首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wide biosurfactant application on biorremediation is limited by its high production cost. The search for cheaper biossurfactant production alternatives has guided our study. The use of selective media containing sucrose (10 g x L(-1)) and Arabian Light oil (2 g x L(-1)) as carbon sources showed to be effective to screen and maintain biosurfactant-producing consortia isolated from mangrove hydrocarbon-contaminated sediment. The biosurfactant production was assayed by kerosene, gasoline and Arabian Light Emulsification activity and the bacterial growth curve was determined by bacterial quantification. The parameters analyzed for biosurfactant production were the growth curve, salinity concentration, flask shape and oxygenation. All bacteria consortia screened were able to emulsify the petroleum derivatives tested. Biosurfactant production increased according to the incubation time; however the type of emulsification (non-aqueous phase or aqueous phase) did not change with time but with the compound tested. The methodology was able to isolate biosurfactant-producing consortia from superficial mangrove sediment contaminated by petroleum hydrocarbons and was recommended for selection of biosurfactant producing bacteria in tropical countries with low financial resources.  相似文献   

2.
This study was aimed at the development of economical methods for higher yields of biosurfactant by suggesting the use of low-cost raw materials. Two oil-degrading strains, Pseudomonas aeruginosa GS9-119 and DS10-129, were used to optimize a substrate for maximum rhamnolipid production. Among the two strains, the latter produced maxima of 4.31, 2.98, and 1.77 g/L rhamnolipid biosurfactant using soybean oil, safflower oil, and glycerol, respectively. The yield of biosurfactant steadily increased even after the bacterial cultures reached the stationary phase of growth. Characterization of rhamnolipids using mass spectrometry revealed the presence of dirhamnolipids (Rha-Rha-C(10)-C(10)). Emulsification activity of the rhamnolipid biosurfactant produced by P. aeruginosa DS10-129 was greater than 70% using all the hydrocarbons tested, including xylene, benzene, hexane, crude oil, kerosene, gasoline, and diesel. P. aeruginosa GS9-119 emulsified only hexane and kerosene to that level.  相似文献   

3.
Glycerol, a co-product of biodiesel production, was evaluated as carbon source for biosurfactant production. For this reason, seven non-pathogenic biosurfactant-producing Bacillus strains, isolated from the tank of chlorination at the Wastewater Treatment Plant at Federal University of Ceara, were screened. The production of biosurfactant was verified by determining the surface tension value, as well as the emulsifying capacity of the free-cell broth against soy oil, kerosene and N-hexadecane. Best results were achieved when using LAMI005 and LAMI009 strains, whose biosurfactant reduced the surface tension of the broth to 28.8?±?0.0 and 27.1?±?0.1?mN?m(-1), respectively. Additionally, at 72?h of cultivation, 441.06 and 267.56?mg?L(-1) of surfactin were produced by LAMI005 and LAMI009, respectively. The biosurfactants were capable of forming stable emulsions with various hydrocarbons, such as soy oil and kerosene. Analyses carried out with high performance liquid chromatography (HPLC) showed that the biosurfactant produced by Bacillus subtilis LAMI009 and LAMI005 was compatible with the commercially available surfactin standard. The values of minimum surface tension and the CMC of the produced biosurfactant indicated that it is feasible to produce biosurfactants from a residual and renewable and low-cost carbon source, such as glycerol.  相似文献   

4.
Biosurfactant-producing bacteria were isolated from two petroleum contaminated sites in western Canada. Seven potential biosurfactant/bioemulsifier-producing isolates were screened and characterized. All of the seven isolates were able to form emulsions. Emulsion-stabilizing capacity was also measured up to 48 hrs. Strain C-111-2 and C-203-2 would lead to highly reduced surface tension. For strain C-203-2, the optimum conditions that supported bacteria growth and production were investigated. The influences of carbon sources, medium pH values, and temperature were taken into account. The experimental results indicated that the crude oil and glucose were promising carbon sources for biosurfactants production; the isolated strains produced a maximum concentration of biosurfactant in a neutral pH environment and showed a higher surface activity under the temperature level of 35°C than that under 10°C. To further optimize the carbon and nitrogen source for biosurfactant production, response surface methodology (RSM) was applied to explore the favorable concentration of two carbon sources: glucose, crude oil, and one nitrogen source, NaNO3. The optimal concentration of 8.1g/L, 4% and 3.9 g/L for glucose, crude oil, and NaNO3, respectively, which can be obtained through RSM analysis.  相似文献   

