首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 941 毫秒
1.
新疆阿勒泰地区图瓦人与邻近人群遗传关系初探   总被引:1,自引:0,他引:1  
在中国新疆阿勒泰地区哈纳斯景区内, 生活着一个特殊的人群—— 新疆图瓦人。他们在50年代初期第一次民族识别过程中被认定为蒙古族, 但他们自认为与蒙古人具有不同的历史渊源。为了探讨新疆图瓦人的族源问题和阐明其与邻近人群的遗传学关系, 文章采集了新疆阿勒泰地区150份男性图瓦人样本, 对其Y染色体非重组区的14个标记位点进行了分型, 构建了11种单倍型群。结果显示, 新疆图瓦人具有高频率的K*-M9 和Q*-M242单倍型群, 这两个单倍型群在俄罗斯图瓦人中也具有较高的频率, 而在蒙古人群和哈萨克人群中的频率则较低。主成分分析和多维尺度分析均显示新疆图瓦人与蒙古人和哈萨克人遗传上相隔较远。系统分子进化分析也表明新疆图瓦人位于与周围人群相隔较远的分化枝上。依据这些结果, 文章认为新疆图瓦人是与邻近人群如蒙古人和哈萨克人有较大遗传差异的人群。  相似文献   

2.
Derenko  M. V.  Lunkina  A. V.  Malyarchuk  B. A.  Zakharov  I. A.  Tsedev  Ts.  Park  K. S.  Cho  Y. M.  Lee  H. K.  Chu  Ch. H. 《Russian Journal of Genetics》2004,40(11):1292-1299
Using the data on mitochondrial DNA (mtDNA) restriction polymorphism, the gene pools of Koreans (N = 164) and Mongolians (N = 48) were characterized. It was demonstrated that the gene pools were represented by the common set of mtDNA haplogroups of East Asian origin (M*, M7, M8a, M10, C, D4, G*, G2, A, B*, B5, F1, and N*). In addition to this set, mtDNA haplogroups D5 and Y were identified in Koreans while Mongolians possessed haplogroup Z. Only in Mongolians, a European component with the frequency of 10.4% and represented by the mtDNA types belonging to haplogroups K, U4, and N1, was identified. Phylogenetic and statistical analyses of the data on mtDNA variation in the populations of South Siberia, Central, and East Asia suggested the existence of interpopulation differentiation within these regions, the main role in which was played by the geographical and linguistic factors. Analysis of the pairwise F ST distances demonstrated close genetic similarity of Koreans to Northern Chinese, which in turn, were clearly different from Southern Chinese populations. Mongolians occupied an intermediate position between the ethnic groups of South Siberia and Central/East Asia.  相似文献   

3.
Autosomal gene pools of 27 populations representing 12 ethnic groups of Siberia, Central Asia, and the Far East have been characterized for the first time using a set of eight polymorphic Alu insertions. The results of our analysis indicate a significant level of genetic diversity in populations of northern Eurasian and the considerable differentiation of their gene pool. It was shown that the frequency of the Alu (?) allele at the CD4 locus was inversely related to the magnitude of the Mongoloid component of the gene pool: the lowest and highest frequencies of the CD4 Alu deletion were recorded in Eskimos (0.012) and in Russians and Ukrainians (0.35), respectively. A gene flow analysis showed that Caucasoid populations (Russians, Tajiks, and Uzbeks), as well as Turkic ethnic groups of southern Siberia (Altaians and Tuvans), Khanty, and Mansi populations, in contrast to ethnic groups of eastern Siberia and the Far East, have been recipients of a considerable gene flow. A correlation analysis showed that genetic distances determined using polymorphic Alu insertions were correlated with the anthropological characteristics of the populations studied.  相似文献   

4.
A population genetic study was undertaken to investigate the origin of Koreans. Thirteen polymorphic and 7 monomorphic blood genetic markers (serum proteins and red cell enzymes) were studied in a group of 437 Koreans. Genetic distance analyses by both cluster and principal components models were performed between Koreans and eight other populations (Koreans in China, Japanese, Han Chinese, Mongolians, Zhuangs, Malays, Javanese, and Soviet Asians) on the basis of 47 alleles controlled by 15 polymorphic loci. A more detailed analysis using 65 alleles at 19 polymorphic loci was performed on six populations. Both analyses demonstrated genetic evidence of the origin of Koreans from the central Asian Mongolians. Further, the Koreans are more closely related to the Japanese and quite distant from the Chinese. The above evidence of the origin of Koreans fits well with the ethnohistoric account of the origin of Koreans and the Korean language. The minority Koreans in China also maintained their genetic identity.  相似文献   

