首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
转基因改良植物的胁迫耐性   总被引:13,自引:0,他引:13  
干旱、盐碱和低温等逆境是严重影响栽培植物生产的非生物胁迫因素。导入外源目的的基因已发展成为改良作物对逆境胁迫耐性的新途径。现今已应用于植物胁迫改良的基因包括编码活性氧清除酶类、膜修饰酶类、胁迫诱导蛋白和渗调物质合成酶等基因。  相似文献   

2.
Engineering cold stress tolerance in crop plants   总被引:2,自引:0,他引:2  
  相似文献   

3.
A binary vector devoid of a plant selection-marker gene (designated as pSSA-F) was constructed to overcome bio-safety concerns about genetically modified plants. This vector carried chloroplast-targeted superoxide dismutase (SOD) and ascorbate peroxidase (APX) genes under the control of an oxidative stress-inducible(SWPA2) promoter, and was utilized to transform potato (Solanum tuberosum L.). Integration of these foreign genes into transgenic plants was primarily performed via PCR with genomic DNA. Twelve marker-free transgenic lines were obtained by inoculating stem explants. The maximum transformation efficiency was 6.25% and averaged 2.2%. Successful integration of the SOD and APX genes rendered transgenic plants tolerant to methyl viologen-mediated oxidative stress at the leaf-disc and whole-plant levels. Our findings suggest that this technique for developing selection marker-free transgenic plants is feasible and can be employed with other crop species.  相似文献   

4.
5.
Plant growth and productivity are greatly affected by various stress factors. The molecular mechanisms of stress tolerance in plant species have been well established. Metabolic pathways involving the synthesis of metabolites such as polyamines, carbohydrates, proline and glycine betaine have been shown to be associated with stress tolerance. Introduction of the stress-induced genes involved in these pathways from tolerant species to sensitive plants seems to be a promising approach to confer stress tolerance in plants. In cases where single gene is not enough to confer tolerance, metabolic engineering necessitates the introduction of multiple transgenes in plants.  相似文献   

6.
7.
转录因子是一类能够与启动子区域顺式作用元件特异性结合的蛋白质,是一大类转录调控因子,也是植物中最大的基因家族之一。转录因子可以调节众多下游基因的表达,对植物的生长发育、形态建成、激素调节,以及抵抗多种生物和非生物胁迫具有重要作用。结合近年来转录因子的研究进展,归纳总结了植物非生物胁迫相关转录因子研究的主要策略和方法,包括转录因子结构域、亚细胞定位、转录激活作用、转录因子复合体以及转录因子功能的研究,为植物转录因子的相关研究提供理论和方法的参考。  相似文献   

8.
9.
MYB转录因子家族是植物中最大的转录因子家族之一,在植物体内的多种生理生化反应中起着关键性作用,其中一项重要功能就是对非生物逆境的应答。这类转录因子通过调控生长发育,影响代谢产物的合成和影响激素信号等多方面参与非生物逆境的应答。介绍了MYB转录因子的结构特点和分类上的新发现,并综述了近几年MYB转录因子家族在植物响应干旱、高温、低温和高盐等非生物胁迫方面的研究进展。  相似文献   

10.
11.
12.
13.
Receptor‐like kinases (RLKs) play essential roles in plant growth, development and responses to environmental stresses. A putative RLK gene, OsSIK1, with extracellular leucine‐rich repeats was cloned and characterized in rice (Oryza sativa). OsSIK1 exhibits kinase activity in the presence of Mn2+, and the OsSIK1 kinase domain has the ability to autophosphorylate and phosphorylate myelin basic protein (MBP). OsSIK1 promoter‐GUS analysis revealed that OsSIK1 is expressed mainly in the stem and spikelet in rice. The expression of OsSIK1 is mainly induced by salt, drought and H2O2 treatments. Transgenic rice plants with overexpression of OsSIK1 show higher tolerance to salt and drought stresses than control plants. On the contrary, the knock‐out mutants sik1‐1 and sik1‐2, as well as RNA interference (RNAi) plants, are sensitive to drought and salt stresses. The activities of peroxidase, superoxide dismutase and catalase are enhanced significantly in OsSIK1‐overexpressing plants. Also, the accumulation of H2O2 in leaves of OsSIK1‐overexpressing plants is much less than that of the mutants, RNAi plants and control plants, as measured by 3,3′‐diamino benzidine (DAB) staining. We also show that OsSIK1 affects stomatal density in the abaxial and adaxial leaf epidermis of rice. These results indicate that OsSIK1 plays important roles in salt and drought stress tolerance in rice, through the activation of the antioxidative system.  相似文献   

