首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most archaeological and fossil teeth are heavily worn, and this greatly limits the usefulness of tooth crown diameter measurements, as they are usually defined at the widest points of the crown. There are alternatives, particularly measurements at the cervix of the tooth, where the crown joints the root, and measurements along a diagonal axis in molars, that are much less affected by wear. These would allow a wider range of specimens to be included, e.g., in the study of dental reduction in Upper Palaeolithic and Mesolithic Homo sapiens. In addition, they would allow the little-worn teeth of children to be compared directly with well-worn teeth in adults. These alternatives, however, have been little used, and as yet there have not been any studies of the repeatability with which they can be measured, or of the extent to which they are related to the more usual crown diameters. The present study is based on a group of unworn teeth, where direct comparisons could be made between the alternative measurements, which are not much affected by wear, with the usual crown diameters, which are very much affected. In an interobserver-error study of this material, cervical and diagonal measurements could be recorded as reliably as the usual crown diameters. The buccolingual cervical measurement was strongly correlated with the normal bucclingual crown diameter in all teeth, whereas the mesiodistal cervical measurement was highly correlated with the normal mesiodistal crown diameter in incisors and canines, but less so in premolars and molars. The molar diagonal measurements showed high correlations with all other measurements. Crown areas (robustness index) calculated from the usual diameters were strongly correlated with crown areas calculated from cervical measurements, and crown areas calculated from molar diagonals were strongly correlated with both other areas. Despite the long usage of the more usual maximum crown diameters, the alternative dental measurements could be measured just as reliably, could record similar information about tooth crown size, and would be better measures for the worn dentitions seen in archaeological and fossil material.  相似文献   

2.
3.
Traditional morphometric approaches for taxonomic assignment of Neanderthal and modern human dental remains are mainly characterized by caliper measurements of tooth crowns. Several studies have recently described differences in dental tissue proportions and enamel thickness between Neanderthal and modern human teeth. At least for the lower second deciduous molar (dm2), a three-dimensional lateral relative enamel thickness index has been proposed for separating the two taxa. This index has the advantage over other measurements of being applicable to worn teeth because it ignores the occlusal aspect of the crown. Nevertheless, a comparative evaluation of traditional crown dimensions and lateral dental tissue proportion measurements for taxonomic assignment of Neanderthal and modern human dm2s has not yet been performed.In this study, we compare various parameters gathered from the lateral aspects of the crown. These parameters include crown diameters, height of the lateral wall of the crown (lateral crown height = LCH), lateral enamel thickness, and dentine volume of the lateral wall, including the volume of the coronal pulp chamber (lateral dentine plus pulp volume = LDPV), in a 3D digital sample of Neanderthal and modern human dm2s to evaluate their utility in separating the two taxa.The LDPV and the LCH allow us to discriminate between Neanderthals and modern humans with 88.5% and 92.3% accuracy, respectively. Though our results confirm that Neanderthal dm2s have lower relative enamel thickness (RET) index compared with modern humans (p = 0.005), only 70% of the specimens were correctly classified on the basis of the RET index. We also emphasize that results of the lateral enamel thickness method depend on the magnitude of the interproximal wear. Accordingly, we suggest using the LCH or the LDPV to discriminate between Neanderthal and modern human dm2s. These parameters are more independent of interproximal wear and loss of lateral enamel.  相似文献   