5.
Serratia marcescens SS-1 and its SpnR-defective isogenic mutant, SMdeltaR, produced an extracellular surfactant able to decrease surface tension of water from 72 to 37 dyne cm(-1) (SMdeltaR strain) and to 45 dyne cm(-1) (SS-1 strain). The biosurfactant also emulsified kerosene and diesel with a maximum emulsion index of 77% (diesel and kerosene) for the SMdeltaR strain, and 72% (kerosene) and 40% (diesel) for the SS-1 strain. Deletion of spnR gene appeared to enhance biosurfactant production. Model simulations suggest that biosurfactant production by the two strains was growth-associated. The SMdeltaR strain had a yield coefficient of 22-32% g dry cell(-1), which is 32-50% higher than that of the SS-1 strain.  相似文献   

6.
The present study is aimed at the naphthalene degradation with and without biosurfactant produced from Pseudomonas aeruginosa isolated from oil-contaminated soil. The present study was carried out to isolate the bacterial strains for the naphthalene degradation and also for biosurfactant production. The isolated strains were screened for their ability to degrade the naphthalene by the methods of optimum growth rate test and for the production of biosurfactants by cetyltrimethylammonium bromide, blood agar medium, and thin-layer chromatography. The present study also focused on the effect of biosurfactant for the degradation of naphthalene by isolate-1. Two bacterial strains were isolated and screened, one for biodegradation and another for biosurfactant production. The second organism was identified as Pseudomonas aeruginosa by 16S rRNA analysis. The purified biosurfactant reduces the surface tension of water and also forms stable emulsification with hexadecane and kerosene. The end product of naphthalene degradation was estimated as salicylic acid equivalent by spectrophotometric method. The results demonstrated that Pseudomonas aeruginosa has the potential to produce biosurfactant, which enhances the biodegradation of naphthalene. The study reflects the potential use of biosurfactants for an effective bioremediation in the management of contaminated soils.  相似文献   

7.
Emulsification of hydrocarbons by subsurface bacteria   总被引:2,自引:0,他引:2  
Summary Biosurfactants have potential for use in enhancement of in situ biorestoration by increasing the bioavailability of contaminants. Microorganisms isolated from biostimulated, contaminated and uncontaminated zones at the site of an aviation fuel spill and hydrocarbon-degrading microorganisms isolated from sites contaminated with unleaded gasoline were examined for their abilities to emulsify petroleum hydrocarbons. Emulsifying ability was quantified by a method involving agitation and visual inspection. Biostimulated-zone microbes and hydrocarbon-degrading microorganisms were the best emulsifiers as compared to contaminated and uncontaminated zone microbes. Biostimulation (nutrient and oxygen addition) may have been the dominant factor which selected for and encouraged growth of emulsifiers; exposure to hydrocarbon was also important. Biostimulated microorganisms were better emulsifiers of aviation fuel (the contaminant hydrocarbon) than of heavier hydrocarbon to which they were not previously exposed. By measuring surface tension changes of culture broths, 11 out of 41 emulsifiers tested were identified as possible biosurfactant producers and two isolates produced large surface tension reductions indicating the high probability of biosurfactant production.  相似文献   

8.
A study was undertaken to investigate the distribution of biosurfactant producing and crude oil degrading bacteria in the oil contaminated environment. This research revealed that hydrocarbon contaminated sites are the potent sources for oil degraders. Among 32 oil degrading bacteria isolated from ten different oil contaminated sites of gasoline and diesel fuel stations, 80% exhibited biosurfactant production. The quantity and emulsification activity of the biosurfactants varied. Pseudomonas sp. DS10‐129 produced a maximum of 7.5 ± 0.4 g/l of biosurfactant with a corresponding reduction in surface tension from 68 mN/m to 29.4 ± 0.7 mN/m at 84 h incubation. The isolates Micrococcus sp. GS2‐22, Bacillus sp. DS6‐86, Corynebacterium sp. GS5‐66, Flavobacterium sp. DS5‐73, Pseudomonas sp. DS10‐129, Pseudomonas sp. DS9‐119 and Acinetobacter sp. DS5‐74 emulsified xylene, benzene, n‐hexane, Bombay High crude oil, kerosene, gasoline, diesel fuel and olive oil. The first five of the above isolates had the highest emulsification activity and crude oil degradation ability and were selected for the preparation of a mixed bacterial consortium, which was also an efficient biosurfactant producing oil emulsifying and degrading culture. During this study, biosurfactant production and emulsification activity were detected in Moraxella sp., Flavobacterium sp. and in a mixed bacterial consortium, which have not been reported before.  相似文献   