5.
The Turkic peoples represent a diverse collection of ethnic groups defined by the Turkic languages. These groups have dispersed across a vast area, including Siberia, Northwest China, Central Asia, East Europe, the Caucasus, Anatolia, the Middle East, and Afghanistan. The origin and early dispersal history of the Turkic peoples is disputed, with candidates for their ancient homeland ranging from the Transcaspian steppe to Manchuria in Northeast Asia. Previous genetic studies have not identified a clear-cut unifying genetic signal for the Turkic peoples, which lends support for language replacement rather than demic diffusion as the model for the Turkic language’s expansion. We addressed the genetic origin of 373 individuals from 22 Turkic-speaking populations, representing their current geographic range, by analyzing genome-wide high-density genotype data. In agreement with the elite dominance model of language expansion most of the Turkic peoples studied genetically resemble their geographic neighbors. However, western Turkic peoples sampled across West Eurasia shared an excess of long chromosomal tracts that are identical by descent (IBD) with populations from present-day South Siberia and Mongolia (SSM), an area where historians center a series of early Turkic and non-Turkic steppe polities. While SSM matching IBD tracts (> 1cM) are also observed in non-Turkic populations, Turkic peoples demonstrate a higher percentage of such tracts (p-values ≤ 0.01) compared to their non-Turkic neighbors. Finally, we used the ALDER method and inferred admixture dates (~9th–17th centuries) that overlap with the Turkic migrations of the 5th–16th centuries. Thus, our results indicate historical admixture among Turkic peoples, and the recent shared ancestry with modern populations in SSM supports one of the hypothesized homelands for their nomadic Turkic and related Mongolic ancestors.  相似文献   

6.
North China and South Siberia, populated by Altaic- and Sino-Tibetan-speaking populations, possess extensive ethnolinguistic diversity and serve as the crossroads for the initial peopling of America and western–eastern transcontinental communication. However, the population genetic structure and admixture history of northern East Asians remain poorly understood due to a lack of genome-wide data, especially for Mongolic-speaking people in China. We genotyped genome-wide single nucleotide polymorphisms for 510 individuals from 38 Mongolic, Tungusic, and Sinitic-speaking populations. We first explored the shared alleles and haplotypes within the studied groups. We then merged with 3508 published modern and ancient Eurasian individuals to reconstruct the deep evolutionary and natural selection history of northern East Asians. We identified genetic substructures within Altaic-speaking populations: Western Turkic people harbored more western Eurasian-related ancestry; Northern Mongolic people in Siberia and eastern Tungusic people in Amur River Basin (ARB) possessed a majority of Neolithic ARB related ancestry; Southern Mongolic people in China possessed apparent genetic influence from Neolithic Yellow River Basin (YRB) farmers. Additionally, we found the differentiated admixture history between western and eastern Mongolians and geographically close Northeast Hans: the former received a genetic impact from western Eurasians, and the latter retained the primary Neolithic YRB and ARB ancestry. Moreover, we demonstrated that Kalmyk people from the northern Caucasus Mountains possessed a strong genetic affinity with Neolithic Mongolian Plateau (MP) people, supporting the hypothesis of their eastern Eurasian origin and long-distance migration history. We also illuminated that historical pastoral empires in the MP contributed considerably to the gene pool of northern Mongolic people but rarely to the southern ones. We finally found natural selection signatures in Mongolians associated with alcohol metabolism. Our results demonstrated that the Neolithic ancestral sources from the MP or ARB played an important role in spreading Altaic populations and languages. The observed multisources of genetic diversity contributed significantly to the extensive ethnolinguistic diversity in northern East Asia.  相似文献   

