首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ossabaw swine have a 'thrifty genotype' (propensity to obesity) that enables them to survive seasonal food shortages in their native environment. Consumption of excess kcal causes animals of the thrifty genotype to manifest components of the metabolic syndrome, including central (intra-abdominal) obesity, insulin resistance, impaired glucose tolerance, dyslipidemia, and hypertension. We determined whether female Ossabaw swine manifest multiple components of the metabolic syndrome by comparing lean pigs fed a normal maintenance diet (7% kcal from fat; lean, n = 9) or excess chow with 45% kcal from fat and 2% cholesterol (obese, n = 8). After 9 wk, body composition, glucose tolerance, plasma lipids, and intravascular ultrasonography and histopathology of coronary arteries were assessed. Computed tomography (CT) assessed subcutaneous and intra-abdominal fat deposition and was compared with traditional methods, including anatomical measurements, backfat ultrasonography, and proximate chemical composition analysis. Compared with lean animals, obese swine showed 2-fold greater product of the plasma insulin x glucose concentrations, 4.1-fold greater total cholesterol, 1.6-fold greater postprandial triglycerides, 4.6-fold greater low- to high-density lipoprotein cholesterol ratio, hypertension, and neointimal hyperplasia of coronary arteries. The 1.5-fold greater body weight in obese swine was largely accounted for by the 3-fold greater carcass fat mass. High correlation (0.79 to 0.95) of CT, anatomical measurements, and ultrasonography with direct chemical measures of subcutaneous, retroperitoneal, and visceral fat indicates high validity of all indirect methods. We conclude that relatively brief feeding of excess atherogenic diet produces striking features of metabolic syndrome and coronary artery disease in female Ossabaw swine.  相似文献   

2.
BackgroundOssabaw miniature swine when fed a diet high in fructose, saturated fat and cholesterol (NASH diet) develop metabolic syndrome and nonalcoholic steatohepatitis (NASH) characterized by liver injury and fibrosis. This study was conducted to further characterize the development of NASH in this large animal model.MethodsOssabaw swine were fed standard chow (control group; n = 6) or NASH diet (n = 6) for 24 weeks. Blood and liver tissue were collected and liver histology were characterized at 0, 8, 16 and 24 weeks of dietary intervention. Hepatic apoptosis and lipid levels were assessed at week 24.ResultsThe NASH diet group developed metabolic syndrome and progressive histologic features of NASH including: (a) hepatocyte ballooning at 8 weeks which progressed to extensive ballooning (>90% hepatocytes), (b) hepatic fibrosis at week 16, which progressed to moderate fibrosis, and (c) Kupffer cell accumulation with vacuolization at 8 weeks which progressed through week 24. The NASH diet group showed increased hepatocyte apoptosis that correlated with hepatic total and free cholesterol and free fatty acids, but not esterified cholesterol or triglycerides.ConclusionsThis report further characterizes the progression of diet-induced NASH in the Ossabaw swine model. In Ossabaw swine fed the NASH diet: (a) hepatocyte injury and fibrosis can occur without macrovesicular steatosis or excess triglyceride accumulation; (b) hepatocyte ballooning generally precedes the development of fibrosis; (c) there is increased hepatocyte apoptosis, and it is correlated more significantly with hepatic free cholesterol than hepatic free fatty acids and had no correlation with hepatic triglycerides.  相似文献   

3.
4.
The effects of hypergravity (HG) on soleus and plantaris muscles were studied in Long Evans rats aged 100 days, born and reared in 2-g conditions (HG group). The morphological and contractile properties and the myosin heavy chain (MHC) content were examined in whole muscles and compared with terrestrial control (Cont) age-paired rats. The growth of HG rats was slowed compared with Cont rats. A decrease in absolute muscle weight was observed. An increase in fiber cross-sectional area/muscle wet weight was demonstrated, associated with an increase in relative maximal tension. The soleus muscle changed into a slower type both in contractile parameters and in MHC content, since HG soleus contained only the MHC I isoform. The HG plantaris muscle presented a faster contractile behavior. Moreover, the diversity of hybrid fiber types expressing multiple MHC isoforms (including MHC IIB and MHC IIX isoforms) was increased in plantaris muscle after HG. Thus the HG environment appears as an important inductor of muscular plasticity both in slow and fast muscle types.  相似文献   