4.
Despite the general increase in digital techniques for dental morphometric analyses, only a few methods are available to study worn teeth. Moreover, permanent dentitions are studied much more frequently than deciduous teeth. In this study, we address both issues by providing a taxonomic classification of Neanderthal and modern human (MH) lower second deciduous molars (dm2s) through the analysis of crown and cervical outlines. Crown and cervical outlines were obtained from a three‐dimensional (3D) digital sample of uniformly oriented dm2s. Both outlines were centered on the centroid of their area and represented by 16 pseudolandmarks obtained by equiangularly spaced radial vectors out of the centroid. We removed size information from the oriented and centered outlines with a uniform scaling of the pseudolandmark configurations to unit Centroid Size. Group shape variation was evaluated separately for the dm2 crown and cervical outlines through a shape–space principal component (PC) analysis. Finally, quadratic discriminant analysis of a subset of PCs was used to classify the specimens. Our results demonstrate that both outlines successfully separate the two groups. Neanderthals showed a buccodistal expansion and convex lingual outline shape, whilst MHs have buccodistal reduction and straight lingual outline shape. Therefore, we confirmed that the cervical outline represents an effective parameter for distinguishing between the two taxa when dealing with worn or damaged dm2s. Am J Phys Anthropol 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The present study investigates the utility of cervical measurements in deciduous teeth and how they correlate with traditional measurements of the crown. First, this study establishes definitions by which these measurements could reliably be taken. Next, deciduous cervical and traditional crown diameters were taken on three distinct skeletal samples: a Neolithic assemblage from Central Anatolia (Çatalhöyük, n = 85), a precontact sample from Northern California (CA‐ALA‐329, n = 34), and a group of intrusive burials interred at Çatalhöyük that date between AD 60 and 1650 (n = 38). Across the dentition there are positive correlations between crown and cervical measurements, which tend to be higher in anterior teeth than in posterior teeth. Both measurements show low correlations with age; however, cervical measurements show fewer negative correlations with age. An intraobserver error study found low levels of error for both types of measurements. On a subset of the Çatalhöyük sample (n = 9), a principal components and biological distance analysis were conducted comparing the two types of measurements. Also, all three samples were subject to a canonical discriminant function analysis and the results from cervical and crown measurements were compared. All analyses produced slightly different results for each type of data suggesting that crown and cervical measurements capture different aspects of tooth shape. While cervical and crown measurements provide different statistical results, cervical measurements can provide information relevant to anthropological studies and may allow for larger datasets to be used by allowing the inclusion of teeth with modified crowns. Am J Phys Anthropol 149:299–306, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
作者测量和观察了现代华南人1963个恒牙。结果表明,铲形上内侧门齿的出现率为91.8%;卡氏尖在M1中的出现率为23.8%,在M2中的出现率为1.6%。  相似文献   

7.
S Kondo  G C Townsend 《HOMO》2004,55(1-2):53-64
Sexual differences in the crown units of mandibular molars were investigated in Australian Aborigines. The first and second deciduous molars (dm1 and dm2), and first to third permanent molars (M1, M2 and M3) were measured on dental casts using a sliding caliper. Measurements of tooth crowns included overall mesiodistal and buccolingual diameters, as well as the mesiodistal and buccolingual diameters of the trigonid and talonid. Percentage dimorphism values were greater in the talonid dimensions than the trigonid, indicating that sex differences tend to be larger in the later-developing crown units. Sex differences in mesiodistal diameters increased from dm1 to M2 but decreased for M3, the tooth that showed the least dimorphism of all the molars. This result seems to be due to the marked variability in size of the M3 between individuals.  相似文献   

8.
Sub-Saharan African (and derived) populations typically exhibit larger mean tooth crown diameters than whites in spite of considerable population variability. We report on a 19th century series of American black slaves from a single cemetery near Charleston, South Carolina, that possessed notably smaller crown sizes. Analysis identifies a characteristic set of differences compared to caucasians, including retention of large maxillary lateral incisors and disproportionately large premolars and molars. Regression of principal components scores (derived from the mesiodistal diameters) on the sum of all diameters (used here as a measure of overall tooth mass) confirms a basic ethnic difference between black and white odontometrics: significantly more of the tooth mass is apportioned to the cheek teeth (premolars, molars) in blacks than whites. The difference (expressed as residuals from linear regression on tooth mass) holds for the several groups assessed here despite considerable intergroup variability in tooth sizes. Potential explanations for the notably small diameters of this plantation series are speculative, but may involve kin-based divergences and/or reflect the natural intergroup differences extant in the African slave sources.  相似文献   

9.
The determination of the minimum number of individuals can be very challenging, especially in an assemblage of fragmentary bones and isolated teeth. Similarities in tooth morphology, degree of wear, and interproximal wear facets (IPWF) are generally used to associate isolated teeth qualitatively. However, no quantitative method has yet been established for an objective identification and matching of isolated tooth crowns. In this study, we analyze the IPWF morphology of adjacent mandibular molars (17 M(1)/M(2) pairs), applying both qualitative and quantitative methods to test a reproducible approach for crown association. The surfaces of distal (for M(1)) and mesial (for M(2)) IPWF were surface-scanned and digitally selected. Three-dimensional (3D) and two-dimensional (2D) outlines of IPWF were analyzed using elliptic Fourier analysis (EFA) and geometric morphometrics methods (GMM). Additionally, teeth were qualitatively associated by visual evaluation of the IPWF outline and by physical matching. Unsatisfactory results with less than 50% of tooth pairs correctly associated were obtained by using both methods, shape analysis (digital approach) and the visual evaluation (qualitative assessment) of the IPWF outline. The physical matching of the crowns showed highly variable accuracy ranging between 53% and 77%. The quantitative form-space analysis of 2D IPWF outlines provided the best results (82% of correctly associated teeth), but no statistically significant differences were recorded when compared with the manual matching. Since three tooth pairs out of 17 could not be quantitatively associated, we suggest that the quantitative analysis of IPWF should be used only in addition with other approaches.  相似文献   