7.
Kazakh populations have traditionally lived as nomadic pastoralists that seasonally migrate across the steppe and surrounding mountain ranges in Kazakhstan and southern Siberia. To clarify their population history from a paternal perspective, we analyzed the non-recombining portion of the Y-chromosome from Kazakh populations living in southern Altai Republic, Russia, using a high-resolution analysis of 60 biallelic markers and 17 STRs. We noted distinct differences in the patterns of genetic variation between maternal and paternal genetic systems in the Altaian Kazakhs. While they possess a variety of East and West Eurasian mtDNA haplogroups, only three East Eurasian paternal haplogroups appear at significant frequencies (C3*, C3c and O3a3c*). In addition, the Y-STR data revealed low genetic diversity within these lineages. Analysis of the combined biallelic and STR data also demonstrated genetic differences among Kazakh populations from across Central Asia. The observed differences between Altaian Kazakhs and indigenous Kazakhs were not the result of admixture between Altaian Kazakhs and indigenous Altaians. Overall, the shared paternal ancestry of Kazakhs differentiates them from other Central Asian populations. In addition, all of them showed evidence of genetic influence by the 13(th) century CE Mongol Empire. Ultimately, the social and cultural traditions of the Kazakhs shaped their current pattern of genetic variation.  相似文献   

8.
Given the importance of Y‐chromosome haplogroup Q to better understand the source populations of contemporary Native Americans, we studied 8 biallelic and 17 microsatellite polymorphisms on the background of 128 Q Y‐chromosomes from geographically targeted populations. The populations examined in this study include three from the Tuva Republic in Central Asia (Bai‐Tai, Kungurtug, and Toora‐Hem, n = 146), two from the northeastern tip of Siberia (New Chaplino and Chukchi, n = 32), and two from Mesoamerica (Mayans from Yucatan, Mexico n = 72, and Mayans from the Guatemalan Highlands, n = 43). We also see evidence of a dramatic Mesoamerican post‐migration population growth in the ubiquitous and diverse Y‐STR profiles of the Mayan and other Mesoamerican populations. In the case of the Mayans, this demographic growth was most likely fueled by the agricultural‐ and trade‐based subsistence adopted during the Pre‐Classic, Classic and Post‐Classic periods of their empire. The limited diversity levels observed in the Altaian and Tuvinian regions of Central Asia, the lowest of all populations examined, may be the consequence of bottleneck events fostered by the spatial isolation and low effective population size characteristic of a nomadic lifestyle. Furthermore, our data illustrate how a sociocultural characteristic such as mode of subsistence may be of impact on the genetic structure of populations. We analyzed our genetic data using Multidimensional Scaling Analysis of populations, Principal Component Analysis of individuals, Median‐joining networks of M242, M346, L54, and M3 individuals, age estimations based on microsatellite variation utilizing genealogical and evolutionary mutation rates/generation times and estimation of Y‐ STR average gene diversity indices. Am J Phys Anthropol, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
The Y-chromosome haplogroup N-M231 (Hg N) is distributed widely in eastern and central Asia, Siberia, as well as in eastern and northern Europe. Previous studies suggested a counterclockwise prehistoric migration of Hg N from eastern Asia to eastern and northern Europe. However, the root of this Y chromosome lineage and its detailed dispersal pattern across eastern Asia are still unclear. We analyzed haplogroup profiles and phylogeographic patterns of 1,570 Hg N individuals from 20,826 males in 359 populations across Eurasia. We first genotyped 6,371 males from 169 populations in China and Cambodia, and generated data of 360 Hg N individuals, and then combined published data on 1,210 Hg N individuals from Japanese, Southeast Asian, Siberian, European and Central Asian populations. The results showed that the sub-haplogroups of Hg N have a distinct geographical distribution. The highest Y-STR diversity of the ancestral Hg N sub-haplogroups was observed in the southern part of mainland East Asia, and further phylogeographic analyses supports an origin of Hg N in southern China. Combined with previous data, we propose that the early northward dispersal of Hg N started from southern China about 21 thousand years ago (kya), expanding into northern China 12–18 kya, and reaching further north to Siberia about 12–14 kya before a population expansion and westward migration into Central Asia and eastern/northern Europe around 8.0–10.0 kya. This northward migration of Hg N likewise coincides with retreating ice sheets after the Last Glacial Maximum (22–18 kya) in mainland East Asia.  相似文献   