5.
Objective: To evaluate the accumulation pattern of intramyocellular lipids (IMCLs) in striated muscle during the development and progression of diabetes, using a novel scanning electron microscopic method. Methods and Procedures: Hyperglycemia was induced by feeding diabetes‐prone (DP) Psammomys obesus a high‐energy (HE) diet. Lipid accumulation within gastrocnemius muscle fibers was assessed in formalin‐fixed muscle samples during the development of hyperglycemia using high resolution imaging in a scanning electron microscope. We evaluated the temporal relationship between changes in IMCL quantity and morphology and the altered glucose metabolism and assessed the effect of reversal of hyperglycemia on IMCL level and morphology. Diabetes‐resistant (DR) P. obesus served as controls. Results: Lipid accumulation in the muscle fibers of DP animals was increased with the development of hyperglycemia. This was characterized by increased lipid density as well as by an abundance of large lipid droplets. Reversal of the phenotype resulted in the disappearance of large lipid droplets. The IMCL level and the distribution of lipid droplet size were similar in muscles of both the normoglycemic DR and DP animals, with an abundance of small lipid droplets. This profile was changed following a HE diet only in the DP animals. Discussion: Lipid accumulation in the muscle of P. obesus during the development of hyperglycemia is characterized by increased quantity and accumulation of large lipid droplets. These changes were reversible upon normalization of blood glucose. The evaluated methodology is a useful tool for the study of the dynamics of lipid accumulation in different metabolic conditions.  相似文献   

6.
  • 1.1. The effect of functional overload produced by tenotomy of synergistic gastrocnemius muscle on the expression of myosin heavy chain (MHC) isoforms in the plantaris and soleus muscles of the rat was studied using gradient sodium dodecyl sulfate-acrylamide gel electrophoresis.
  • 2.2. Five weeks tenotomy, the plantaris and soleus muscle weights induced by tenotomy of the gastrocnemius muscle were 44.3% (P < 0.005) and 37.4% (P < 0.005), respectively, heavier than the contralateral control muscles.
  • 3.3. Although four types of MHC isoforms were observed in both control and experimental plantaris, the percentage of MHC isoforms in the control and experimental muscles differed; the hypertrophied plantaris muscle contained more HCI (P < 0.05), HCIIa and HCIId (P < 0.05) and less HCIIb (P < 0.05) than the control muscle.
  • 4.4. The control soleus muscle contained two MHC isofonns, HCI and HCIIa. However, there was only a single HCI isoform in the hypertrophied soleus muscle.
  • 5.5. These results indicate that overloading a skeletal muscle by removing its synergists produces not only the muscle hypertrophy but also the changes in the expression of MHC isofonns.
  相似文献   

7.
In this study, we compared the effects of endurance training in the fasted state (F) vs. the fed state [ample carbohydrate intake (CHO)] on exercise-induced intramyocellular lipid (IMCL) and glycogen utilization during a 6-wk period of a hypercaloric (~+30% kcal/day) fat-rich diet (HFD; 50% of kcal). Healthy male volunteers (18-25 yrs) received a HFD in conjunction with endurance training (four times, 60-90 min/wk) either in F (n = 10) or with CHO before and during exercise sessions (n = 10). The control group (n = 7) received a HFD without training and increased body weight by ~3 kg (P < 0.001). Before and after a HFD, the subjects performed a 2-h constant-load bicycle exercise test in F at ~70% maximal oxygen uptake rate. A HFD, both in the absence (F) or presence (CHO) of training, elevated basal IMCL content by ~50% in type I and by ~75% in type IIa fibers (P < 0.05). Independent of training in F or CHO, a HFD, as such, stimulated exercise-induced net IMCL breakdown by approximately twofold in type I and by approximately fourfold in type IIa fibers. Furthermore, exercise-induced net muscle glycogen breakdown was not significantly affected by a HFD. It is concluded that a HFD stimulates net IMCL degradation by increasing basal IMCL content during exercise in type I and especially IIa fibers. Furthermore, a hypercaloric HFD provides adequate amounts of carbohydrates to maintain high muscle glycogen content during training and does not impair exercise-induced muscle glycogen breakdown.  相似文献   

