首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuregulin (NRG; heregulin) is overexpressed in ∼30% of breast cancers and mediates various processes involved in tumor progression, including tumor cell migration and invasion. Here, we show that NRG mediates its effects on tumor cell migration via PKD1. Downstream of RhoA, PKD1 can prevent directed cell migration through phosphorylation of its substrate SSH1L. NRG exerts its inhibitory effects on PKD1 through Rac1/NADPH oxidase, leading to decreased PKD1 activation loop phosphorylation and decreased activity toward SSH1L. The consequence of PKD1 inhibition by NRG is decreased binding of 14-3-3 to SSH1L, localization of SSH1L to F-actin at the leading edge, and increased cofilin activity, resulting in increased reorganization of the actin cytoskeleton and cell motility. Our data provide a mechanism through which the Rho GTPase Rac1 cross-talks with PKD1 signaling pathways to facilitate directed cell migration.  相似文献   

2.
α6β4 integrin, a component of hemidesmosomes, also plays a role in keratinocyte migration via signaling through Rac1 to the actin-severing protein cofilin. Here, we tested the hypothesis that the β4 integrin-associated plakin protein, bullous pemphigoid antigen 1e (BPAG1e) functions as a scaffold for Rac1/cofilin signal transduction. We generated keratinocyte lines exhibiting a stable knockdown in BPAG1e expression. Knockdown of BPAG1e does not affect expression levels of other hemidesmosomal proteins, nor the amount of β4 integrin expressed at the cell surface. However, the amount of Rac1 associating with β4 integrin and the activity of both Rac1 and cofilin are significantly lower in BPAG1e-deficient cells compared with wild-type keratinocytes. In addition, keratinocytes deficient in BPAG1e exhibit loss of front-to-rear polarity and display aberrant motility. These defects are rescued by inducing expression of constitutively active Rac1 or active cofilin. These data indicate that the BPAG1e is required for efficient regulation of keratinocyte polarity and migration by determining the activation of Rac1.  相似文献   

3.
The motility of keratinocytes is an essential component of wound closure and the development of epidermal tumors. In vitro, the specific motile behavior of keratinocytes is dictated by the assembly of laminin-332 tracks, a process that is dependent upon alpha6beta4 integrin signaling to Rac1 and the actin-severing protein cofilin. Here we have analyzed how cofilin phosphorylation is regulated by phosphatases (slingshot (SSH) or chronophin (CIN)) downstream of signaling by alpha6beta4 integrin/Rac1 in human keratinocytes. Keratinocytes express all members of the SSH family (SSH1, SSH2, and SSH3) and CIN. However, expression of phosphatase-dead versions of all three SSH proteins, but not dominant inactive CIN, results in phosphorylation/inactivation of cofilin, changes in actin cytoskeleton organization, loss of cell polarity, and assembly of aberrant arrays of laminin-332 in human keratinocytes. SSH activity is regulated by 14-3-3 protein binding, and intriguingly, 14-3-3/alpha6beta4 integrin protein interaction is required for keratinocyte migration. We wondered whether 14-3-3 proteins function as regulators of Rac1-mediated keratinocyte migration patterns. In support of this hypothesis, inhibition of Rac1 results in an increase in 14-3-3 protein association with SSH. Thus, we propose a novel mechanism in which alpha6beta4 integrin signaling via Rac1, 14-3-3 proteins, and SSH family members regulates cofilin activation, cell polarity, and matrix assembly, leading to specific epidermal cell migration behavior.  相似文献   

