首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meiosis is characterized by the absence of DNA replication between the two successive divisions. In Xenopus eggs, the ability to replicate DNA develops during meiotic maturation, but is normally suppressed until fertilization. Here we show that development of the DNA-replicating ability depends on new protein synthesis during meiosis I, and that mere ablation of the endogenous c-mos product Mos allows maturing oocytes to enter interphase and replicate DNA just after meiosis I. Moreover, we demonstrate that during normal maturation cdc2 kinase undergoes precocious inactivation in meiosis I and then premature reactivation before meiosis II; importantly, this premature cdc2 reactivation absolutely requires Mos function and its direct inhibition by a dominant-negative cdc2 mutant also results in nuclear reformation and DNA replication immediately after meiosis I. These findings indicate that suppression of DNA replication during meiotic divisions in Xenopus oocytes is accomplished by the Mos-mediated premature reactivation of cdc2 kinase. We suggest that these mechanisms for suppressing DNA replication may be specific for meiosis in animal oocytes, and that the ultimate biological function, including the well known cytostatic factor activity, of Mos during meiotic maturation may be to prevent undesirable DNA replication or parthenogenetic activation before fertilization.  相似文献   

2.
The c-mos proto-oncogene product (Mos), an essential component of the cytostatic factor responsible for meiotic arrest in vertebrate eggs, undergoes specific proteolysis soon after fertilization or activation of Xenopus eggs. To determine the degradation pathway of Mos on egg activation, various Mos mutants were expressed in Xenopus eggs and their degradation on egg activation was examined. Mos degradation absolutely required its penultimate proline (Pro2) residue and dephosphorylation of the adjacent serine (Ser3) residue. These degradation signals were essentially the same as those of Mos in meiosis I of Xenopus oocyte maturation, where Mos has been shown to be degraded by the 'second-codon rule'-based ubiquitin pathway. To test whether Mos degradation on egg activation is also mediated by the ubiquitin pathway, we attempted to identify and abrogate a specific ubiquitination site(s) in Mos. We show that the major ubiquitination site in Mos is a Lys34 residue and that replacement of this residue with a non-ubiquitinatable Arg residue markedly enhances the stability of Mos on egg activation. These results indicate that the degradation of Mos on egg activation or fertilization is mediated primarily by the N-terminal Pro2-dependent ubiquitin pathway, as in meiosis I of oocyte maturation. The N-terminal Pro2 residue of Mos appears to be naturally selected primarily for its degradation on fertilization, rather than that in meiosis I.  相似文献   

3.
The cell cycle in oocytes generally arrests at a particular meiotic stage to await fertilization. This arrest occurs at metaphase of meiosis II (meta-II) in frog and mouse, and at G1 phase after completion of meiosis II in starfish. Despite this difference in the arrest phase, both arrests depend on the same Mos-MAPK (mitogen-activated protein kinase) pathway, indicating that the difference relies on particular downstream effectors. Immediately downstream of MAPK, Rsk (p90 ribosomal S6 kinase, p90(Rsk)) is required for the frog meta-II arrest. However, the mouse meta-II arrest challenges this requirement, and no downstream effector has been identified in the starfish G1 arrest. To investigate the downstream effector of MAPK in the starfish G1 arrest, we used a neutralizing antibody against Rsk and a constitutively active form of Rsk. Rsk was activated downstream of the Mos-MAPK pathway during meiosis. In G1 eggs, inhibition of Rsk activity released the arrest and initiated DNA replication without fertilization. Conversely, maintenance of Rsk activity prevented DNA replication following fertilization. In early embryos, injection of Mos activated the MAPK-Rsk pathway, resulting in G1 arrest. Moreover, inhibition of Rsk activity during meiosis I led to parthenogenetic activation without meiosis II. We conclude that immediately downstream of MAPK, Rsk is necessary and sufficient for the starfish G1 arrest. Although CSF (cytostatic factor) was originally defined for meta-II arrest in frog eggs, we propose to distinguish ;G1-CSF' for starfish from ;meta-II-CSF' for frog and mouse. The present study thus reveals a novel role of Rsk for G1-CSF.  相似文献   