8.
The metabolic syndrome and diabetes are associated with bladder dysfunction in many people. Peroxisome proliferator-activated receptors (PPARs) may play a role in the effects of the metabolic syndrome on bladder smooth muscle (BSM). The purpose of this study was to determine if there are gender and genetic differences in PPAR levels in BSM. We measured PPAR levels using quantitative PCR in BSM from male Yucatan swine and male and female Ossabaw Island swine, which is a model for the metabolic syndrome. Male Ossabaw swine had 0.732 ± 0.111 the amount of PPAR-α mRNA as male Yucatan swine (P < 0.05), suggesting a genetic difference in PPAR-α levels. This difference may possibly contribute to the incidence of metabolic syndrome in the Ossabaw model compared to the Yucatan model. PPAR-δ mRNA was 2-fold higher in male Ossabaw swine than in female Ossabaw swine, with no significant differences in PPAR-α levels. However, PPAR-γ mRNA was 4.067 ± 0.134 times higher in female Ossabaw swine than in their male counterparts (P < 0.001). Changing the percentage of calories derived from fat did not alter any PPAR mRNA levels. Thus, PPAR-δ and PPAR-γ mRNA levels in male and female Ossabaw swine BSM are not only different, but may also result in gender differences in lipid metabolism in bladder smooth muscle. We conclude that PPAR profiles in BSM may contribute to the susceptibility of BSM to lipotoxicity in the metabolic syndrome.  相似文献   

9.
β-Hydroxy-β-methylbutyrate (HMB) is a leucine metabolite shown to reduce protein catabolism in disease states and promote skeletal muscle hypertrophy in response to loading exercise. In this study, we evaluated the efficacy of HMB to reduce muscle wasting and promote muscle recovery following disuse in aged animals. Fisher 344×Brown Norway rats, 34 mo of age, were randomly assigned to receive either Ca-HMB (340 mg/kg body wt) or the water vehicle by gavage (n = 32/group). The animals received either 14 days of hindlimb suspension (HS, n = 8/diet group) or 14 days of unloading followed by 14 days of reloading (R; n = 8/diet group). Nonsuspended control animals were compared with suspended animals after 14 days of HS (n = 8) or after R (n = 8). HMB treatment prevented the decline in maximal in vivo isometric force output after 2 wk of recovery from hindlimb unloading. The HMB-treated animals had significantly greater plantaris and soleus fiber cross-sectional area compared with the vehicle-treated animals. HMB decreased the amount of TUNEL-positive nuclei in reloaded plantaris muscles (5.1% vs. 1.6%, P < 0.05) and soleus muscles (3.9% vs. 1.8%, P < 0.05). Although HMB did not significantly alter Bcl-2 protein abundance compared with vehicle treatment, HMB decreased Bax protein abundance following R, by 40% and 14% (P < 0.05) in plantaris and soleus muscles, respectively. Cleaved caspase-3 was reduced by 12% and 9% (P < 0.05) in HMB-treated reloaded plantaris and soleus muscles, compared with vehicle-treated animals. HMB reduced cleaved caspase-9 by 14% and 30% (P < 0.05) in reloaded plantaris and soleus muscles, respectively, compared with vehicle-treated animals. Although, HMB was unable to prevent unloading-induced atrophy, it attenuated the decrease in fiber area in fast and slow muscles after HS and R. HMB's ability to protect against muscle loss may be due in part to putative inhibition of myonuclear apoptosis via regulation of mitochondrial-associated caspase signaling.  相似文献   