4.
LJ Zhang  BB Tao  MJ Wang  HM Jin  YC Zhu 《PloS one》2012,7(9):e44590
Hydrogen sulfide (H(2)S) is now considered as the third gaseotransmitter, however, the signaling pathways that modulate the biomedical effect of H(2)S on endothelial cells are poorly defined. In the present study, we found in human endothelial cells that H(2)S increased cell migration rates and induced a marked reorganization of the actin cytoskeleton, which was prevented by depletion of Rac1. Pharmacologic inhibiting vascular endothelial growth factor receptor (VEGFR) and phosphoinositide 3-kinase (PI3K) both blunted the activation of Rac1 and the promotion of cell migration induced by H(2)S. Moreover, H(2)S-induced Rac1 activation was selectively dependent on the presence of the PI3K p110α isoform. Activated Rac1 by H(2)S thus in turn resulted in the phosphorylation of the F-actin polymerization modulator, cofilin. Additionally, inhibiting of extracellular signal-regulated kinase (ERK) decreased the augmented cell migration rate by H(2)S, but had no effect on Rac1 activation. These results indicate that Rac1 conveys the H(2)S signal to microfilaments inducing rearrangements of actin cytoskeleton that regulates cell migration. VEGFR-PI3K was found to be upstream pathway of Rac1, while cofilin acted as a downstream effector of Rac1. ERK was also shown to be involved in the action of H(2)S on endothelial cell migration, but independently of Rac1.  相似文献   

5.
Whether alpha6beta4 integrin regulates migration remains controversial. beta4 integrin-deficient (JEB) keratinocytes display aberrant migration in that they move in circles, a behavior that mirrors the circular arrays of laminin (LM)-332 in their matrix. In contrast, wild-type keratinocytes and JEB keratinocytes, induced to express beta4 integrin, assemble laminin-332 in linear tracks over which they migrate. Moreover, laminin-332-dependent migration of JEB keratinocytes along linear tracks is restored when cells are plated on wild-type keratinocyte matrix, whereas wild-type keratinocytes show rotation over circular arrays of laminn-332 in JEB keratinocyte matrix. The activities of Rac1 and the actin cytoskeleton-severing protein cofilin are low in JEB keratinocytes compared with wild-type cells but are rescued following expression of wild-type beta4 integrin in JEB cells. Additionally, in wild-type keratinocytes Rac1 is complexed with alpha6beta4 integrin. Moreover, Rac1 or cofilin inactivation induces wild-type keratinocytes to move in circles over rings of laminin-332 in their matrix. Together these data indicate that laminin-332 matrix organization is determined by the alpha6beta4 integrin/actin cytoskeleton via Rac1/cofilin signaling. Furthermore, our results imply that the organizational state of laminin-332 is a key determinant of the motility behavior of keratinocytes, an essential element of skin wound healing and the successful invasion of epidermal-derived tumor cells.  相似文献   

6.
Cellular stimuli generate reactive oxygen species (ROS) via the local action of NADPH oxidases (Nox) to modulate cytoskeletal organization and cell migration through unknown mechanisms. Cofilin is a major regulator of cellular actin dynamics whose activity is controlled by phosphorylation/dephosphorylation at Ser3. Here we show that Slingshot-1L (SSH-1L), a selective cofilin regulatory phosphatase, is involved in H2O2-induced cofilin dephosphorylation and activation. SSH-1L is activated by its release from a regulatory complex with 14-3-3ζ protein through the redox-mediated oxidation of 14-3-3ζ by H2O2. The ROS-dependent activation of the SSH-1L-cofilin pathway stimulates the SSH-1L–dependent formation of cofilin-actin rods in cofilin-GFP–expressing HeLa cells. Similarly, the formation of endogenous ROS stimulated by angiotensin II (AngII) also activates the SSH-1L-cofilin pathway via oxidation of 14-3-3ζ to increase AngII-induced membrane ruffling and cell motility. These results suggest that the formation of ROS by NADPH oxidases engages a SSH-1L-cofilin pathway to regulate cytoskeletal organization and cell migration.  相似文献   