4.
Gonadotropic stimulation of meiotic resumption in mice is dependent upon mitogen-activated protein kinase (MAPK) activation in the somatic compartment of the follicle. By contrast, spontaneous resumption of meiosis is independent of MAPK activation. In view of the suggested role of meiosis-activating sterol (MAS) in oocyte maturation we have (i) compared MAPK activation in rat preovulatory follicles stimulated by LH or by accumulation of endogenous MAS by using an inhibitor of MAS conversion, AY9944; (ii) examined whether stimulation of meiosis by MAS is dependent upon MAPK activation using denuded oocytes (DO) of Mos- null mice (hereafter Mos(-/-)) with oocytes unable to activate MAPK. Rat preovulatory follicles responded to LH or AY9944 stimulation by MAPK activation. Inhibition of MAPK phosphorylation blocked both LH- and AY9944 triggered resumption of meiosis. In mouse cumulus-enclosed oocytes (CEOs) and DOs AY9944 stimulated GVB in wild-type and Mos(-/-) mouse CEOs cultured with hypoxanthine (Hx). Addition of MAS or AY9944 to mouse DOs cultured with Hx induced resumption of meiosis only in wild-type and Mos(+/-) oocytes, but they were ineffective in Mos(-/-) oocytes. The observed sluggish activation of MAPK induced by AY9944 in rat follicle-enclosed oocytes (FEO) may cause the delay in meiotic resumption in response to MAS and AY9944 stimulation. Further, it is incompatible with the suggested role of MAS as an obligatory mediator of LH in the induction of meiotic maturation. MAPK/MOS activation, whether in the somatic compartment or in denuded oocytes, is required for MAS- like LH-, FSH-, or EGF-induced resumption of meiosis.  相似文献   

5.
Mammalian eggs are arrested in metaphase II of meiosis until fertilization. Arrest is maintained by cytostatic factor (CSF) activity, which is dependent on the MOS-MEK-MAPK pathway. Inhibition of MEK1/2 with a specific inhibitor, U0126, parthenogenetically activated mouse eggs, producing phenotypes similar to Mos(-/-) parthenogenotes (premature, unequal cleavages and large polar bodies). U0126 inactivated MAPK in eggs within 1 h, in contrast to the 5 h required after fertilization, while the time course of MPF inactivation was similar in U0126-activated and fertilized eggs. We also found that inactivation of MPF by the cdc2 kinase inhibitor roscovitine induced parthenogenetic activation. Inactivation of MPF by roscovitine resulted in the subsequent inactivation of MAPK with a time course similar to that following fertilization. Notably, roscovitine also produced some Mos(-/-)-like phenotypes, indistinguishable from U0126 parthenogenotes. Simultaneous inhibition of both MPF and MAPK in eggs treated with roscovitine and U0126 produced a very high proportion of eggs with the more severe phenotype. These findings confirm that MEK is a required component of CSF in mammalian eggs and imply that the sequential inactivation of MPF followed by MAPK inactivation is required for normal spindle function and polar body emission.  相似文献   

6.
蛋白激酶在卵母细胞减数分裂和受精中的作用   总被引:5,自引:0,他引:5  
脊椎动物卵母细胞的减数分裂和受精过程受到多种蛋白激酶的调节。近年来对于卵母细胞成熟、活化和受精的分子机制研究取得了长足进步 ,发现促成熟因子 (MPF)和促分裂原活化蛋白激酶 (MAPK)是调节卵母细胞细胞周期的关键分子 ,二者的激活和失活导致了减数分裂的恢复、阻滞和完成。许多蛋白激酶通过调节MPF和MAPK活性来影响减数分裂。Polo like激酶活化MPF ,Mos激活MAPK而启动成熟分裂并维持中期阻滞。CaMKII通过泛素途径灭活MPF使卵突破MII期阻滞。另外 ,p90 rsk作为MAPK的下游分子参与减数分裂调节 ,蛋白激酶C(PKC)诱导皮质颗粒排放并抑制MAPK激活 ,酪氨酸蛋白激酶家族成员介导受精诱发的Ca2 释放。这些蛋白激酶的协同作用推动了卵母细胞正常的成熟与受精  相似文献   