10.
Compelling evidence indicates that lipid metabolism is in partial control of the circadian system. In this context, it has been reported that the melatonin receptor 1B (MTNR1B) genetic variant influences the dynamics of melatonin secretion, which is involved in the circadian system as a chronobiotic. The objective was to analyze whether the MTNR1B rs10830963 genetic variant was related to changes in lipid levels in response to dietary interventions with different macronutrient distribution in 722 overweight/obese subjects from the POUNDS Lost trial. We did not find a significant association between the MTNR1B genotype and changes in lipid metabolism. However, dietary fat intake significantly modified genetic effects on 2 year changes in total and LDL cholesterol (P interaction = 0.006 and 0.001, respectively). In the low-fat diet group, carriers of the sleep disruption G allele (minor allele) showed a greater reduction of total cholesterol (β ± SE = −5.78 ± 2.88 mg/dl, P = 0.04) and LDL cholesterol (β ± SE = −7.19 ± 2.37 mg/dl, P = 0.003). Conversely, in the high-fat diet group, subjects carrying the G allele evidenced a smaller decrease in total cholesterol (β ± SE = 5.81 ± 2.65 mg/dl, P = 0.03) and LDL cholesterol (β ± SE = 5.23 ± 2.21 mg/dl, P = 0.002). Subjects carrying the G allele of the circadian rhythm-related MTNR1B variant may present a bigger impact on total and LDL cholesterol when undertaking an energy-restricted low-fat diet.  相似文献   

11.
Metabolic syndrome (MetS), a compilation of associated risk factors, increases the risk of type 2 diabetes and coronary artery disease (CAD, atherosclerosis), which can progress to the point of artery occlusion. Stents are the primary interventional treatment for occlusive CAD, and patients with MetS and hyperinsulinemia have increased restenosis. Because of its thrifty genotype, the Ossabaw pig is a model of MetS. We tested the hypothesis that, when fed high-fat diet, Ossabaw swine develop more features of MetS, greater native CAD, and greater stent-induced CAD than do Yucatan swine. Animals of each breed were divided randomly into 2 groups and fed 2 different calorie-matched diets for 40 wk: control diet (C) and high-fat, high-cholesterol atherogenic diet (H). A bare metal stent was placed in the circumflex artery, and pigs were allowed to recover for 3 wk. Characteristics of MetS, macrovascular and microvascular CAD, in-stent stenosis, and Ca2+ signaling in coronary smooth muscle cells were evaluated. MetS characteristics including, obesity, glucose intolerance, hyperinsulinemia, and elevated arterial pressure were elevated in Ossabaw swine compared to Yucatan swine. Ossabaw swine with MetS had more extensive and diffuse native CAD and in-stent stenosis and impaired coronary blood flow regulation compared with Yucatan. In-stent atherosclerotic lesions in Ossabaw coronary arteries were less fibrous and more cellular. Coronary smooth muscle cells from Ossabaw had impaired Ca2+ efflux and intracellular sequestration versus cells from Yucatan swine. Therefore, Ossabaw swine are a superior model of MetS, subsequent CAD, and cellular Ca2+ signaling defects, whereas Yucatan swine are leaner and relatively resistant to MetS and CAD.Abbreviations: CAD, coronary artery disease; CSM, coronary smooth muscle; IVGTT, intravenous glucose tolerance test; MetS, metabolic syndrome; SERCA, sarco–endoplasmic reticulum Ca2+ ATPase; ET1, endothelin 1; SOCE, store-operated Ca2+ entryAtherosclerotic coronary artery disease (CAD) is increased at least 2-fold in patients with metabolic syndrome (MetS)27 and is accompanied by marked microvascular dysfunction that further impairs coronary blood flow.10 MetS generally is diagnosed by the presence of 3 or more of the following conditions: obesity, insulin resistance, glucose intolerance, dyslipidemia, and hypertension.17,28 There is strong support for the role of the hyperinsulinemia component of MetS in increased restenosis after percutaneous coronary interventions.74,75,84,85 Further, our group has shown that severe coronary microvascular dysfunction occurs in MetS.5 Because MetS (so-called ‘prediabetes’) affects as much as 27% of the United States population, is increasing dramatically in prevalence,94 and can progress to type 2 diabetes, there is great need for basic research using animal models that accurately mimic MetS and the accompanying CAD. Clearly, there is need for study of MetS-induced CAD and in-stent stenosis and the underlying cellular and molecular mechanisms.Mice, rats, and swine are known to recapitulate MetS;3,12,36,60,71,72 however, none of these models fully reproduce the combined symptoms of MetS and CAD. Further, transgenic mouse models are simply not adequate for coronary vascular interventions using stents identical to those used in humans,18,23,38,55,57,79,83,86 a step that is essential for translation to the clinic. Yucatan and domestic swine are commonly used large animal models for study of cardiovascular disease due to their ability to mimic the neointimal formation and thrombosis observed in humans.86 For example, several laboratories have produced severe CAD in swine,8,24,51,61,62,68,91 but through toxin-induced pancreatic β-cell ablation and feeding of an atherogenic diet, rather than as a natural development subsequent to MetS or diabetes. Currently, there is a paucity of large animal models that reproduce MetS and CAD.3Research on the obesity-prone Ossabaw miniature swine59 clearly indicates that these animals develop MetS and cardiovascular disease when fed a high-calorie atherogenic diet,4,5,9,16,19,42,50,52,83,92 Female Ossabaw swine on this type of diet nearly doubled their percentage body fat in only 9 wk, showed insulin resistance, impaired glucose tolerance, dyslipidemia (profound increase in the ratio of low-density to high-density lipoprotein cholesterol, hypertriglyceridemia), hypertension, and early coronary atherosclerosis.16 These data contrast with those from male Yucatan miniature pigs, which did not develop MetS even after 20 wk on a comparable excess calorie atherogenic diet.8,68,95 Yucatan swine do not develop MetS through diet manipulation, unlike Ossabaw swine, which consistently recapitulate all MetS characteristics. However, important differences in study design have not allowed direct comparison between Yucatan and Ossabaw swine.Cytosolic Ca2+ signaling is involved in ‘phenotypic modulation’ of coronary smooth muscle (CSM), as characterized by proliferation and migration in several in vitro cell culture models33,35,89,90 and in vivo rodent models of the peripheral circulation (for example, reference 51). The Yucatan swine model of diabetic dyslipidemia shows altered Ca2+ extrusion,96 Ca2+ sequestration by the sarcoplasmic reticulum,32,34,98 and Ca2+ influx through voltage-gated Ca2+ channels.98 Currently, Ca2+ signaling has not been compared directly between MetS Ossabaw and Yucatan swine CSM. Therefore, the purpose of the present study was to test the hypothesis that compared with Yucatan swine on calorie-matched standard chow (for example, Yucatan maintenance diet8,95) and atherogenic diets, Ossabaw swine have a greater propensity to MetS and CAD with impaired coronary microvascular dysfunction and Ca2+ handling in CSM.  相似文献   