7.
Vascular smooth muscle cells (VSMCs) are subjected to various types of mechanical forces within the vessel wall. Although it is known that VSMCs undergo cell body reorientation in response to mechanical stimulation, how this mechanical stretch is transduced within the cell into biochemical signals causing cytoskeleton reorganization remains unclear. Cofilin, a protein that controls actin dynamics, is activated by Slingshot phosphatase-dependent serine 3 dephosphorylation by redox-dependent mechanisms. Nox4 is a main source of reactive oxygen species (ROS) in the vessel wall that localizes in association with the cytoskeleton. Therefore, we hypothesize that Nox4 mediates redox-dependent activation of cofilin, which is required for cytoskeletal reorganization and cell reorientation after mechanical stimulation. In this study, we found that mechanical stretch stimulates ROS production in VSMCs and that the signaling that leads to cell reorientation requires hydrogen peroxide but not superoxide. Indeed, mechanical stretch induces cofilin activation and stretch-induced cytoskeletal reorganization, and cell reorientation is inhibited in cells where cofilin activity has been downregulated. Importantly, Nox4-deficient cells fail to activate cofilin and to undergo cell reorientation, a phenotype rescued by the expression of a constitutively active cofilin mutant. Our results demonstrate that in VSMCs mechanical stimulation activates cofilin by a Nox4-dependent mechanism and that this pathway is required for cytoskeleton reorganization and cell reorientation.  相似文献   

8.
Nestin-expressing neural progenitor cells (NPCs) have been isolated from hippocampus of brains and propagated with epidermal growth factor and basic fibroblast growth factor (bFGF). However, the underlying signaling mechanisms regulating NPC proliferation remain elusive. Here we showed that neuregulinbeta1 (NRG), like bFGF, effectively promoted the proliferation of hippocampus-derived NPCs and maintained the progenitor states of NPCs. Activation of protein kinase C (PKC), a downstream effector of phospholipase C (PLC), with 12-O-tetradecanoylphorbol-13-acetate (TPA) mimicked the NRG-induced proliferation of NPCs. The synergic effect of TPA plus NRG on neurosphere growth further prompted us to find that NRG induced NPC propagation through PLC/PKC signaling pathway. ErbB4, an important functional receptor of NRG, had an interaction with PLCgamma1 protein. In addition, inactivation of PLC pathway led to severe proliferative suppression of NPCs. Our study suggests that activation of PLC/PKC pathway plays an essential role in the NRG-induced proliferation of hippocampus-derived NPCs.  相似文献   

9.
Neuregulins (NRGs), which are highly expressed in the nervous system, bind and activate two receptor tyrosine kinases, ErbB-3 and ErbB-4. Recently, we have shown that ErbB-4 receptors expressed in PC12 cells mediate NRG-induced differentiation through the MAPK signaling pathway. Here we demonstrate that NRG induces an increase in the intracellular concentration of reactive oxygen species (ROS). N-acetylcysteine, a ROS scavenger, inhibited NRG-induced activation of Ras and Erk and PC12-ErbB-4 cell differentiation. These results suggest that ROS production is involved in NRG-mediated neuronal differentiation and that ROS can regulate activation of Ras and Erk. Constitutively active Ras enhanced ROS production and dominant negative Ras inhibited NRG-induced ROS production, suggesting, a positive regulatory loop between Ras and ROS. The mitogen, EGF, induced short-term ROS production whereas NRG and NGF, which induce cell differentiation, induced prolonged ROS production. These results strongly suggest that the kinetics of ROS production may determine whether the cells will differentiate or proliferate.  相似文献   

10.
Previously, we proposed the following mechanism for konjac ceramide (kCer)-mediated neurite outgrowth inhibition: kCer binds to Nrp as a Sema3A agonist, resulting in Nrp1/PlexA complex formation and activation of the Sema3A signaling pathway to induce phosphorylation of CRMP2 and microtubule depolymerization. The Sema3A/Nrp1 signaling pathway is known to be also expressed in normal human keratinocytes. To determine whether kCer can function in human keratinocytes as it does in neurites, that is, if it can bind to Nrp1 in place of Sema3A, we studied the effect of kCer on HaCaT cell migration activity. Using a trans-well chamber assay, we compared the effects of Sema3A and kCer on serum-derived cell migration activity. kCer showed Sema3A-like suppression of cell migration activity and induction of cellular Cofilin phosphorylation. In addition, kCer and Sema3A inhibited histamine (His)-enhanced migration of immature HaCaT cells. We have demonstrated that kCer does not interact with histaime receptors H1R or H4R directly, but we speculate that kCer may transduce a signal downstream of the His signaling pathway.  相似文献   