7.
Unfertilized eggs of the newt, Cynops pyrrhogaster, are arrested at the second meiotic metaphase, with activity of the M‐phase promoting factor (MPF) maintained at a high level. After fertilization, the eggs resume the cell cycle, and emit the second polar body. When the change in [Ca2+]i in the fertilized eggs was monitored by aequorin, an early increase in [Ca2+]i was observed 5–10 min after insemination and continued for about 30 sec. A late increase in [Ca2+]i then occurred 10–15 min after fertilization and continued for 30–40 min. The injection of 1,2‐Bis (2 aminophenoxy) ethane‐N,N,N′,N′,‐tetraacetic acid (BAPTA) into unfertilized eggs inhibited reinitiation of the cell cycle after fertilization. Western blot analysis with antibodies against cyclin B1 or Mos indicated that both cyclin B1 and Mos were present in unfertilized eggs, but both disappeared within 30 min after fertilization. Treatment with Ca2+‐ionophore decreased both cyclin B1 and Mos. Chymotryptic activity in Cynops egg extracts was not significantly increased after fertilization or activation by treatment with the Ca2+‐ionophore. No change in [Ca2+]i was observed following treatment with cycloheximide, but the amount of both cyclin B1 and Mos rapidly decreased. These results indicate that resumption of meiosis in Cynops eggs is induced by an increase in [Ca2+]i at fertilization, which causes degradation of both cyclin B1 and Mos by inhibition of de novo synthesis of those proteins. Mol. Reprod. Dev. 53:341–349, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

8.
Meiosis is a particular example of a cell cycle, characterized by two successive divisions without an intervening interphase. Resumption of meiosis in oocytes is associated with activation of maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK). The activity of MPF declines during the transition between the two meiotic divisions, whereas the activity of MAPK is sustained. Attempts to disclose the interplay between these key regulators of meiosis in both amphibian and mammalian oocytes generated contradictory results. Furthermore, the enzyme that governs the suppression of interphase in mammals is still unidentified. To our knowledge, we provide herein the first demonstration in a mammalian system that inhibition of MPF at reinitiation of meiosis abrogated Mos expression and MAPK activation. We also show that oocytes, in which reactivation of MPF at completion of the first telophase was prevented, exhibited an interphase nucleus with decondensed chromosomes. Inhibition of MAPK did not interfere with the progression to the second meiotic metaphase but, rather, resulted in parthenogenic activation. We conclude that in rat oocytes, MPF regulates MAPK activation and its timely reactivation prevents the oocytes from entering interphase.  相似文献   

9.
Meiosis produces haploid gametes by accurately reducing chromosome ploidy through one round of DNA replication and two subsequent rounds of chromosome segregation and cell division. The cell divisions of female meiosis are highly asymmetric and give rise to a large egg and two very small polar bodies that do not contribute to development. These asymmetric divisions are driven by meiotic spindles that are small relative to the size of the egg and have one pole juxtaposed against the cell cortex to promote polar body extrusion. An additional unique feature of female meiosis is that fertilization occurs before extrusion of the second polar body in nearly all animal species. Thus sperm-derived chromosomes are present in the egg during female meiosis. Here, we explore the idea that the asymmetry of female meiosis spatially separates the sperm from the meiotic spindle to prevent detrimental interactions between the spindle and the paternal chromosomes.  相似文献   

10.
Dupré A  Jessus C  Ozon R  Haccard O 《The EMBO journal》2002,21(15):4026-4036
In Xenopus oocytes, the c-mos proto-oncogene product has been proposed to act downstream of progesterone to control the entry into meiosis I, the transition from meiosis I to meiosis II, which is characterized by the absence of S phase, and the metaphase II arrest seen prior to fertilization. Here, we report that inhibition of Mos synthesis by morpholino antisense oligonucleotides does not prevent the progesterone-induced initiation of Xenopus oocyte meiotic maturation, as previously thought. Mos-depleted oocytes complete meiosis I but fail to arrest at metaphase II, entering a series of embryonic-like cell cycles accompanied by oscillations of Cdc2 activity and DNA replication. We propose that the unique and conserved role of Mos is to prevent mitotic cell cycles of the female gamete until the fertilization in Xenopus, starfish and mouse oocytes.  相似文献   