12.
The involvement of calcineurin (CaN) and heat shock protein (Hsp) 72 in the regulation of fiber size and/or phenotype in response to functional overload (FO) was investigated. In one FO group, the plantaris muscle was overloaded by cutting the distal tendons (5-10 mm length) of the soleus and gastrocnemius of 3-week-old male Wistar rats. Cyclosporin A (CsA), a CaN inhibitor, was injected daily (5 mg/kg body weight, i.p.) in a second group of FO rats (FO+CsA group) for a 2-week period. Compared to age-matched controls (Con), the absolute and relative plantaris weights were increased in both FO groups: the hypertrophic response was attenuated in FO+CsA rats. The mean cross-sectional area of each fiber type was increased (approximately 2.0-fold) in the plantaris of FO rats: CsA treatment attenuated this effect, although the fibers were still larger than in Con rats. The percent composition of myosin heavy chain (MHC) IIb decreased from 54% in Con to 19% in FO rats, whereas types I, IIa, and IIx MHC increased in the FO rats. CsA treatment blunted the shifts in MHC isoforms: the FO+CsA group showed a smaller decrease in type IIb and a smaller increase in type IIx MHC than the FO group. The levels of CaN-A and -B proteins were higher (approximately 2.5-fold) in FO than Con rats, whereas these values were similar in Con and FO+CsA rats. Hsp72 protein levels were higher in FO (3.6-fold) and FO+CsA (5.2-fold) than Con rats, with the values being significantly higher in the FO+CsA than FO rats. CsA treatment in Con rats had no effects on muscle mass, fiber size, MHC composition, and Hsp72 or CaN levels. Combined, these results suggest that CaN levels are related to changes in both fiber size and phenotype, and that Hsp72 levels are more related to the levels of stress added to the muscle rather than to increases in the slow fiber phenotype in functionally overloaded rat plantaris muscles.  相似文献   