11.
Herein, we provide new contribution to the mechanisms involved in keratinocytes response to hyperosmotic shock showing, for the first time, the participation of Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP) activity in this event. We reported that sorbitol-induced osmotic stress mediates alterations in the phosphorylation of pivotal cytoskeletal proteins, particularly Src and cofilin. Furthermore, an increase in the expression of the phosphorylated form of LMWPTP, which was followed by an augment in its catalytic activity, was observed. Of particular importance, these responses occurred in an intracellular milieu characterized by elevated levels of reduced glutathione (GSH) and increased expression of the antioxidant enzymes glutathione peroxidase and glutathione reductase. Altogether, our results suggest that hyperosmostic stress provides a favorable cellular environment to the activation of LMWPTP, which is associated with increased expression of antioxidant enzymes, high levels of GSH and inhibition of Src kinase. Finally, the real contribution of LMWPTP in the hyperosmotic stress response of keratinocytes was demonstrated through analysis of the effects of ACP1 gene knockdown in stressed and non-stressed cells. LMWPTP knockdown attenuates the effects of sorbitol induced-stress in HaCaT cells, mainly in the status of Src kinase, Rac and STAT5 phosphorylation and activity. These results describe for the first time the participation of LMWPTP in the dynamics of cytoskeleton rearrangement during exposure of human keratinocytes to hyperosmotic shock, which may contribute to cell death.  相似文献   

12.
The low density lipoprotein receptor-related protein (LRP-1) binds and mediates the endocytosis of multiple ligands, transports the urokinase-type plasminogen activator receptor (uPAR) and other membrane proteins into endosomes, and binds intracellular adaptor proteins involved in cell signaling. In this paper, we show that in murine embryonic fibroblasts (MEFs) and L929 cells, LRP-1 functions as a major regulator of Rac1 activation, and that this activity depends on uPAR. LRP-1-deficient MEFs demonstrated increased Rac1 activation compared with LRP-1-expressing MEFs, and this property was reversed by expressing the VLDL receptor, a member of the same gene family as LRP-1, with overlapping ligand-binding specificity. Neutralizing the activity of LRP-1 with receptor-associated protein (RAP) increased Rac1 activation and cell migration in MEFs and L929 cells. The same parameters were unaffected by RAP in uPAR-/- MEFs, prepared from uPAR gene knockout embryos, and in uPAR-deficient LM-TK- cells. Untreated uPAR+/+ MEFs demonstrated substantially increased Rac1 activation compared with uPAR-/- MEFs. In addition to Rac1, LRP-1 suppressed activation of extracellular signal-regulated kinase (ERK) in MEFs; however, it was Rac1 (and not ERK) that was responsible for the effects of LRP-1 on MEF migration. Thus, LRP-1 regulates two signaling proteins in the same cell (Rac1 and ERK), both of which may impact on cell migration. In uPAR-negative cells, LRP-1 neutralization does not affect Rac1 activation, and other mechanisms by which LRP-1 may regulate cell migration are not unmasked.  相似文献   

13.
14.
Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells induced by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that vitreous-transformed human RPE cells undergo cytoskeletal rearrangements via Rac1 GTPase-dependent pathways that modulate LIMK1 and cofilin activity. The TGFβ-like activity of the vitreous may participate in this effect. Actin polymerization causes the cytoskeletal rearrangements that lead to the plasticity of vitreous-transformed RPE cells in PVR.  相似文献   

15.

Objective

Nitric oxide (NO) has been shown to improve wound healing, but the mechanism underlying this function is not well defined. Here, we explored the effect of NO on the migration of a human keratinocyte cell line (HaCaT) and its possible mechanism.