11.
Vertebrate oocytes arrest in the second metaphase of meiosis (metaphase II [MII]) by an activity called cytostatic factor (CSF), with aligned chromosomes and stable spindles. Segregation of chromosomes occurs after fertilization. The Mos/.../MAPK (mitogen-activated protein kinases) pathway mediates this MII arrest. Using a two-hybrid screen, we identified a new MAPK partner from a mouse oocyte cDNA library. This protein is unstable during the first meiotic division and accumulates only in MII, where it localizes to the spindle. It is a substrate of the Mos/.../MAPK pathway. The depletion of endogenous RNA coding for this protein by three different means (antisense RNA, double-stranded [ds] RNA, or morpholino oligonucleotides) induces severe spindle defects specific to MII oocytes. Overexpressing the protein from an RNA not targeted by the morpholino rescues spindle destabilization. However, dsRNA has no effect on the first two mitotic divisions. We therefore have discovered a new MAPK substrate involved in maintaining spindle integrity during the CSF arrest of mouse oocytes, called MISS (for MAP kinase-interacting and spindle-stabilizing protein).  相似文献   

12.
Mos is a germ cell-specific serine/threonine kinase and is required for Xenopus oocyte maturation. Active Mos stimulates a mitogen-activated protein kinase (MAPK) by directly phosphorylating and activating MAPK kinase (MKK). We report here that the Xenopus homolog of the beta subunit of casein kinase II (CKII beta) binds to and regulates Mos. The Mos-interacting region of CKII beta was mapped to the C terminus. Mos bound to CKII beta in somatic cells ectopically expressing Mos and CKII beta as well as in unfertilized Xenopus eggs. CKII beta inhibited Mos-mediated MAPK activation in rabbit reticulocyte lysates and repressed MKK activation by v-Mos in a coupled kinase assay. In addition, microinjection of CKII beta mRNA into Xenopus oocytes inhibited progesterone-induced meiotic maturation and MAPK activation, presumably by binding of CKII beta to Mos and thereby inhibiting MAPK activation. Moreover, this inhibitory phenotype could be rescued by another protein that binds to CKII beta, CKII alpha. The ability of ectopic CKII beta to inhibit meiotic maturation and the detection of a complex between endogenous Mos and CKII beta suggest that CKII beta may act as an inhibitor of Mos during oocyte maturation, perhaps setting a threshold beyond which Mos protein must accumulate before it can activate the MAPK pathway.  相似文献   

13.
Extensive survey of meiotic metaphase II arrest during oocyte maturation in vertebrates revealed that the mitogen-activated protein kinase (MAPK) pathway regulated by the c-mos proto-oncogene product, Mos, has an essential role in cytostatic activity, termed cytostatic factor (CSF). In contrast, little is known in invertebrates in which meiotic arrest occurs in most cases at metaphase I (MI arrest). A parthenogenetic insect, the sawfly Athalia rosae, in which artificial egg activation is practicable, has advantages to investigate the mechanisms of MI arrest. Both the MAPK/extracellular signal-regulated protein kinase kinase (MEK) and MAPK were phosphorylated and maintained active in MI-arrested sawfly eggs, whereas they were dephosphorylated soon after egg activation. Treatment of MI-arrested eggs with U0126, an inhibitor of MEK, resulted in dephosphorylation of MAPK and MI arrest was resumed. The sawfly c-mos gene orthologue encoding a serine/threonine kinase was cloned and analyzed. It was expressed in nurse cells in the ovaries. To examine CSF activity of the sawfly Mos, synthesized glutathione S-transferase (GST)-fusion sawfly Mos protein was injected into MI-resumed eggs in which MEK and MAPK were dephosphorylated. Both MEK and MAPK were phosphorylated again upon injection. In these GST-fusion sawfly Mos-injected eggs subsequent mitotic (syncytial) divisions were blocked and embryonic development was ceased. These results demonstrated that the MEK-MAPK pathway was involved in maintaining CSF arrest in sawfly eggs and Mos functioned as its upstream regulatory molecule.  相似文献   

