production is spontaneously induced at a rate of about 10-7. In the prophage state. H DNA exists as a covalently closed circle of 57 kb.The frequent occurrence of clones carrying the phage genome but unable to produce phage is another proof of the high variability of DNA in H. halobium. In one such strain, R1-3, the phage genome has undergone a structural change which may have abolished an essential phage gene.  相似文献   

8.
Abortive infection (Abi) systems, also called phage exclusion, block phage multiplication and cause premature bacterial cell death upon phage infection. This decreases the number of progeny particles and limits their spread to other cells allowing the bacterial population to survive. Twenty Abi systems have been isolated in Lactococcus lactis, a bacterium used in cheese-making fermentation processes, where phage attacks are of economical importance. Recent insights in their expression and mode of action indicate that, behind diverse phenotypic and molecular effects, lactococcal Abis share common traits with the well-studied Escherichia coli systems Lit and Prr. Abis are widespread in bacteria, and recent analysis indicates that Abis might have additional roles other than conferring phage resistance.  相似文献   

9.

Background  

Immune responses to parasites, which start with pathogen recognition, play a decisive role in the control of the infection in mosquitoes. Peptidoglycan recognition proteins (PGRPs) are an important family of pattern recognition receptors that are involved in the activation of these immune reactions. Pathogen pressure can exert adaptive changes in host genes that are crucial components of the vector's defence. The aim of this study was to determine the molecular evolution of the three short PGRPs (PGRP-S1, PGRP-S2 and PGRP-S3) in the two main African malaria vectors - Anopheles gambiae and Anopheles arabiensis.  相似文献   

10.

Background  

The NODULATION RECEPTOR KINASE (NORK) gene encodes a Leucine-Rich Repeat (LRR)-containing receptor-like protein and controls the infection by symbiotic rhizobia and endomycorrhizal fungi in Legumes. The occurrence of numerous amino acid changes driven by directional selection has been reported in this gene, using a limited number of messenger RNA sequences, but the functional reason of these changes remains obscure. The Medicago genus, where changes in rhizobial associations have been previously examined, is a good model to test whether the evolution of NORK is influenced by rhizobial interactions.  相似文献   

11.

Background  

Virulent Mycobacterium leprae interfere with host defense mechanisms such as cytokine activation and apoptosis. The mitochondrial pathway of apoptosis is regulated by the Bcl-2 family of proteins. Expression of Fas ligand and apoptotic proteins is found in leprosy lesions and M. leprae has been shown to activate pro-apoptotic Bcl-2 genes, Bak and Bax. However, the mechanism by which M. leprae modulates apoptosis is as yet unclear. We investigated expression of apoptotic genes in THP-1 monocytes in response to infection by M. leprae and non-pathogenic M. bovis BCG.  相似文献   

12.

Background  

Avian infectious bronchitis (IB) is one of the most serious diseases of economic importance in chickens; it is caused by the avian infectious coronavirus (IBV). Information remains limited about the comparative protein expression profiles of chicken embryonic tissues in response to IBV infection in ovo. In this study, we analyzed the changes of protein expression in trachea and kidney tissues from chicken embryos, following IBV infection in ovo, using two-dimensional gel electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS).  相似文献   

13.

Background  

Stenotrophomonas maltophilia has recently gained considerable attention as an important emerging pathogen in cystic fibrosis (CF) patients. However, the role of this microorganism in the pathophysiology of CF lung disease remains largely unexplored. In the present study for the first time we assessed the ability of S. maltophilia CF isolates to adhere to and form biofilm in experimental infection experiments using the CF-derived bronchial epithelial IB3-1cell line. The role of flagella on the adhesiveness of S. maltophilia to IB3-1 cell monolayers was also assessed by using fliI mutant derivative strains.  相似文献   

14.

Background

Helicobacter pylori infection remains a major public health threat leading to gastrointestinal illness and increased risk of gastric cancer. Mostly affecting populations in developing countries no vaccines are yet available and the disease is controlled by antimicrobials which, in turn, are driving the emergence of AMR.

Materials and Methods

We have engineered spores of Bacillus subtilis to display putative H. pylori protective antigens, urease subunit A (UreA) and subunit B (UreB) on the spore surface. Following oral dosing of mice with these spores, we evaluated immunity and colonization in animals challenged with H. pylori.

Results

Oral immunization with spores expressing either UreA or UreB showed antigen-specific mucosal responses (fecal sIgA) including seroconversion and hyperimmunity. Following challenge, colonization by H. pylori was significantly reduced by up to 1-log.