13.
A sensitive and specific double antibody radio-immunoassay for the major apolipoprotein (apoB) of rhesus (Macaca mulatta) serum very low density lipoprotein (VLDL) and low density lipoprotein (LDL) is described. The anti-serum was raised to LDL (d 1.030-1.040 g/ml) and the LDL(2) (d 1.020-1.050 g/ml) was labeled with (125)I by the chloramine-T or iodine monochloride method. The assay, which was sensitive to 0.02-0.5 micro g of LDL(2), had an inter-assay coefficient of variation of 4.5%. This assay was successfully used to measure apoB in the whole serum and low density lipoproteins of control monkeys maintained on a standard Purina monkey chow (PMC) diet and of three groups of monkeys fed atherogenic diets: an "average American diet," a 25% peanut oil and 2% cholesterol-supplemented PMC diet, and a 25% coconut oil and 2% cholesterol-supplemented PMC diet. The control monkeys (n = 13) had a serum cholesterol of 146 +/- 28 mg/dl and an apoB of 50 +/- 18 mg/dl. In the monkeys maintained on the atherogenic diets the serum apoB was elevated: 103 +/- 28 mg/dl (American), 102 +/- 35 mg/dl (peanut oil), and 312 +/- 88 mg/dl (coconut oil). The values for serum total cholesterol were 333 +/- 65 mg/dl (American), 606 +/- 212 mg/dl (peanut oil), and 864 +/- 233 mg/dl (coconut oil) and were elevated relative to controls (P < 0.001). For each of the diets, total serum cholesterol correlated with serum apoB (P < 0.001). The slopes of the regression lines of serum apoB vs. cholesterol for the monkeys on the PMC, American, and coconut oil diets were similar (m = 0.531, 0.401, and 0.359, respectively), but differed from that of monkeys on the peanut oil diet (m = 0.121). The immunoreactivities of rhesus and human LDL were compared using specific antisera raised against these antigens. In homologous assay systems, monkey and human LDL exhibited unique immunological determinants. The same results were obtained with the delipidated preparations of the two LDLs using antisera raised against either monkey or human apoB. Crossover studies using a heterologous tracer with each anti-serum resulted in the selection of a specific population of antibodies directed against antigenic sites shared by these two LDL species.  相似文献   

14.
Heat stress inhibits skeletal muscle hypertrophy   总被引:1,自引:1,他引:0       下载免费PDF全文
Heat shock proteins (Hsps) are molecular chaperones that aid in protein synthesis and trafficking and have been shown to protect cells/tissues from various protein damaging stressors. To determine the extent to which a single heat stress and the concurrent accumulation of Hsps influences the early events of skeletal muscle hypertrophy, Sprague-Dawley rats were heat stressed (42 degrees C, 15 minutes) 24 hours prior to overloading 1 plantaris muscle by surgical removal of the gastrocnemius muscle. The contralateral plantaris muscles served as controls. Heat-stressed and/or overloaded plantaris muscles were assessed for muscle mass, total muscle protein, muscle protein concentration, Type I myosin heavy chain (Type I MHC) content, as well as Hsp72 and Hsp25 content over the course of 7 days following removal of the gastrocnemius muscle. As expected, in non-heat-stressed animals, muscle mass, total muscle protein and MHC I content were significantly increased (P < 0.05) following overload. In addition, Hsp25 and Hsp72 increased significantly after 2 and 3 days of overload, respectively. A prior heat stress-elevated Hsp25 content to levels similar to those measured following overload alone, but heat stress-induced Hsp72 content was increased significantly greater than was elicited by overload alone. Moreover, overloaded muscles from animals that experienced a prior heat stress showed a lower muscle mass increase at 5 and 7 days; a reduced total muscle protein elevation at 3, 5, and 7 days; reduced protein concentration; and a diminished Type I MHC content accumulation at 3, 5, and 7 days relative to nonheat-stressed animals. These data suggest that a prior heat stress and/or the consequent accumulation of Hsps may inhibit increases in muscle mass, total muscle protein content, and Type I MHC in muscles undergoing hypertrophy.  相似文献   