9.
The six biosurfactant-producing strains, isolated from oilfield wastewater in Daqing oilfield, were screened. The production of biosurfactant was verified by measuring the diameter of the oil spreading, measuring the surface tension value and emulsifying capacity against xylene, n-pentane, kerosene and crude oil. The experimental result showed three strains (S2, S3, S6) had the better surface activity. Among the three strains, the best results were achieved when using S2 strain. The diameter of the oil spreading of the biosurfactant produced by S2 strain was 14 cm, its critical micelle concentration (CMC) was 21.8 mg/l and the interfacial tension between crude oil and biosurfactant solution produced by S2 strain reduced to 25.7 mN/m. The biosurfactant produced by S2 strain was capable of forming stable emulsions with various hydrocarbons, such as xylene, n-pentane, kerosene and crude oil. After S2 strain treatment, the reduction rate of oil viscosity was 51 % and oil freezing point reduced by 4 °C.  相似文献   

10.
The use of microorganisms with hydrocarbon degrading capability and biosurfactant producers have emerged as an alternative for sustainable treatment of environmental passives. In this study 45 bacteria were isolated from samples contaminated with petrochemical residues, from which 21 were obtained from Landfarming soil contaminated with oily sludge, 11 were obtained from petrochemical industry effluents and 13 were originated directly from oily sludge. The metabolization capability of different carbon sources, growth capacity and tolerance, biosurfactant production and enzymes detection were determined. A preliminary selection carried out through the analysis of capability for degrading hydrocarbons showed that 22% of the isolates were able to degrade all carbon sources employed. On the other hand, in 36% of the isolates, the degradation of the oily sludge started within 18–48 h. Those isolates were considered as the most efficient ones. Twenty isolates, identified based on partial sequencing of the 16S rRNA gene, were pre-selected. These isolates showed ability for growing in a medium containing 1% of oily sludge as the sole carbon source, tolerance in a medium containing up to 30% of oily sludge, ability for biosurfactant production, and expression of enzymes involved in degradation of aliphatic and aromatic compounds. Five bacteria, identified as Stenotrophomonas acidaminiphila BB5, Bacillus megaterium BB6, Bacillus cibi, Pseudomonas aeruginosa, and Bacillus cereus BS20 were shown to be promising for use as inoculum in bioremediation processes (bioaugmentation) of areas contaminated with petrochemical residues since they can use oily sludge as the sole carbon source and produce biosurfactants.  相似文献   

11.
Biosurfactant‐producing bacteria were isolated from samples collected in areas contaminated with crude oil. The isolates were screened for biosurfactant production using qualitative drop‐collapse test, oil‐spreading and emulsification assays, and measurement of their tensoactive properties. Five isolates tested positive for in the screening experiments and displayed decrease in the surface tension below 30 mN m?1. The biosurfactants produced by these isolates were further investigated and their molecular identification revealed that they are bacteria related to the Bacillus genus. Additionally, the biosurfactants produced were chemically characterized via UHPLC‐HRMS experiments, indicating the production of surfactin homologues, including a new class of these molecules.  相似文献   

12.
Biosurfactant producing bacteria, terrestrial Bacillus subtilis SJ301 and marine Bacillus vallismortis JB201 were isolated from sites contaminated with crude oil and its by-products. Cellular growth and biosurfactant production of the isolates were studied with different carbon sources (glucose, fructose, glycerol and petrol). Both bacterial isolates synthesized biosurfactants in the presence of glucose at late log phase and in the presence of petrol at stationary phase at 35°C. Biosurfactants obtained from both bacteria reduced the surface tension of the growth medium below 33 mN/m and exhibited this capacity in cell-free filtrates also. Raising the temperature from 25 to 35°C, accelerated onset of biosurfactant production in both the isolates, however, change in pH values from 6.5 to 7.5 had no effect. Functional and structural characterization of the crude biosurfactants was carried out by FTIR and 1H and 13C NMR spectroscopy and the compounds were identified as surfactin lipopeptides. Biosurfactant produced by the terrestrial B. subtilis SJ301 showed antimicrobial activity against Escherichia coli and Shigella dysenteriae whereas the marine B. vallismortis JB201 revealed antimicrobial activity against Klebsiella pneumoniae, Salmonella typhi and Streptococcus pneumoniae.  相似文献   

13.
Microorganisms, that degrade hydrocarbon were isolated and screened for their biosurfactant activity. A total of 68 strains were isolated and tested for their glycolipid activity of which 4 isolates showed good glycolipid activity. Isolate K10 gave the maximum biosurfactant production in medium A (containing kerosene as a sole carbon source) as compared to medium B (containing glucose as a sole carbon source). Characterization of isolate K10 showed that it belongs to Pseudomonas species.  相似文献   