10.
Much of a human molar's morphology is concentrated on its occlusal surface. In view of embryologists' recent attention on the determination of crown morphology by enamel knots that initiate cusp formation, we were interested in the arrangement of cusp apices in the definitive tooth. Computer-assisted image analysis was used to measure intercusp distances and angles on permanent maxillary M1 and M2 in a sample of 160 contemporary North American whites. The intent was to generate normative data and to compare the size and variability gradients from M1 to M2. There is little sexual dimorphism in intercusp distances or angles, even though the conventional mesiodistal (MD) and buccolingual (BL) crown size is 2.0% and 4.0% larger in males, respectively, in these same teeth. Dimensions decreased in size and increased in variability from M1 to M2, but differentially. Cusps of the trigon were more stable between teeth, especially the paracone-protocone relationship. Principal components analysis on the six M1 distances disclosed only one eigenvalue above 1.0, indicating that overall crown size itself is the paramount controlling factor in this tooth that almost invariably exhibits a hypocone. In contrast, four components were extracted from among the 12 angular cusp relationships in M1. These axes of variation may prove useful in studies of intergroup differences. A shape difference occurs in M2, depending on whether the hypocone is present; when absent, the metacone is moved lingually, creating more of an isosceles arrangement for the cusps of the trigon. Statistically, correlations are low between occlusal intercusp relationships and conventional crown diameters measured at the margins of the crowns that form later. Weak statistical dependence between cusp relationships and traditional MD and BL diameters suggest that separate stage- and location-specific molecular signals control these different parts (and different stages) of crown formation.  相似文献   

11.
潘雷 《人类学学报》2019,38(3):398-406
在基于计算机断层扫描技术(CT)和虚拟图像处理技术的灵长类牙齿测量学研究中,经常需要分离三维虚拟模型的齿冠和齿根,再进行后续测量工作,如计算机辅助的生物力学分析、釉质厚度测量等。而分离齿冠和齿根这一步骤,目前有多种方法,如,1)根据齿颈线切分齿冠,或2)人工建立基底平面切分齿冠。为了评估这两种不同的处理方式对后续的牙齿测量学上的影响,本文使用三维方法测量了82例化石和现代人类下颌后部牙齿的釉质厚度,包括南方古猿、早期人属、尼安德特人和现代人。使用配对t检验对比发现,两种方法得到的釉质厚度数值上没有显著差别,但随后进行的种间比较发现,使用基底平面切分齿冠的方法比较费时,更依赖于测量者的人工操作,并且可能弱化了物种间前臼齿绝对釉质厚度的差异,造成系统误差。其原因是对于前臼齿和前部牙齿等齿颈线形状不规则的标本,基底平面难以建立或误差较大。在未来对釉质厚度的种间差异的研究中,特别对齿颈线形状不规则的标本(如人类前部牙齿及猩猩、黑猩猩的牙齿等),本文推荐使用齿颈线分离齿冠和齿根,测量和计算齿颈线之上的釉质厚度。釉质厚度有一定的分类学、功能形态学和系统发育学意义。本文积累了一批可供未来对比研究的原始数据,并且发现尼安德特人前臼齿的相对釉质厚度显著小于现代人,这与前人利用臼齿、犬齿所做的对比研究结果相同,支持了尼安德特人拥有较薄的相对釉质厚度这一观点。  相似文献   