15.
Diabetes mellitus is associated with hyperlipidemia and increased risk of atherosclerosis. A diabetic animal model has been developed to study the effect of treatment with pravastatin, a potent HMG CoA reductase inhibitor, on plasma lipoprotein levels. Hypercholesterolemia was induced in alloxan diabetic and control rabbits by feeding a diet containing 25% casein and 10% hydrogenated coconut oil for 8 weeks. Feeding the casein-coconut oil diet to the diabetic group resulted in a 5-fold increase in serum cholesterol levels, which was not statistically different from the nondiabetic group fed this diet. However, in the diabetic group, there was more cholesterol in the VLDL fraction and less in LDL as compared to the nondiabetic group. Serum triacylglycerol levels in the diabetic rabbits were variable and ranged from 58-943 mg/dl. The diabetic and nondiabetic animals were then treated with pravastatin at a dose of 10 mg/kg per day for 21 days. In the nondiabetic group, pravastatin treatment significantly lowered serum and LDL cholesterol concentrations by 28.5% (52.3 mg/dl, P less than 0.05) and 36.2% (40.7 mg/dl, P less than 0.05) respectively, relative to the placebo group. Serum and VLDL triacylglycerol levels in the nondiabetic group were also significantly decreased following pravastatin treatment. In the diabetic group, serum and LDL cholesterol levels were decreased by 37.0% (69.1 mg/dl, P less than 0.05) and 52.7% (32.1 mg/dl, P less than 0.01), respectively, relative to the diabetics given the placebo. Pravastatin treatment did not adversely affect serum glucose levels. Thus, pravastatin treatment was effective in controlling the hypercholesterolemia present in these diabetic animals.  相似文献   

16.
M J Morgan  P T Loughna 《FEBS letters》1989,255(2):427-430
Work induced hypertrophy of the slow postural soleus and the fast phasic plantaris muscles was produced by tenotomy of the synergistic gastrocnemius muscle. Increases in weight of both muscles were associated with proportionately even larger increases in total RNA and mRNA levels. Alterations in levels of specific myosin heavy chain (MHC) isoform mRNAs were measured using the slot blot procedure with radioactively labelled oligonucleotides as probes. Type 1 MHC gene expression was unaffected in both muscles by work overload, whereas type 2a was deinduced in the soleus and type 2b was deinduced in the plantaris. The neonatal MHC gene was transiently reinduced in the plantaris.  相似文献   

17.
Skeletal muscle adaptations to microgravity exposure in the mouse.   总被引:4,自引:0,他引:4  
To investigate the effects of microgravity on murine skeletal muscle fiber size, muscle contractile protein, and enzymatic activity, female C57BL/6J mice, aged 64 days, were divided into animal enclosure module (AEM) ground control and spaceflight (SF) treatment groups. SF animals were flown on the space shuttle Endeavour (STS-108/UF-1) and subjected to approximately 11 days and 19 h of microgravity. Immunohistochemical analysis of muscle fiber cross-sectional area revealed that, in each of the muscles analyzed, mean muscle fiber cross-sectional area was significantly reduced (P < 0.0001) for all fiber types for SF vs. AEM control. In the soleus, immunohistochemical analysis of myosin heavy chain (MHC) isoform expression revealed a significant increase in the percentage of muscle fibers expressing MHC IIx and MHC IIb (P < 0.05). For the gastrocnemius and plantaris, no significant changes in MHC isoform expression were observed. For the muscles analyzed, no alterations in MHC I or MHC IIa protein expression were observed. Enzymatic analysis of the gastrocnemius revealed a significant decrease in citrate synthase activity in SF vs. AEM control.  相似文献   

18.
We investigated selected histochemical and histometrical characteristics of the heterogeneous fiber types of rat skeletal muscle following long-term compensatory muscle growth. Sixty days following surgical removal of the synergistic gastrocnemius muscle, the compensated ipsilateral plantaris and soleus muscles and the corresponding control muscles from the contralateral leg were excised and stained histochemically for myofibrillar ATPase and DPNH-diaphorase activities. The number of fibers per cross-section was determined by a direct count from transverse sections taken from the midportion of the muscles. Fiber area was determined by direct planimetry. The plantaris and soleus muscles hypertrophied 103% and 45%, respectively, within 60 days. Compensatory hypertrophy of the plantaris muscle was accompanied by a significant but disproportionate increase in the cross-sectional areas of the three muscle fiber types. There was an approximate 4-fold increase in the number of slow-twitch-oxidative (SO) fibers observed per transverse section. The hypertrophied plantaris muscle exhibited a significantly greater number of fibers per cross-section (29%) than the respective control muscle. The compensated soleus muscle consisted of nearly 100% SO fibers compared to 83% for the control soleus muscle.  相似文献   