14.
A combinatorial screening strategy was adopted for the development of a suitable medium for enhanced biosurfactant production by a marine strain. As a result, a modified marine medium (MMM) was developed, which contained urea and strontium chloride besides other salts important for the growth of marine bacteria. This medium supported growth, evident from a higher maximum growth rate value of 0.42 h(-1) and an enhanced biosurfactant production of 2.58 g/L. The critical micelle concentration (CMC) was determined for the biosurfactants obtained from all tested media combinations. The biosurfactant produced with this medium was stable at high temperature (100 °C), a wide range of pH (5-11) and salt concentration of 5-35%. The emulsifying activity and stability of the biosurfactant obtained using MMM was better than the biosurfactant obtained using conventional media. This biosurfactant with improved physiochemical properties is suitable for a wide range of applications in industry and for marine environmental cleaning.  相似文献   

15.
Biosurfactant production is a desirable property of hydrocarbon-degrading microorganisms (HDM). We characterized biosurfactant producing microbial populations from a Long Beach soil, California (USA) and a Hong Kong soil (China), contaminated with diesel oil. A total of 33 hydrocarbon-utilizing microorganisms were isolated from the soils. Twelve isolates and three defined consortia were tested for biosurfactant production and emulsification activity. The highest reduction of surface tension was achieved with a consortium of L1, L2 and L3 isolates from a Long Beach soil (41.4mN m(-1)). Isolate L1 (Acinetobacter junii) displayed the highest reduction of surface tension (46.5 mN m(-1)). The emulsifying capacity evaluated by the E24 emulsification index was highest in the culture of isolate L5 (74%). No substantial emulsification was achieved with the cell-free extracts, indicating that the emulsifying activity was not extracellular. Based on surface tension and the E24 index results, isolates F1, F2, F3, F4, L1, L2, L3 and L4 were identified by 16S rRNA gene sequencing as Bacillus cereus, Bacillus sphaericus, B. fusiformis, Acinetobacter junii, a non-cultured bacterium, Pseudomonas sp. and B. pumilus, respectively. Cluster analyses of 16S rRNA gene sequences of the bacterial isolates revealed 70% similarity amongst hydrocarbon-degrading bacterial community present in both soils. Five isolates (isolates F1, F2, F3, F4 and L4) belong to the Firmicutes order, two isolates (L1 and L3) belong to the Proteobacteria order and one isolate (L2) is an Actinomyces sp. Simpson's index (1 - D) and the Shannon-Weaver index (H) revealed more diversity of HDM in the Hong Kong soil, while evenness (E) and the equitability (J) data indicated that there was not a dominant population. Bacterial isolates displaying substantial potential for production of biosurfactants can be applied in the bioremediation of soils contaminated with petroleum hydrocarbons.  相似文献   

16.
Biosurfactant production from synthetic medium and industrial waste, viz. distillery and whey wastes was investigated by using an oily sludge isolate Pseudomonas aeruginosa strain BS2. In synthetic medium separately supplemented with glucose and hexadecane as water-soluble and -insoluble carbon sources, respectively, strain BS2 reduced the surface tension of the fermentation broth from 57 to 27 mN/m. The culture produced biosurfactant during the stationary growth phase and its yield was 0.97 g/l. The culture utilized distillery and whey wastes for its growth, as maximum cell counts reached to 54 × 108 and 64 × 109 c.f.u./ml from an initial inoculum size of 1 × 05 c.f.u./ml, respectively, within 48 h of incubation and in these wastes the yields of biosurfactant obtained were 0.91 and 0.92 g/l, respectively. In synthetic medium, distillery and whey wastes, strain BS2 produced a crystalline biosurfactant which belonged to the category of secondary metabolites and its maximum production occurred after the onset of nitrogen-limiting conditions. After recovering biosurfactant from the fermented waste, the chemical oxygen demand (COD) of distillery and whey wastes was significantly reduced by 81 and 87%, respectively. Total acids, nitrogen and phosphate levels in distillery waste were reduced by 90, 92 and 92%, respectively, while in case of whey waste the concentration of these nutrients was reduced by 88, 95 and 93%, respectively. The isolated biosurfactant possessed potent surface active properties, as it effectively reduced the surface tension of water from 72 to 27 mN/m and formed 100% stable emulsions of a variety of water-insoluble compounds such as hydrocarbons, viz. hexadecane, crude oil, kerosene and oily sludge and pesticides, viz. dichlorodiphenyltrichloroethane (DDT) and benzene hexachloride (BHC). The effectiveness of biosurfactant was also evident from its low critical micellar concentration (CMC) which was 0.028 mg/ml.  相似文献   