14.
15.
16.
DNA cassette containing an AtDREB1A cDNA and a nos terminator,driven by a cauli- flower mosaic 35S promoter,or a stress-inducible rd29A promoter,was transformed into the ground cover chrysanthemum(Dendranthema grandiflorum)'Fall Color'genome.Compared with wild type plants,severe growth retardation was observed in 35S:DREB1A plants,but not in rd29A:DREB1A plants.RT-PCR analysis revealed that,under stress conditions,the DREB1A gene was over-expressed constitutively in 35S:DREB1A plants,but was over-expressed inductively in rd29A:DREB1A plants.The transgenic plants exhibited tolerance to drought and salt stress,and the tolerance was significantly stronger in rd29A:DREB1A plants than in 35S:DREB1A plants.Proline content and SOD activity were increased inductively in rd29A:DREB1A plants than in 35S:DREB1A plants under stress conditions.These results indicate that heterologous AtDREB1A can confer drought and salt tolerance in transgenic chrysanthemum,and improvement of the stress tolerance may be related to enhancement of proline content and SOD activity.  相似文献   

17.
DNA cassette containing an AtDREB1A cDNA and a nos terminator, driven by a cauliflower mosaic 35S promoter, or a stress-inducible rd29A promoter, was transformed into the ground cover chrysanthemum (Dendranthema grandiflorum) ‘Fall Color’ genome. Compared with wild type plants, severe growth retardation was observed in 35S:DREB1A plants, but not in rd29A:DREB1A plants. RT-PCR analysis revealed that, under stress conditions, the DREB1A gene was over-expressed constitutively in 35S:DREB1A plants, but was over-expressed inductively in rd29A:DREB1A plants. The transgenic plants exhibited tolerance to drought and salt stress, and the tolerance was significantly stronger in rd29A:DREB1A plants than in 35S:DREB1A plants. Proline content and SOD activity were increased inductively in rd29A:DREB1A plants than in 35S:DREB1A plants under stress conditions. These results indicate that heterologous AtDREB1A can confer drought and salt tolerance in transgenic chrysanthemum, and improvement of the stress tolerance may be related to enhancement of proline content and SOD activity.  相似文献   

18.
Environmental stresses considerably limit plant productivity. At the molecular level the negative effect of stress is often mediated by reactive oxygen species-initiated oxidative damage. Hence, it was hypothesised that increased tolerance to several environmental constraints could be achieved through enhanced tolerance to oxidative stress. In recent years much effort has been undertaken to improve oxidative stress tolerance by transforming plants with native or bacterial genes coding either for reactive oxygen species-scavenging enzymes or for enzymes modulating the cellular antioxidant capacity. This review deals with data on transgenic plants with altered antioxidant capacity and focuses on the new insight into the antioxidant defence mechanism given by this type of experimental model.  相似文献   

19.
通过生物信息学手段,对22种NAC蛋白(14种非生物逆境胁迫相关NAC蛋白、8种涉及不同生物学功能的NAC蛋白)进行氨基酸序列比对和系统发生树构建,对14种非生物逆境胁迫相关NAC蛋白氨基酸组成、理化性质、亲/疏水性、保守结构域、亚细胞定位、二级结构及三级结构等进行了分析、预测。结果显示,22个NAC蛋白中,非生物逆境相关的NAC蛋白聚成一类,其余NAC蛋白聚为另一类;非生物逆境胁迫相关的NAC蛋白序列分析显示,N-端具有A、B、C、D、E 5个保守的亚结构域,共同组成NAC结构域,C-端含有多个保守的酸性氨基酸位点,具有转录激活功能,同时蛋白中含有多个丝氨酸(S)、苏氨酸(T)和酪氨酸(Y)磷酸化位点;非生物逆境胁迫相关NAC蛋白主要亲水区域位于A、C、D亚域,大多定位于细胞核,个别定位于细胞质或线粒体,二级结构则以α-螺旋和β-折叠片为主;拟南芥RD26和ANAC三级结构上的一致性暗示了功能上的相似。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号