19.
The potent hypolipidemic activity of HOE 402 (4-amino-2-(4,4-dimethyl-2-oxo-l-imidazolidinyl)pyrimidine-5-N-(trifluoromethylphenyl)carboxamide monohydrochloride), which was previously demonstrated in rat and rabbit, was investigated in noncholesterol and cholesterol fed male hamsters. In normolipidemic hamsters fed a low cholesterol chow diet containing 0.10% or 0.15% HOE 402 for 3 weeks, the plasma total cholesterol level fell by 13% and 20% respectively, but no effect on hepatic total cholesterol content was detected. Hepatic sterol synthesis was increased 3-fold in hamsters fed 0.15% HOE 402. In hamsters fed a chow diet containing 0.25% cholesterol for 3 weeks, the plasma cholesterol level increased to 226 mg/dl (compared to 123 mg/dl in their chow fed controls) and the liver cholesterol content was 26.2 mg/g compared to 2.3 mg/g in the control group. However, 0.15% HOE 402 led to a 48% reduction and 0.20% HOE 402 to a 80% reduction, in total hepatic cholesterol concentration. There was a 43% fall in plasma cholesterol level being observed with the higher HOE 402 dose. Using the dual isotope plasma ratio method, no inhibition of intestinal cholesterol absorption by HOE 402 was found, either in the noncholesterol fed or in the cholesterol fed hamsters. Cholesterol feeding diminished the whole LDL animal clearance to 393 ± 17 μl/h per 100 g animal (control 666 ± 81 μl/h per 100 g). When treated with 0.20% HOE 402, the whole animal LDL clearance rate was enhanced 2.3-fold to 824 ± 66 μl/h per 100 g. In the hamsters fed 0.25% cholesterol alone whole liver LDL receptor activity was suppressed to 63 ± 5%, compared to that in the untreated controls (100%). The addition of 0.20% HOE 402 to the cholesterol enriched diet not only reversed this suppression, but resulted in a marked stimulation of liver receptor activity to 165 ± 15% (whole body LDL receptor activity 141 ± 10%). These results indicate that HOE 402 exerts its lipid lowering effect by a more direct activation on hepatic LDL receptor activity rather than by an indirect intestinal effect on cholesterol absorption.  相似文献   

20.
Impaired mitochondrial function and structure and intramyocellular lipid (IMCL) accumulation have been associated with obesity and Type 2 diabetes. We examined whether endurance exercise training and sex influenced IMCL and mitochondrial morphology using electron microscopy, whole-body substrate use, and mitochondrial enzyme activity. Untrained men (n = 5) and women (n = 7) were tested before and after 7 wk of endurance exercise training. Testing included 90 min of cycle ergometry at 60% Vo(2 peak) with preexercise muscle biopsies analyzed for IMCL and mitochondrial size/area using electron microscopy and short-chain beta-hydroxyacyl-CoA dehydrogenase (SCHAD) and citrate synthase (CS) enzyme activity. Training increased the mean lipid area density (P = 0.090), the number of IMCL droplets (P = 0.055), the number of IMCL droplets in contact with mitochondria (P = 0.010), the total mitochondrial area (P < 0.001), and the size of individual mitochondrial fragments (P = 0.006). Women had higher mean lipid area density (P = 0.030) and number of IMCL droplets (P = 0.002) before and after training, but higher individual IMCL area only before training (P = 0.013), compared with men. Women oxidized more fat (P = 0.027) and less carbohydrate (P = 0.032) throughout the study. Training increased Vo(2 peak) (P < 0.001), %fat oxidation (P = 0.018), SCHAD activity (P = 0.003), and CS activity (P = 0.042). In summary, endurance exercise training increased IMCL area density due to an increase in the number of lipid droplets, whereas the increase in total mitochondrial area was due to an increase in the size of individual mitochondrial fragments. In addition, women have higher IMCL content compared with men due mainly to a greater number of individual droplets. Finally, endurance exercise training increased the proportion of IMCL in physical contact with mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号