17.
Biosurfactants are a unique class of compounds that have been shown to have a variety of potential applications in the remediation of organic- and metal-contaminated sites, in the enhanced transport of bacteria, in enhanced oil recovery, as cosmetic additives, and in biological control. However, little is known about the distribution of biosurfactant-producing bacteria in the environment. The goal of this study was to determine how common culturable surfactant-producing bacteria are in undisturbed and contaminated sites. A series of 20 contaminated (i.e., with metals and/or hydrocarbons) and undisturbed soils were collected and plated on R(2)A agar. The 1,305 colonies obtained were screened for biosurfactant production in mineral salts medium containing 2% glucose. Forty-five of the isolates were positive for biosurfactant production, representing most of the soils tested. The 45 isolates were grouped by using repetitive extragenic palindromic (REP)-PCR analysis, which yielded 16 unique isolates. Phylogenetic relationships were determined by comparing the 16S rRNA gene sequence of each unique isolate with known sequences, revealing one new biosurfactant-producing microbe, a Flavobacterium sp. Sequencing results indicated only 10 unique isolates (in comparison to the REP analysis, which indicated 16 unique isolates). Surface tension results demonstrated that isolates that were similar according to sequence analysis but unique according to REP analysis in fact produced different surfactant mixtures under identical growth conditions. These results suggest that the 16S rRNA gene database commonly used for determining phylogenetic relationships may miss diversity in microbial products (e.g., biosurfactants and antibiotics) that are made by closely related isolates. In summary, biosurfactant-producing microorganisms were found in most soils even by using a relatively limited screening assay. Distribution was dependent on soil conditions, with gram-positive biosurfactant-producing isolates tending to be from heavy metal-contaminated or uncontaminated soils and gram-negative isolates tending to be from hydrocarbon-contaminated or cocontaminated soils.  相似文献   

18.
Bacteria possessing high capacity to degrade gasoline, kerosene, diesel oil, and lubricating oil were screened from several areas of Hokkaido, Japan. Among isolates, two strains, WatG and HokM, which were identified as new strains of Pseudomonas aeruginosa and Serratia marcescens species, respectively, showed relatively high capacity and wide spectrum to degrade the hydrocarbons in gasoline, kerosene, diesel, and lubricating oil. About 90-95% of excess amount of total diesel oil and kerosene added to mineral salts media as a sole carbon source could be degraded by WatG within 2 and 3 weeks, respectively. The same amount of lubricating oil was 60% degraded within 2 weeks. Strain HokM was more capable than WatG in degrading aromatic compounds in gasoline. This strain could also degrade kerosene, diesel, and lubricating oil with a capacity of 50-60%. Thus, these two isolates have potential to be useful for bioremediation of sites highly contaminated with petroleum hydrocarbons.  相似文献   

19.
Preliminary characterization of a biosurfactant-producing Azotobacter chroococcum isolated from marine environment showed maximum biomass and biosurfactant production at 120 and 132 h, respectively, at pH 8.0, 38°C, and 30‰ salinity utilizing a 2% carbon substrate. It grew and produced biosurfactant on crude oil, waste motor lubricant oil, and peanut oil cake. Peanut oil cake gave the highest biosurfactant production (4.6 mg/mL) under fermentation conditions. The biosurfactant product emulsified waste motor lubricant oil, crude oil, diesel, kerosene, naphthalene, anthracene, and xylene. Preliminary characterization of the biosurfactant using biochemical, Fourier transform infrared spectroscopy, and mass spectral analysis indicated that the biosurfactant was a lipopeptide with percentage lipid and protein proportion of 31.3:68.7.  相似文献   

20.
The success of biosurfactant production depends on the development of cheaper processes based on the use of low cost raw materials, which account for 10–30% of the overall process cost. In Brazil, the cashew apple agroindustry plays an outstanding role in the local economy. However, only a small part of the pseudofruit produced is used industrially and the amount wasted (about 94%) presents high potential as fermentation media, since it is rich in carbohydrate, fibers, vitamins and minerals salts. In this work, the performance of cashew apple juice (CAJ) as a complex medium for Acinetobacter calcoaceticus growth and production of biosurfactant was investigated. The microorganism was able to grow and to produce biosurfactant on a defined culture medium and on CAJ, reducing the surface tension of both media. The biosurfactant also achieved a maximum emulsion index of 80% for kerosene, when defined medium was used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号