12.
This study uses elliptical Fourier analysis to quantify shape differences observed in the P(4) crown of Neandertals and anatomically modern humans. Previously, P(4) shape was assessed qualitatively, and results suggested marked differences between Neandertals and anatomically modern humans (Bailey [2002] New Anat. 269:148-156). The goal of this study was to investigate the P(4) shape in more detail, quantifying it in order to determine its utility for taxonomic classification and phylogenetic analysis. A comparison of mean shapes confirms that the mesiolingual portion of the P(4) is truncated in Neandertals, and that this produces a distinctively asymmetrical P(4). A randomization test confirms that the shape difference between Neandertals and anatomically modern humans is significant. Principal component and discriminant function analyses indicate that the relative size of the lingual portion of the tooth also affects tooth shape, with the lingual portion of the Neandertal P(4) being narrower than that of anatomically modern humans. Classification of P(4) crown shapes using discriminant functions analysis is far from perfect. While 86.4% of the teeth were correctly classified, classification was much better for anatomically modern humans (98.1%) than it was for Neandertals (65%). Fortunately, crown shape is but one of several diagnostic characters of the P(4) crown. P(4) crown asymmetry can be added to the growing list of dental morphological characters distinguishing Neandertals from anatomically modern humans. Moreover, based on a comparison of mean tooth shapes in fossil and recent humans, symmetry, rather than asymmetry, appears to be the primitive state, and the high frequency of P(4) asymmetry is likely derived in Neandertals.  相似文献   

13.
One of the few uncontested viewpoints in studies of enamel thickness is that the molars of the African apes, Pan and Gorilla, possess "thin" enamel, while Pongo and modern humans possess varying degrees of "thick" enamel, even when interspecific differences in overall body or tooth size are taken into account. Such studies focus primarily on estimates of the total volume of enamel relative to tooth size (i.e., "relative" enamel thickness), as this is thought to bear directly on questions concerning dietary proclivities and phylogenetic relationships. Only recently have studies shifted focus to examining differences in the distribution of enamel across the tooth crown, i.e., the patterning of enamel thickness, as this may contribute to more refined models of tooth function and dietary adaptations in extant hominoids. Additionally, this feature has been suggested to be a reliable indicator of taxonomic affinity in early hominins, though no study has specifically addressed whether species-specific patterns exist among known phena. The aims of this paper were to test more explicitly whether enamel thickness patterning provides valuable taxonomic, functional, and/or phylogenetic information for maxillary molars of large-bodied extant hominoids. A series of seven linear enamel thickness measurements was recorded in the plane of the mesial cusps in cross sections of a total of 62 maxillary molars of P. troglodytes, G. gorilla, P. pygmaeus, and H. sapiens to estimate the patterning of enamel thickness distribution. Results from a discriminant function analysis reveal that, overall, this trait reclassifies extant hominoid maxillary molars with 90% accuracy: 100% of extant Homo, 75. 0% of Pongo, 83.3% of Pan, and 66.7% of Gorilla are reclassified correctly, indicating that this feature possesses a strong taxonomic signal. Furthermore, differences in the structure of the enamel cap are evident among hominoids: modern humans differ from Pongo in possessing proportionally thicker enamel in areas of the crown associated with shearing activity; Pan molars are better designed than those of Gorilla for generating a greater component of crushing/grinding loads. Thus, African ape molars are structurally dissimilar, even though they are both considered to belong to a morphologically homogeneous "thin-enameled" group. Simple developmental mechanisms can be invoked to explain the sometimes subtle differences in the achievement of adult morphology. For instance, human and orangutan molar cusps possess a similar degree of enamel thickness, but the possibility exists that despite similarities in morphology, each species follows a different sequence of secretory activity of enamel to achieve the final, albeit similar, degree of enamel thickness. Such a finding would suggest that the shared possession of "thick" or "thin" enamel among species may be phylogenetically uninformative, as it would not represent a developmental synapomorphy.  相似文献   

14.
Mesiodistal crown diameters of I1 through M1 and six non-metric crown traits in permanent dentition of Japanese-American F1 hybrids were compared with those of the parental populations. The hybrids were born of Japanese females and American males, both Caucasians and American Blacks, after World War II and brought up at Elizabeth Saunders Home in Kanagawa Prefecture, Japan. The comparisons were undertaken by means of multivariate analysis methods such as principal component analysis, distance and similarity coefficients and multidimensional scaling. The F1 hybrids generally occupy an intermediate position of the two parental populations, and this is particularly evident in size component of the crown measurements and in distance analysis of frequencies of the non-metric crown traits. The shape component of the crown measurements, however, not necessarily follows such a rule and suggests a more complicated gene control than in the case of the size component. Also, each measurement and frequency of non-metric trait of tooth crowns in F1 hybrids is not uniformly at the middle position between their parental populations but this is true when they are analyzed as multivariables.  相似文献   

