首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Epithelial-mesenchyme transitions (EMTs) are familiar to all scholars of development. Each animal system utilizes an EMT to produce mesenchyme cells. In vertebrates, for example, there are a number of EMTs that shape the embryo. Early, entry of epiblast cells into the primitive streak is followed by the emergence of mesoderm via an EMT process. The departure of neural crest cells from the margin of the neural folds is an EMT process, and the delamination of cells from the endomesoderm to form the supporting mesenchyme of the lung, liver, and pancreas are EMTs. EMTs are observed in Drosophila following invagination of the ventral furrow, and even in Cnidarians, which have only two germ layers, yet mesoglial and stem cells delaminate from the epithelia and occupy the matrix between the ectoderm and endoderm. This review will focus on a classic example of an EMT, which occurs in the sea urchin embryo. The primary mesenchyme cells (PMCs) ingress from the vegetal plate of this embryo precociously and in advance of archenteron invagination. Because ingression is precisely timed, the PMC lineage precisely known, and the embryo easily observed and manipulated, much has been learned about how the ingression of PMCs works in the sea urchin. Though the focus of this review is the sea urchin PMCs, there is evidence that all EMTs share many common features at both cellular and molecular levels, and many of these mechanisms are also shown to be involved in tumor progression, especially metastasizing carcinomas.  相似文献   

7.
The endoskeleton of the sea urchin larva is a network of calcareous rods secreted by primary mesenchyme cells (PMCs). In this study, we identified seven new biomineralization-related proteins through an analysis of a large database of gene products expressed by PMCs. The proteins include three new spicule matrix proteins (SpSM29, SpSM32, and SpC-lectin), two proteins related to the PMC-specific cell surface glycoprotein MSP130 (MSP130-related-1 and -2), and two novel proteins (SpP16 and SpP19). The genes encoding these proteins are expressed specifically by cells of the large micromere-PMC lineage and are activated zygotically beginning at the blastula stage, prior to PMC ingression. Several of the mRNAs show regulated patterns of expression within the PMC syncytium that correlate with the pattern of skeletal rod growth. This work identifies new proteins that may regulate the process of biomineralization in this tractable model system.  相似文献   

8.
Sea urchin primary mesenchyme cells (PMCs) ingress into the blastocoel during an epithelial-to-mesenchymal transition (EMT), migrate along the blastocoelar wall for a period of time, and then settle into a subequatorial ring to form the larval skeleton. Fluorescent-marked blastomeres alone, or in combination with blastomere recombination, were used to track the position of PMCs during the early phases of this movement. Micromeres expressing Golgi-tethered GFP (galtase-GFP) were transplanted onto TRITC-stained hosts (in place of the endogenous micromere) to observe the progeny of a single micromere. Galtase-GFP as a Golgi marker is not transferred between PMCs when the syncytium forms. Thus, the position of cells can be followed relative to beginning position for longer periods than previously reported. The PMC progeny of a single micromere do not disperse upon ingression, but instead remain in a closely associated cluster. Generally, progeny of a single micromere remain in the quadrant of origin. In total, greater than approximately 94% of labeled PMCs remain within the local region of ingression. By contrast, when a transplanted micromere is placed at the vegetal plate after removing all 4 host micromeres, the resultant PMCs ingress and migrate into all 4 quadrants. Similarly, if 1 blastomere is injected at the 2-cell stage, and later the 2 unlabeled micromeres are removed at the 16-cell stage, the remaining PMCs ingress into all 4 quadrants of the vegetal plate. We conclude that the normal restriction of PMCs to a quadrant is due to mechanical constraint from other micromere-PMCs. If a labeled micromere is placed ectopically at the macromere/mesomere boundary, the PMC progeny ingress ectopically and migrate longitudinally along the animal-vegetal axis only. Injection of galtase-GFP into one blastomere at the 4-cell stage shows a 2-step pattern of localization. At late mesenchyme blastula and early gastrula stages, greater than 90% of GFP-expressing PMCs remain in the injected quadrant, while at mid- to late-gastrula stage and beyond, more PMCs are found outside the injected quadrant. The migration that sets up the asymmetry of the larval skeleton first occurs around mid- to late-gastrula stages, when some PMCs from an aboral quadrant migrate to the adjacent oral quadrant. In all, these data combined with previous data suggest that freshly ingressed PMCs migrate along a longitudinal path toward the animal pole and back toward the vegetal pole. Beginning at mid- to late-gastrula stage, PMCs utilize oral-aboral cues from the ectoderm for the first time. At this time, some aboral PMCs migrate into the adjacent oral quadrant to assist in the formation of the ventrolateral cluster.  相似文献   