Methods

The effects of NO on HaCaT cells in the presence of different concentrations of the NO donor sodium nitroprusside (SNP) were evaluated in a cell migration assay. Subsequently, the cytoskeleton reorganization of cultured HaCaT cells stained with rhodamine-phalloidin was observed with a confocal laser scanning microscope. The mRNA expression and active proteins of CDC42, Rac1 and RhoA in the cultured cells were determined via RT-PCR and pull-down assays, respectively. Furthermore, the roles of various inhibitors or agonists specific to cGMP, PKG and CDC42, Rac1, RhoA in the effects of NO on HaCaT cell migration, F-actin stress fibre formation, and Rho GTPase expression were observed.

Results

It was also found HaCaT cell migration was increased by SNP in a dose-dependent manner, and the other two NO donors either spermine NONOate or SNAP had almost the same effects on HaCat cell migrations. The formation of F-actin stress fibres in SNP-treated HaCaT cells was increased. The mRNA expression and the active proteins of CDC42, Rac1 and RhoA were found to be upregulated after SNP treatment. Similar effects were observed after the cells were treated with a cGMP or PKG agonist. Additionally, the SNP-mediated upregulation of the mRNA expression and the active proteins of CDC42, Rac1 and RhoA were inhibited by the addition of an inhibitor of cGMP or PKG. Moreover, the SNP-mediated promoting effects of migration and cytoskeleton reorganization were inhibited by treatment with inhibitors of cGMP, PKG, CDC42, Rac1 and RhoA respectively.

Conclusion

Our data indicated that the stimulatory effects of NO on cell migration of HaCaT cells are mediated by the cGMP signalling pathway via the upregulation of Rho-GTPase expression, which might promote cytoskeleton reorganization.  相似文献   

16.
Activation of the non-phagocytic superoxide-producing NADPH oxidase Nox1, complexed with p22(phox) at the membrane, requires its regulatory soluble proteins Noxo1 and Noxa1. However, the role of the small GTPase Rac remained to be clarified. Here we show that Rac directly participates in Nox1 activation via interacting with Noxa1. Electropermeabilized HeLa cells, ectopically expressing Nox1, Noxo1, and Noxa1, produce superoxide in a GTP-dependent manner, which is abrogated by expression of a mutant Noxa1(R103E), defective in Rac binding. Superoxide production in Nox1-expressing HeLa and Caco-2 cells is decreased by depletion or sequestration of Rac; on the other hand, it is enhanced by expression of the constitutively active Rac1(Q61L), but not by that of a mutant Rac1 with the A27K substitution, deficient in binding to Noxa1. We also demonstrate that Nox1 activation requires membrane recruitment of Noxa1, which is normally mediated via Noxa1 binding to Noxo1, a protein tethered to the Nox1 partner p22(phox): the Noxa1-Noxo1 and Noxo1-p22(phox) interactions are both essential for Nox1 activity. Rac likely facilitates the membrane localization of Noxa1: although Noxa1(W436R), defective in Noxo1 binding, neither associates with the membrane nor activates Nox1, the effects of the W436R substitution are restored by expression of Rac1(Q61L). The Rac-Noxa1 interaction also serves at a step different from the Noxa1 localization, because the binding-defective Noxa1(R103E), albeit targeted to the membrane, does not support superoxide production by Nox1. Furthermore, a mutant Noxa1 carrying the substitution of Ala for Val-205 in the activation domain, which is expected to undergo a conformational change upon Rac binding, fully localizes to the membrane but fails to activate Nox1.  相似文献   

17.
Defining the pathways required for keratinocyte cell migration is important for understanding mechanisms of wound healing and tumor cell metastasis. We have recently identified an α6β4 integrin-Rac1 signaling pathway via which the phosphatase Slingshot (SSH) activates/dephosphorylates cofilin, thereby determining keratinocyte migration behavior. Here, we assayed the role of 14-3-3 isoforms in regulating the activity of SSH1. Using amino or carboxy terminal domains of 14-3-3ζ, we demonstrate that in keratinocytes 14-3-3ζ/τ heterodimers bind SSH1, in the absence of Rac1 signaling. This interaction leads to an inhibition of SSH1 activity, as measured by an increase in phosphorylated cofilin levels. Overexpression of the carboxy terminal domain of 14-3-3ζ acts as a dominant negative and inhibits the interaction between 14-3-3τ and SSH1. These results implicate 14-3-3ζ/τ heterodimers as key regulators of SSH1 activity in keratinocytes and suggest they play a role in cytoskeleton remodeling during cell migration.  相似文献   