Conclusions

This study demonstrates the utility of bacterial spores for mucosal vaccination to H. pylori infection. The heat stability and robustness of Bacillus spores coupled with their existing use as probiotics make them an attractive solution for either protection against H. pylori infection or potentially for therapy and control of active infection.  相似文献   

15.
The bacteriophage BA3 multiplies in and lyses the coral pathogen Thalassomonas loyana. The complete genome of phage BA3 was sequenced; it contains 47 open reading frames with a 40.9% G + C content. Phage BA3 adsorbed to its starved host in seawater with a k = 1.0 × 10−6 phage ml−1 min−1. Phage therapy of coral disease in aquarium experiments was successful when the phage was added at the same time as the pathogen or 1 day later, but failed to protect the coral when added 2 days after bacterial infection. When the phages were added 1 day after coral infection, the phage titer increased about 100-fold and remained present in the aquarium water throughout the 37-day experiment. At the end of the experiment, the concentration of phages associated with the corals was 2.5 ± 0.5 × 104 per cm2 of coral surface. Corals that were infected with the pathogen and treated with phage did not transmit the disease to healthy corals.  相似文献   

16.

Background  

Bistability, the capacity to achieve two distinct stable steady states in response to a set of external stimuli, arises within biological systems ranging from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. On the other hand, more and more experimental evidence in the form of bimodal population distribution has indicated that noise plays a very important role in the switching of bistable systems. However, the physiological mechanism underling noise-induced switching behaviors remains to be fully understood.  相似文献   

17.

Background  

Contagious bovine pleuropneumonia (CBPP) is a mycoplasmal disease caused by Mycoplasma mycoides subsp. mycoides SC (MmmSC). Since the disease is a serious problem that can affect cattle production in parts of Africa, there is a need for an effective and economical vaccine. Identifying which of the causative agent's proteins trigger potentially protective immune responses is an important step towards developing a subunit vaccine. Accordingly, the purpose of this study was to determine whether phage display combined with bioinformatics could be used to narrow the search for genes that code for potentially immunogenic proteins of MmmSC. Since the production of IgG2 and IgA are associated with a Th1 cellular immune response which is implicated in protection against CBPP, antigens which elicit these immunoglobulin subclasses may be useful in developing a subunit vaccine.  相似文献   

18.

Background  

SpiC encoded within Salmonella pathogeniCity island 2 on the Salmonella enterica serovar Typhimurium chromosome is required for survival within macrophages and systemic infection in mice. Additionally, SpiC contributes to Salmonella-induced activation of the signal transduction pathways in macrophages by affecting the expression of FliC, a component of flagella filaments. Here, we show the contribution of SpiC in flagellum synthesis.  相似文献   

19.

Background  

Pseudomonas fluorescens is an important food spoilage organism, usually found in the form of biofilms. Bacterial biofilms are inherently resistant to a variety of antimicrobial agents, therefore alternative methods to biofilm control, such as bacteriophages (phages) have been suggested. Phage behavior on biofilms is still poorly investigated and needs further understanding. Here we describe the application of phage ϕIBB-PF7, a newly isolated phage, to control P. fluorescens biofilms. The biofilms were formed under static or dynamic conditions and with or without renewal of medium.  相似文献   

20.
Gu J  Liu X  Li Y  Han W  Lei L  Yang Y  Zhao H  Gao Y  Song J  Lu R  Sun C  Feng X 《PloS one》2012,7(3):e31698

Background

Bacteriophage could be an alternative to conventional antibiotic therapy against multidrug-resistant bacteria. However, the emergence of resistant variants after phage treatment limited its therapeutic application.

Methodology/Principal Findings

In this study, an approach, named “Step-by-Step” (SBS), has been established. This method takes advantage of the occurrence of phage-resistant bacteria variants and ensures that phages lytic for wild-type strain and its phage-resistant variants are selected. A phage cocktail lytic for Klebsiella pneumoniae was established by the SBS method. This phage cocktail consisted of three phages (GH-K1, GH-K2 and GH-K3) which have different but overlapping host strains. Several phage-resistant variants of Klebsiella pneumoniae were isolated after different phages treatments. The virulence of these variants was much weaker [minimal lethal doses (MLD)>1.3×109 cfu/mouse] than that of wild-type K7 countpart (MLD = 2.5×103 cfu/mouse). Compared with any single phage, the phage cocktail significantly reduced the mutation frequency of Klebsiella pneumoniae and effectively rescued Klebsiella pneumoniae bacteremia in a murine K7 strain challenge model. The minimal protective dose (MPD) of the phage cocktail which was sufficient to protect bacteremic mice from lethal K7 infection was only 3.0×104 pfu, significantly smaller (p<0.01) than that of single monophage. Moreover, a delayed administration of this phage cocktail was still effective in protection against K7 challenge.

Conclusions/Significance

Our data showed that the phage cocktail was more effective in reducing bacterial mutation frequency and in the rescue of murine bacteremia than monophage suggesting that phage cocktail established by SBS method has great therapeutic potential for multidrug-resistant bacteria infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号