9.
Concetration of intracellular cyclic AMP (cAMP), and activities of adenylate cyclase and cAMP-dependent protein kinase were examined in swimming and mesenchyme blastulae and primary mesenchyme cells (PMCs) of the sand dollar, Clypeaster japonicus , respectively. In mesenchyme blastulae, the concentration of cAMP increased 45% from that in swimming blastulae. PMCs contained a concentration of cAMP 40% higher than that in whole embryos at the mesenchyme blastula stage. The activity of adenylate cyclase in mesenchyme blastulae was 100% higher than that in swimming blastulae. The activites of cAMP-dependent protein kinase in whole embryos at the above two developmental stages, on the other hand, were quite similar to each other. However, in PMCs the activity of the enzyme was conspicuously higher than that in these embryos, and it reached 190% higher than that in these embryos. Inhibition of cAMP-dependent protein kinase activity by a synthetic inhibitor, H8, caused severe inhibition of PMC migration but it did not exert any effect on PMC ingression. These results suggest that the cAMP-dependent protein kinase activity is involved in PMC migration, but not in PMC ingression.  相似文献   

10.
Primary mesenchyme cells (PMC), the skeletogenic cells derived from the micromeres of the sea urchin embryo, are involved in the differentiation of the gut. When PMC were deleted from the mesenchyme blastula, both formation of the constrictions in the gut and expression of endoderm-specific alkaline phosphatase were significantly delayed. Therefore, the correct timing of gut differentiation depends on the existence of PMC, probably via a type of promotive signal. To date, the only role of PMC in other tissue differentiation has been a suppressive signal for the conversion of secondary mesenchyme cells (SMC) into skeletogenic cells. The present experiments using PMC ablation and transplantation showed that both signaling processes occurred in the same short period during gastrulation, but the embryos kept their competence for gut differentiation until a later stage. Further investigations indicated that conversion of SMC did not cause delay in gut differentiation and that SMC did not mediate the PMC signal to the endoderm. Therefore, the effect of PMC on gut differentiation could be a new role that is independent of the suppressive effect for SMC conversion.  相似文献   

11.
In sea urchins, the nuclear accumulation of β-catenin in micromeres and macromeres at 4th and 5th cleavage activates the developmental gene regulatory circuits that specify all of the vegetal tissues (i.e. skeletogenic mesoderm, endoderm and non-skeletogenic mesoderm). Here, through the analysis of maternal Frizzled receptors as potential contributors to these processes, we found that, in Paracentrotus lividus, the receptor Frizzled1/2/7 is required by 5th cleavage for β-catenin nuclearisation selectively in macromere daughter cells. Perturbation analyses established further that Frizzled1/2/7 signaling is required subsequently for the specification of the endomesoderm and then the endoderm but not for that of the non-skeletogenic mesoderm, even though this cell type also originates from the endomesoderm lineage. Complementary analyses on Wnt6 showed that this maternal ligand is similarly required at 5th cleavage for the nuclear accumulation of β-catenin exclusively in the macromeres and for endoderm but not for non-skeletogenic mesoderm specification. In addition, Wnt6 misexpression reverses Frizzled1/2/7 downregulation-induced phenotypes. Thus, the results indicate that Wnt6 and Frizzled1/2/7 are likely to behave as the ligand-receptor pair responsible for initiating β-catenin nuclearisation in macromeres at 5th cleavage and that event is necessary for endoderm specification. They show also that β-catenin nuclearisation in micromeres and macromeres takes place through a different mechanism, and that non-skeletogenic mesoderm specification occurs independently of the nuclear accumulation of β-catenin in macromeres at the 5th cleavage. Evolutionarily, this analysis outlines further the conserved involvement of the Frizzled1/2/7 subfamily, but not of specific Wnts, in the activation of canonical Wnt signaling during early animal development.  相似文献   

12.
In the sea urchin, entry of β-catenin into the nuclei of the vegetal cells at 4th and 5th cleavages is necessary for activation of the endomesoderm gene regulatory network. Beyond that, little is known about how the embryo uses maternal information to initiate specification. Here, experiments establish that of the three maternal Wnts in the egg, Wnt6 is necessary for activation of endodermal genes in the endomesoderm GRN. A small region of the vegetal cortex is shown to be necessary for activation of the endomesoderm GRN. If that cortical region of the egg is removed, addition of Wnt6 rescues endoderm. At a molecular level, the vegetal cortex region contains a localized concentration of Dishevelled (Dsh) protein, a transducer of the canonical Wnt pathway; however, Wnt6 mRNA is not similarly localized. Ectopic activation of the Wnt pathway, through the expression of an activated form of β-catenin, of a dominant-negative variant of GSK-3β or of Dsh itself, rescues endomesoderm specification in eggs depleted of the vegetal cortex. Knockdown experiments in whole embryos show that absence of Wnt6 produces embryos that lack endoderm, but those embryos continue to express a number of mesoderm markers. Thus, maternal Wnt6 plus a localized vegetal cortical molecule, possibly Dsh, is necessary for endoderm specification; this has been verified in two species of sea urchin. The data also show that Wnt6 is only one of what are likely to be multiple components that are necessary for activation of the entire endomesoderm gene regulatory network.  相似文献   