18.
In the plasma membrane fraction from Caco-2 human colon carcinoma cells, active Nox1 (NADPH oxidase 1) endogenously co-localizes with its regulatory components p22(phox), NOXO1, NOXA1 and Rac1. NADPH-specific superoxide generating activity was reduced by 80% in the presence of either a flavoenzyme inhibitor DPI (diphenyleneiodonium) or NADP(+). The plasma membranes from PMA-stimulated cells showed an increased amount of Rac1 (19.6 pmol/mg), as compared with the membranes from unstimulated Caco-2 cells (15.1 pmol/mg), but other components did not change before and after the stimulation by PMA. Spectrophotometric analysis found approx. 36 pmol of FAD and 43 pmol of haem per mg of membrane and the turnover of superoxide generation in a cell-free system consisting of the membrane and FAD was 10 mol/s per mol of haem. When the constitutively active form of Rac, Rac1(Q61L) or GTP-bound Rac1 was added exogenously to the membrane, O(2)(-)-producing activity was enhanced up to 1.5-fold above the basal level, but GDP-loaded Rac1 did not affect superoxide-generating kinetics. A fusion protein [NOXA1N-Rac1(Q61L)] between truncated NOXA1(1-211) and Rac1-(Q61L) exhibited a 6-fold increase of the basal Nox1 activity, but NOXO1N(1-292) [C-terminal truncated NOXO1(1-292)] alone showed little effect on the activity. The activated forms of Rac1 and NOXA1 are essentially involved in Nox1 activation and their interactions might be responsible for regulating the O(2)(-)-producing activity in Caco-2 cells.  相似文献   

19.
Accumulating evidence indicates that protein phosphorylation regulates Nox activity. In this report, we show that serine282 residue of Nox activator 1 (NoxA1) is phosphorylated by Erk in response to EGF resulting in desensitization of Nox1 activity. Specifically, murine NoxA1 is detected as two independent protein bands in SDS PAGE, and the form of protein with higher mobility shifted to and merged with the one with lower mobility in response to EGF treatment. Pretreatment with PD98059 resulted in inhibition of NoxA1 migration in response to EGF indicating that Erk was involved in the process. Site-directed mutagenesis showed that S282A mutant but not S239A mutant failed to respond to EGF, demonstrating that serine282 is the target amino acid of Erk. Expression of S282A mutant of NoxA1 in these cells led to increased superoxide anion production in response to EGF compared to expression of the wild type, whereas the expression of S282E, a phosphomimetic mutant, resulted in significantly decreased superoxide anion generation. We also tested whether the phosphorylation of serine282 of NoxA1 affects Rac activation. Expression of S282A mutant NoxA1 up-regulated the Rac activity, whereas expression of S282E mutant led to the abrogation of Rac activation. Taken together, these results demonstrate that phosphorylation of NoxA1 is a part of the feedback mechanism that functions through activation of Rac with a net outcome of negative modulation of Nox1 activity.  相似文献   

20.
The generation of reactive oxygen species (ROS) in cells stimulated with growth factors requires the activation of phosphatidylinositol 3-kinase (PI3K) and the Rac protein. We report here that the COOH-terminal region of Nox1, a protein related to gp91(phox) (Nox2) of phagocytic cells, is constitutively associated with beta Pix, a guanine nucleotide exchange factor for Rac. Both growth factor-induced ROS production and Rac1 activation were completely blocked in cells depleted of beta Pix by RNA interference. Rac1 was also shown to bind to the COOH-terminal region of Nox1 in a growth factor-dependent manner. Moreover, the depletion of Nox1 by RNA interference inhibited growth factor-induced ROS generation. These results suggest that ROS production in growth factor-stimulated cells is mediated by the sequential activation of PI3K, beta Pix, and Rac1, which then binds to Nox1 to stimulate its NADPH oxidase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号