15.
The size of the permanent human canine tooth is one of the few sexually dimorphic features to be present in childhood and as such offers the opportunity to assist in the identification of sex in remains where no other appropriate criteria exist, such as in subadults. However, canine odontometrics are often associated with high levels of interobserver error and can be difficult to access if dentition is in situ. Additionally, appropriate points of measurement can be difficult to identify if the tooth is worn. Alternate measurements of the cervical canine diameters have been proposed as solutions to these issues, but the utility of these measurements in estimating sex has not been conclusively demonstrated. This study uses the buccolingual and mesiodistal cervical diameter of the canines from a known-sex sample from St. Bride's Church, London and a partially known-sex sample from the Old Church, Chelsea, London to classify individuals as male or female. A discriminant function classification using these diameters successfully identifies sex in 93.8% of the known-sex assemblage and 95% of the partially osteologically estimated sex assemblage. It is suggested that cervical canine diameters are highly repeatable measurements with low interobserver error, can be obtained on worn and in situ teeth, and provide as good or better guidance on estimating sex in human remains as standard maximal diameters.  相似文献   

16.
17.
As shown in 870 white participants in the National Collaborative Perinatal Project (NCPP), maternal health status during pregnancy and birth size are systematically related to mesiodistal and buccolingual crown dimensions of I1, I2, dc, dm1, dm2 and M1. Maternal diabetes, maternal hypothyroidism and large size at birth are associated with larger maxillary and mandibular teeth in white children. Conversely, deciduous and permanent crown diameters are diminished in maternal hypertension, and in low birthweight and small birth-length conditions. These findings suggest that maternal and fetal (or gestational) determinants of both deciduous and permanent tooth crown dimensions may account for as much as half of crown-size variability with major implications to population comparisons and historical odontometric differences and trends.  相似文献   

18.
Two hypotheses, based on previous work on Neandertal anterior and premolar teeth, are investigated here: (1) that estimated molar lateral enamel formation times in Neandertals are likely to fall within the range of modern human population variation, and (2) that perikymata (lateral enamel growth increments) are distributed across cervical and occlusal halves of the crown differently in Neandertals than they are in modern humans. To investigate these hypotheses, total perikymata numbers and the distribution of perikymata across deciles of crown height were compared for Neandertal, northern European, and southern African upper molar mesiobuccal (mb) cusps, lower molar mesiobuccal cusps, and the lower first molar distobuccal (db) cusp. Sample sizes range from five (Neandertal M(1)db) to 29 (southern African M(1)mb). Neandertal mean perikymata numbers were found to differ significantly from those of both modern human samples (with the Neandertal mean higher) only for the M(2)mb. Regression analysis suggests that, with the exception of the M(2)mb, the hypothesis of equivalence between Neandertal and modern human lateral enamel formation time cannot be rejected. For the M(2)mb, regression analysis strongly suggests that this cusp took longer to form in the Neandertal sample than it did in the southern African sample. Plots of perikymata numbers across deciles of crown height demonstrate that Neandertal perikymata are distributed more evenly across the cervical and occlusal halves of molar crowns than they are in the modern human samples. These results are integrated into a discussion of Neandertal and modern human lateral enamel formation across the dentition, with reference to issues of life history and enamel growth processes.  相似文献   

19.
Variation in tooth crown morphology plays a crucial role in species diagnoses, phylogenetic inference, and the reconstruction of the evolutionary history of the primate clade. While a growing number of studies have identified developmental mechanisms linked to tooth size and cusp patterning in mammalian crown morphology, it is unclear (1) to what degree these are applicable across primates and (2) which additional developmental mechanisms should be recognized as playing important roles in odontogenesis. From detailed observations of lower molar enamel–dentine junction morphology from taxa representing the major primate clades, we outline multiple phylogenetic and developmental components responsible for crown patterning, and formulate a tooth crown morphology framework for the holistic interpretation of primate crown morphology. We suggest that adopting this framework is crucial for the characterization of tooth morphology in studies of dental development, discrete trait analysis, and systematics.  相似文献   

20.
This study reports on odontometric analyses of unadmixed, adult Ticuna Indians, Colombia, South America. This group is characterized by crown diameters intermediate in size relative to the known Amerindian range and, in turn, to the range in modern man. Sex dimorphism is absent in Ticuna tooth size; there is a strong retention of the M1 > M2 size sequence. The Ticuna are compared multivariately to other Indian groups reported in the literature, using the size and shape coefficients of L.S. Penrose. Tooth size clusters the groups into small, medium, and large-toothed classes, but does not yield a pattern attributable to known genetic or historical affinities. Shape coefficients distinguish Indians from non-Indians (Caucasian, Negroid, and Australian samples), primarily on the basis of I1–I2 proportionalities. Neither size nor shape discriminates between North and South American groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号