13.
The entry of beta-catenin into vegetal cell nuclei beginning at the 16-cell stage is one of the earliest known molecular asymmetries seen along the animal-vegetal axis in the sea urchin embryo. Nuclear beta-catenin activates a vegetal signaling cascade that mediates micromere specification and specification of the endomesoderm in the remaining cells of the vegetal half of the embryo. Only a few potential target genes of nuclear beta-catenin have been functionally analyzed in the sea urchin embryo. Here, we show that SpWnt8, a Wnt8 homolog from Strongylocentrotus purpuratus, is zygotically activated specifically in 16-cell-stage micromeres in a nuclear beta-catenin-dependent manner, and its expression remains restricted to the micromeres until the 60-cell stage. At the late 60-cell stage nuclear beta-catenin-dependent SpWnt8 expression expands to the veg2 cell tier. SpWnt8 is the only signaling molecule thus far identified with expression localized to the 16-60-cell stage micromeres and the veg2 tier. Overexpression of SpWnt8 by mRNA microinjection produced embryos with multiple invagination sites and showed that, consistent with its localization, SpWnt8 is a strong inducer of endoderm. Blocking SpWnt8 function using SpWnt8 morpholino antisense oligonucleotides produced embryos that formed micromeres that could transmit the early endomesoderm-inducing signal, but these cells failed to differentiate as primary mesenchyme cells. SpWnt8-morpholino embryos also did not form endoderm, or secondary mesenchyme-derived pigment and muscle cells, indicating a role for SpWnt8 in gastrulation and in the differentiation of endomesodermal lineages. These results establish SpWnt8 as a critical component of the endomesoderm regulatory network in the sea urchin embryo.  相似文献   

14.
Echinonectin is a dimeric, glycoprotein found in the hyaline layer of the developing sea urchin embryo. It was found that echinonectin supports adhesion of embryonic cells in vitro. Previous studies have shown that the protein hyalin also supports adhesion. The purpose of this study was to examine the specificity of cell-echinonectin interactions during sea urchin development. Primary mesenchyme cells (PMCs) ingress into the blastocoel during gastrulation. In the process the PMCs lose contact with the hyaline layer. It was found experimentally that differentiating PMCs decreased their adhesion to hyalin at the time of ingression. It was of interest, therefore, to determine whether there was a coordinate loss of adhesion to echinonectin at ingression as well. When cell-echinonectin interactions were quantified using a centrifugal force-based adhesion assay, it was shown that micromeres adhered well to echinonectin. At the time of ingression, PMCs displayed reduced adhesion to echinonectin just as had been found when hyalin was tested as a substrate. There was no change in adhesion of presumptive ectoderm or endoderm to echinonectin over the same time period. Early in gastrulation presumptive ectoderm and endoderm adhered to echinonectin only half as strongly as to equimolar concentrations of hyalin. After gastrulation endoderm cells were observed to retain the same relative affinity to hyalin and echinonectin, while ectoderm cells became equally adhesive for both hyalin and echinonectin. Quantitatively, this represents an overall increase in the affinity of ectodermal cells for echinonectin. Adhesion to combined substrata of echinonectin and hyalin was reduced but not abolished by monoclonal antibodies specific for echinonectin. The antibodies did not cross-react with hyalin. We conclude that both echinonectin and hyalin independently act as adhesive substrata for the developing sea urchin embryo. PMCs lose an affinity for echinonectin and ectodermal cells later increase their affinity for this substrate.  相似文献   

15.
16.
Mesodermal tissues arise from diverse cell lineages and molecular strategies in the Ciona embryo. For example, the notochord and mesenchyme are induced by FGF/MAPK signaling, whereas the tail muscles are specified autonomously by the localized determinant, Macho-1. A unique mesoderm lineage, the trunk lateral cells, develop from a single pair of endomesoderm cells, the A6.3 blastomeres, which form part of the anterior endoderm, hematopoietic mesoderm and muscle derivatives. MAPK signaling is active in the endoderm descendants of A6.3, but is absent from the mesoderm lineage. Inhibition of MAPK signaling results in expanded expression of mesoderm marker genes and loss of endoderm markers, whereas ectopic MAPK activation produces the opposite phenotype: the transformation of mesoderm into endoderm. Evidence is presented that a specific Ephrin signaling molecule, Ci-ephrin-Ad, is required to establish asymmetric MAPK signaling in the endomesoderm. Reducing Ci-ephrin-Ad activity via morpholino injection results in ectopic MAPK signaling and conversion of the mesoderm lineage into endoderm. Conversely, misexpression of Ci-ephrin-Ad in the endoderm induces ectopic activation of mesodermal marker genes. These results extend recent observations regarding the role of Ephrin signaling in the establishment of asymmetric cell fates in the Ciona notochord and neural tube.  相似文献   