10.
In order to investigate the genetic history of autochthonous South Siberian populations and to estimate the contribution of distinct patrilineages to their gene pools, we have analyzed 17 Y-chromosomal binary markers (YAP, RPS4Y711, SRY-8299, M89, M201, M52, M170, 12f2, M9, M20, 92R7, SRY-1532, DYS199, M173, M17, Tat, and LLY22 g) in a total sample of 1,358 males from 14 ethnic groups of Siberia (Altaians-Kizhi, Teleuts, Shors, Tuvinians, Todjins, Tofalars, Sojots, Khakassians, Buryats, Evenks), Central/Eastern Asia (Mongolians and Koreans) and Eastern Europe (Kalmyks and Russians). Based on both, the distribution pattern of Y-chromosomal haplogroups and results on AMOVA analysis we observed the statistically significant genetic differentiation between the populations of Baikal and Altai–Sayan regions. We suggest that these regional differences can be best explained by different contribution of Central/Eastern Asian and Eastern European paternal lineages into gene pools of modern South Siberians. The population of the Baikal region demonstrates the prevalence of Central/Eastern Asian lineages, whereas in the populations of Altai and Sayan regions the highest paternal contribution resulted from Eastern European descent is revealed. Yet, our data on Y-chromosome STRs variation demonstrate the clear differences between the South Siberian and Eastern European R1a1-lineages with the evolutionary ages compatible with divergence time between these two regional groups.  相似文献   

11.
Variation of Mongoloid-specific restriction sites of mitochondrial genome was analyzed in three territorial groups of Tuvinians. Distribution of mitochondrial DNA haplogroups A, B, C, and D on the territory of the Tuva Republic was estimated. The populations studied did not display distinct differentiation in respect to the mtDNA polymorphism. The specific feature of Tuvinian mitochondrial gene pool was the prevalence of only one haplogroup C (over 40%), mainly represented by two mitotypes. The high frequency of this haplogroup makes Tuvinians similar to more northern Siberian populations. On the other hand, the presence of haplogroup B indicates that Tuvinians have affinity to ethnic groups of Central Asia.  相似文献   

12.
Variation of Mongoloid-specific restriction sites of mitochondrial genome was analyzed in three territorial groups of Tuvinians. Distribution of mitochondrial DNA haplogroups A, B, C, and D on the territory of the Tuva Republic was estimated. The populations studied did not display distinct differentiation in respect to the mtDNA polymorphism. The specific feature of Tuvinian mitochondrial gene pool was the prevalence of only one haplogroup C (over 40%), mainly represented by two mitotypes. The high frequency of this haplogroup makes Tuvinians similar to more northern Siberian populations. On the other hand, the presence of haplogroup B indicates that Tuvinians have affinity to ethnic groups of Central Asia.  相似文献   

13.
Aim Carex atrofusca has an arctic–alpine distribution in the Northern Hemisphere, with only a few, disjunct localities known in the European Alps. These alpine populations are declining in number and size. In contrast, C. atrofusca has a wide circumpolar distribution range and is abundant in large parts of the Arctic. The degree of genetic differentiation of the alpine populations and their importance for the conservation of the intraspecific genetic variation of the species is unknown. Location Eurasia and Greenland, with emphasis on the European Alps. Methods We applied amplified fragment length polymorphism (AFLP) fingerprinting and sequences of chloroplast DNA to determine the position of the alpine populations in a circumpolar phylogeography of C. atrofusca and to unravel the patterns of genetic diversity and differentiation within the Alps. Results Two distinct major groups were detected in a neighbour‐joining analysis of AFLP data and in parsimony analysis of chloroplast DNA sequences: one consisting of the populations from Siberia and Greenland and one consisting of all European populations as sister to the populations from Central Asia. Within Europe, the populations from the Tatra Mountains and those from Scotland and Scandinavia formed two well‐supported groups, whereas the alpine populations did not constitute a group of their own. The genetic variation in the Alps was almost completely partitioned among the populations, and the populations were almost invariable. Main conclusions The alpine populations possibly originated due to immigration from Central Asia. The strong differentiation among them suggests that genetic drift has been strongly acting on the populations, either as a consequence of founder events during colonization or due to subsequent reduction of population sizes during warm stages of the Holocene.  相似文献   