14.
J. Loidl  K. Nairz 《Genetics》1997,146(1):79-88
Chromosomes of altered size were found in the meiotic products of a haploid Saccharomyces cerevisiae strain by pulsed field gel electrophoretic separation of whole chromosomes. About 7% of haploid meioses produced chromosomes that differed by >/=10 kb from their wild-type counterparts. Chromosomes most often became enlarged or shortened due to recombination events between sister chromatids at nonallelic sequences. By this mechanism chromosome III acquired tandem arrays of up to eight extra copies of the ~100 kb MAT-HMR segment during repeated rounds of haploid meioses. Enlarged chromosomes III were unstable and changed their size during meiosis more often than remaining unchanged. Altered chromosomes appeared also as the products of intrachromatid recombination and of reciprocal translocations caused by ectopic recombination between nonhomologous chromosomes. In diploid meiosis, chromosomes of altered size occurred at least 10 times less frequently, whereas in mitotic cultures cells with altered karyotypes were virtually absent. The results show that various forms of ectopic recombination are promoted by the absence of allelic homologies.  相似文献   

15.
In Xenopus oocytes, initiation of maturation is dependent on reduction of cyclic AMP-dependent protein kinase (PKA) activity and the synthesis of the mos proto-oncogene product. Mos is required during meiosis I for the activation of both maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK). Here we show that injection of the catalytic subunit of PKA (PKAc) prevented progesterone-induced synthesis of endogenous Mos as well as downstream MPF and MAPK activation. However, PKAc did not prevent injected soluble Mos product from activating MAPK. While MAPK is activated during Mos-PKAc coinjection, attendant MPF activation is blocked. Additionally, PKAc caused a potent block in the electrophoretic mobility shift of cdc25 that is associated with phosphatase activation. This inhibition of cdc25 activity was not reversed by progesterone, Mos, or MPF. We conclude that PKAc acts as a negative regulator at several points in meiotic maturation by preventing both Mos translation and MPF activation.  相似文献   

16.
17.
Mitogen-activated protein kinase (MAPK) becomes activated during the meiotic maturation of pig oocytes, but its physiological substrate is unknown. The 90-kDa ribosome S6 protein kinase (p90rsk) is the best known MAPK substrate in Xenopus and mouse oocytes. The present study was designed to investigate the expression, phosphorylation, subcellular localization, and possible roles of p90rsk in porcine oocytes during meiotic maturation, fertilization, and parthenogenetic activation. This kinase was partially phosphorylated in oocytes at germinal vesicle (GV) stage through a MAPK-independent mechanism, but its full phosphorylation is dependent on MAPK activity. After fertilization or electrical activation, p90rsk was dephosphorylated shortly before pronucleus formation, which coincided with the inactivation of MAPK. A protein phosphatase inhibitor, okadaic acid, accelerated the phosphorylation of p90rsk during meiotic maturation and induced its rephosphorylation in activated eggs. MAPK kinase (MAPKK or MEK) inhibitor U0126 inhibited the activation of MAPK and p90rsk in both cumulus-enclosed and denuded pig oocytes, but prevented GV breakdown (GVBD) only in cumulus-enclosed oocytes. Active MAPK and p90rsk were detected in pig cumulus cells, and U0126 induced their dephosphorylation. In meiosis II arrested eggs, U0126 led to the inactivation of MAPK and p90rsk, as well as the interphase transition of the eggs. P90rsk was distributed evenly in GV oocytes, but it accumulated in the nucleus before GVBD. It was localized to the meiotic spindle after GVBD and concentrated in the spindle mid zone during emission of the polar bodies. All these results suggest that p90rsk is downstream of MAPK and plays functional roles in the regulation of nuclear status and microtubule organization. Although MAPK and p90rsk activity are not essential for the spontaneous meiotic resumption in denuded oocytes, activation of this cascade in cumulus cells is indispensable for the gonadotropin-induced meiotic resumption of pig oocytes.  相似文献   