17.
The endoskeleton of the sea urchin embryo is produced by primary mesenchyme cells (PMCs). Maternal inputs activate a complex gene regulatory network (GRN) in the PMC lineage in a cell-autonomous fashion during early development, initially creating a uniform population of prospective skeleton-forming cells. Previous studies showed that at post-blastula stages of development, several effector genes in the network exhibit non-uniform patterns of expression, suggesting that their regulation becomes subject to local, extrinsic cues. Other studies have identified the VEGF and MAPK pathways as regulators of PMC migration, gene expression, and biomineralization. In this study, we used whole mount in situ hybridization (WMISH) to examine the spatial expression patterns of 39 PMC-specific/enriched mRNAs in Strongylocentrotus purpuratus embryos at the late gastrula, early prism and pluteus stages. We found that all 39 mRNAs (including several regulatory genes) showed non-uniform patterns of expression within the PMC syncytium, revealing a global shift in the regulation of the skeletogenic GRN from a cell-autonomous to a signal-dependent mode. In general, localized regions of elevated gene expression corresponded to sites of rapid biomineral deposition. We used a VEGFR inhibitor (axitinib) and a MEK inhibitor (U0126) to show that VEGF signaling and the MAPK pathway are essential for maintaining high levels of gene expression in PMCs at the tips of rods that extend from the ventral region of the embryo. These inhibitors affected gene expression in the PMCs in similar ways, suggesting that VEGF acts via the MAPK pathway. In contrast, axitinib and U0126 did not affect the localized expression of genes in PMCs at the tips of the body rods, which form on the dorsal side of the embryo. Our results therefore indicate that multiple signaling pathways regulate the skeletogenic GRN during late stages of embryogenesis-VEGF/MAPK signaling on the ventral side and a separate, unidentified pathway on the dorsal side. These two signaling pathways appear to be activated sequentially (ventral followed by dorsal) and many effector genes are subject to regulation by both pathways.  相似文献   

18.
Peronella japonica, an intermediate type of direct-developing sand dollar, forms an abbreviated pluteus, followed by metamorphosis within 3 days without feeding. In this species, ingression of mesenchyme cells starts before hatching and continues until gastrulation, but no typical secondary mesenchyme cells (SMCs) migrate from the tip of the archenteron. Here, I investigated the cell lineage of mesenchyme cells through metamorphosis in P. japonica and found that mesenchyme cells migrating before hatching (early mesenchyme cells [EMCs]) were exclusively derived from micromeres and became larval skeletogenic cells, whereas cells migrating after hatching (late mesenchyme cells [LMCs]) appeared to contain several nonskeletogenic cells. Thus, it is likely that EMCs are homologous to primary mesenchyme cells (PMCs) and LMCs are similar to the SMCs of typical indirect developers, suggesting that heterochrony in the timing of mesenchyme cell ingression may have occurred in this species. EMCs disappeared after metamorphosis and LMCs were involved in adult skeletogenesis. Embryos from which micromeres were removed at the 16-cell stage formed armless plutei that went on to form adult skeletons and resulted in juveniles with normal morphology. These results suggest that in P. japonica, LMCs form adult skeletal elements, whereas EMCs are specialized for larval spicule formation. The occurrence of evolutionary modifications in mesenchyme cells in the transition from indirect to direct development of sand dollars is discussed.  相似文献   

19.
 During the normal development of echinoids, an animal cap consisting of 8 mesomeres in a 16-cell stage embryo differentiates exclusively into ectoderm. Micromeres in an embryo at the same stage differentiate into primary mesenchyme cells (PMC) and coelomic pouch constituents. An animal cap and a quartet of micromeres were isolated from a 16-cell stage embryo and recombined to make a chimeric embryo devoid of presumptive endoderm and secondary mesenchyme cells (SMC). The PMC in the chimeric embryo were completely removed at the mesenchyme blastula stage. The PMC-depleted chimeric embryos formed an archenteron derived from the mesomeres. Some secondary mesenchyme-like cells (induced SMC) were released from the archenteron tip. A considerable fraction of the induced SMC formed the typical mesenchyme pattern after migrating into the vegetal region, synthesized skeletogenic mesenchyme cell-surface protein (msp130) and produced the larval skeleton. These findings indicate that induced SMC derived from the presumptive ectoderm have the same nature as natural SMC in both the timing of their release and their skeletogenic potential expressed in the absence of PMC. Received: 14 November 1996 / Accepted: 30 December 1996  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号