14.
The Yakuts of northeastern Siberia are a Turkic-speaking population of horse- and cattle-breeders surrounded by Tungusic-speaking reindeer-herders and hunter-gatherers. Archaeological and ethnohistorical data suggest that Yakuts stem from a common ancestral population with the Buryats living near Lake Baikal. To address this hypothesis, we obtained sequences of the first hypervariable segment (HV1) of the mitochondrial DNA control region from Yakuts and Buryats and compared these with sequences from other Eurasian populations. The mtDNA results show that the Buryats have close affinities with both Central Asian Turkic groups and Mongols, while the Yakuts have close affinities with northeastern Siberian, Tungusic-speaking Evenks and south Siberian, Turkic-speaking Tuvans. This different ancestry of the Yakuts and the Tuvans (compared with other Turkic-speaking groups) most likely reflects extensive admixture that occurred between Turkic-speaking steppe groups and Evenks as the former migrated into Siberia. Moreover, the Yakuts are unique among Siberian populations in having a high number of haplotypes shared exclusively with Europeans, suggesting, contrary to the historical record, that occasionally Yakut men took Russian women as wives.  相似文献   

15.
Siberian Tatars form the largest Turkic-speaking ethnic group in Western Siberia. The group has a complex hierarchical system of ethnographically diverse populations. Five subethnic groups of Tobol–Irtysh Siberian Tatars (N = 388 samples) have been analyzed for 50 informative Y-chromosomal SNPs. The subethnic groups have been found to be extremely genetically diverse (F ST = 21%), so the Siberian Tatars form one of the strongly differentiated ethnic gene pools in Siberia and Central Asia. Every method employed in our studies indicates that different subethnic groups formed in different ways. The gene pool of Isker–Tobol Tatars descended from the local Siberian indigenous population and an intense, albeit relatively recent gene influx from Northeastern Europe. The gene pool of Yalutorovsky Tatars is determined by the Western Asian genetic component. The subethnic group of Siberian Bukhar Tatars is the closest to the gene pool of the Western Caucasus population. Ishtyak–Tokuz Tatars have preserved the genetic legacy of Paleo-Siberians, which connects them with populations from Southern, Western, and Central Siberia. The gene pool of the most isolated Zabolotny (Yaskolbinsky) Tatars is closest to Ugric peoples of Western Siberia and Samoyeds of the Northern Urals. Only two out of five Siberian Tatar groups studied show partial genetic similarity to other populations calling themselves Tatars: Isker–Tobol Siberian Tatars are slightly similar to Kazan Tatars, and Yalutorovsky Siberian Tatars, to Crimean Tatars. The approach based on the full sequencing of the Y chromosome reveals only a weak (2%) Central Asian genetic trace in the Siberian Tatar gene pool, dated to 900 years ago. Hence, the Mongolian hypothesis of the origin of Siberian Tatars is not supported in genetic perspective.  相似文献   

16.
We analyzed mitochondrial DNA polymorphisms to search for evidence of the genetic structure and patterns of admixture in 124 populations (N = 1407 trees) across the distribution of Scots pine in Europe and Asia. The markers revealed only a weak population structure in Central and Eastern Europe and suggested postglacial expansion to middle and northern latitudes from multiple sources. Major mitotype variants include the remnants of Scots pine at the north-western extreme of the distribution in the Scottish Highlands; two main variants (western and central European) that contributed to the contemporary populations in Norway and Sweden; the central-eastern European variant present in the Balkan region, Finland, and Russian Karelia; and a separate one common to most eastern European parts of Russia and western Siberia. We also observe signatures of a distinct refugium located in the northern parts of the Black Sea basin that contributed to the patterns of genetic variation observed in several populations in the Balkans, Ukraine, and western Russia. Some common haplotypes of putative ancient origin were shared among distant populations from Europe and Asia, including the most southern refugial stands that did not participate in postglacial recolonization of northern latitudes. The study indicates different genetic lineages of the species in Europe and provides a set of genetic markers for its finer-scale population history and divergence inference.  相似文献   

17.
This article continues the series of publications on the population genetic structure of the Tuva Republic. The polymorphism of immunological (ABO, MN, and the Dd locus of Rhesus) and biochemical (TF, GC, HP, PGD, PGM1, ACP1, and ESD) marker systems was studied in three rural populations of the Tuva Republic: the Shinaanskii, Todzhinskii, and Bai-Taiginskii populations (the Kungurtug, Toora-Khem, and Teeli villages, respectively). Genetic subdivision of the populations and genetic distances between the Tuvinian populations and the populations of neighboring regions were estimated. Tuvinians were demonstrated to be genetically heterogeneous. Data on their population-genetic structure with respect to several classical marker systems agree with the results obtained for quasigenetic (family names) and molecular (mtDNA) markers. Prolonged isolation of individual populations in the republic promoted formation of specific patterns of gene frequencies in some of them. These patterns account for differences between Tuvinians and other populations belonging to the Altaic language family. Tuvinians in general are genetically closer to Mongolian populations inhabiting the regions bordering the Tuva Republic than to southern Altaians.  相似文献   