18.
Inoue D  Sagata N 《The EMBO journal》2005,24(5):1057-1067
During the meiotic cell cycle in Xenopus oocytes, p90(rsk), the downstream kinase of the Mos-MAPK pathway, interacts with and inhibits the Cdc2 inhibitory kinase Myt1. However, p90(rsk) is inactivated after fertilization due to the degradation of Mos. Here we show that the Polo-like kinase Plx1, instead of p90(rsk), interacts with and inhibits Myt1 after fertilization of Xenopus eggs. At the M phase of the embryonic cell cycle, Cdc2 phosphorylates Myt1 on Thr478 and thereby creates a docking site for Plx1. Plx1 can phosphorylate Myt1 and inhibit its kinase activity both in vitro and in vivo. The interaction between Myt1 and Plx1 is required, at least in part, for normal embryonic cell divisions. Finally, and interestingly, Myt1 is phosphorylated on Thr478 even during the meiotic cell cycle, but its interaction with Plx1 is largely inhibited by p90(rsk)-mediated phosphorylation. These results indicate a switchover in the Myt1 inhibition mechanism at fertilization of Xenopus eggs, and strongly suggest that Plx1 acts as a direct inhibitory kinase of Myt1 in the mitotic cell cycles in Xenopus.  相似文献   

19.
One distinguishing feature of vertebrate oocyte meiosis is its discontinuity; oocytes are released from their prophase I arrest, usually by hormonal stimulation, only to again halt at metaphase II, where they await fertilization. The product of the c-mos proto-oncogene, Mos, is a key regulator of this maturation process. Mos is a serine-threonine kinase that activates and/or stabilizes maturation-promoting factor (MPF), the master cell cycle switch, through a pathway that involves the mitogen-activated protein kinase (MAPK) cascade. Oocytes arrested at prophase I lack detectable levels of Mos, which must be synthesized from a pool of maternal mRNAs for proper maturation. While Mos is necessary throughout maturation in Xenopus, it seems to be required only for meiosis II in the mouse. The translational activation of c-mos mRNA at specific times during meiosis requires cytoplasmic polyadenylation. Cis- and trans-acting factors for polyadenylation are, therefore, essential elements of maturation.  相似文献   

20.
N Furuno  Y Ogawa  J Iwashita  N Nakajo    N Sagata 《The EMBO journal》1997,16(13):3860-3865
In vertebrates, M phase-promoting factor (MPF), a universal G2/M regulator in eukaryotic cells, drives meiotic maturation of oocytes, while cytostatic factor (CSF) arrests mature oocytes at metaphase II until fertilization. Cdk2 kinase, a G1/S regulator in higher eukaryotic cells, is activated during meiotic maturation of Xenopus oocytes and, like Mos (an essential component of CSF), is proposed to be involved in metaphase II arrest in mature oocytes. In addition, cdk2 kinase has been shown recently to be essential for MPF activation in Xenopus embryonic mitosis. Here we report injection of Xenopus oocytes with the cdk2 kinase inhibitor p21Cip in order to (re)evaluate the role of cdk2 kinase in oocyte meiosis. Immature oocytes injected with p21Cip can enter both meiosis I and meiosis II normally, as evidenced by the typical fluctuations in MPF activity. Moreover, mature oocytes injected with p21Cip are retained normally in metaphase II for a prolonged period, whereas those injected with neutralizing anti-Mos antibody are released readily from metaphase II arrest. These results argue strongly against a role for cdk2 kinase in MPF activation and its proposed role in metaphase II arrest, in Xenopus oocyte meiosis. We discuss the possibility that cdk2 kinase stored in oocytes may function, as a maternal protein, solely for early embryonic cell cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号