18.
With the aim of uncovering all of the most basal variation in the northern Asian mitochondrial DNA (mtDNA) haplogroups, we have analyzed mtDNA control region and coding region sequence variation in 98 Altaian Kazakhs from southern Siberia and 149 Barghuts from Inner Mongolia, China. Both populations exhibit the prevalence of eastern Eurasian lineages accounting for 91.9% in Barghuts and 60.2% in Altaian Kazakhs. The strong affinity of Altaian Kazakhs and populations of northern and central Asia has been revealed, reflecting both influences of central Asian inhabitants and essential genetic interaction with the Altai region indigenous populations. Statistical analyses data demonstrate a close positioning of all Mongolic-speaking populations (Mongolians, Buryats, Khamnigans, Kalmyks as well as Barghuts studied here) and Turkic-speaking Sojots, thus suggesting their origin from a common maternal ancestral gene pool. In order to achieve a thorough coverage of DNA lineages revealed in the northern Asian matrilineal gene pool, we have completely sequenced the mtDNA of 55 samples representing haplogroups R11b, B4, B5, F2, M9, M10, M11, M13, N9a and R9c1, which were pinpointed from a massive collection (over 5000 individuals) of northern and eastern Asian, as well as European control region mtDNA sequences. Applying the newly updated mtDNA tree to the previously reported northern Asian and eastern Asian mtDNA data sets has resolved the status of the poorly classified mtDNA types and allowed us to obtain the coalescence age estimates of the nodes of interest using different calibrated rates. Our findings confirm our previous conclusion that northern Asian maternal gene pool consists of predominantly post-LGM components of eastern Asian ancestry, though some genetic lineages may have a pre-LGM/LGM origin.  相似文献   

19.
Genetic studies of human diversity in East Asia   总被引:5,自引:0,他引:5  
East Asia is one of the most important regions for studying evolution and genetic diversity of human populations. Recognizing the relevance of characterizing the genetic diversity and structure of East Asian populations for understanding their genetic history and designing and interpreting genetic studies of human diseases, in recent years researchers in China have made substantial efforts to collect samples and generate data especially for markers on Y chromosomes and mtDNA. The hallmark of these efforts is the discovery and confirmation of consistent distinction between northern and southern East Asian populations at genetic markers across the genome. With the confirmation of an African origin for East Asian populations and the observation of a dominating impact of the gene flow entering East Asia from the south in early human settlement, interpretation of the north-south division in this context poses the challenge to the field. Other areas of interest that have been studied include the gene flow between East Asia and its neighbouring regions (i.e. Central Asia, the Sub-continent, America and the Pacific Islands), the origin of Sino-Tibetan populations and expansion of the Chinese.  相似文献   

20.
Maliarchuk BA 《Genetika》2004,40(11):1549-1556
Phylogenetic relationships between the sequences of the mitochondrial DNA (mtDNA) hypervariable segment 1, belonging to subhaplogroup U4, were examined in the populations of Eastern Europe, Ural, and Northwest Siberia. It was shown that the frequency of subhaplogroup U4, as well as its proportion in the U-component of the gene pools, increased eastwards, reaching maximum values in the populations of Northwest Siberia. Phylogenetic analysis it was showed that the appearance of specific U4-lineage (16113C-16356-16362) in the ancestors of Mansi was most likely caused by its divergence from the East European cluster 16356-16362 in the Late Upper Paleolithic (18566 +/- 12915 years before present). Other U4 mtDNA lineages (16189-16356 and 16311-16356), typical mostly of the indigenous populations of Northwest Siberia (Mansi, Nganasans, and Kets) may have formed during the Neolithic-early Bronze Age (6055 +/- 3599 years before present, on average). It seems likely that the isolation of ancient populations inhabiting the region between the Ob' and Yenisei rivers was the key factor, providing the appearance of the unique Caucasoid mtDNA lineages in their gene pools. These results were consistent with the traditional point of view on the mixed origin of the Finno-Ugric populations of the Volga-Ural region and West Siberia, resulted from the genetic relationships between the populations of Europe and Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号