首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was conducted to characterize the different carbohydrate and protein fractions of wheat- and barley-based thin stillage samples. In vitro crude protein degradability of wheat- and barley-based thin stillage was estimated relative to soyabean (SBM) and canola (CM) meal using a protease enzyme assay. Results of the carbohydrate analysis showed that wheat thin stillage had similar neutral (NDF, average 328.5 g kg−1) and lower (P < 0.05) acid detergent fibre (ADF) than barley-based thin stillage. Relative to barley-based thin stillage, wheat thin stillage had higher (P < 0.05) crude protein (CP) and soluble CP content. However, the amount of CP associated with NDF and ADF was higher (P < 0.05) in barley-based thin stillage than in wheat thin stillage. Fractionation of true protein showed that most of the CP (average 707 g kg−1 of CP) was present in the slowly degradable true protein fraction and was similar in both byproducts. Glutamic acid was the main amino acid in thin stillage and was higher (P < 0.05) in wheat than in barley-based thin stillage. However, barley-based thin stillage had higher (P < 0.05) levels of lysine, methionine, arginine, threonine, leucine and isoleucine than wheat thin stillage. Results of the in vitro trial indicated that effective degradability of CP (g kg−1 of CP) followed the order (P < 0.05): SBM (665.0) > wheat thin stillage (614.0) > CM (531.0) > barley-based thin stillage (493.0). It was concluded that barley-based thin stillage had different chemical characteristics than wheat thin stillage. The reduced CP degradability of barley-based thin stillage relative to wheat thin stillage was attributed to a lower CP and a higher acid detergent in soluble CP level.  相似文献   

2.
The dry milling ethanol industry produces distiller's grains as major co-products, which are composed of unhydrolyzed and unfermented polymeric sugars. Utilization of the distiller's grains as an additional source of fermentable sugars has the potential to increase overall ethanol yields in current dry grind processes. In this study, controlled pH liquid hot water pretreatment (LHW) and ammonia fiber expansion (AFEX) treatment have been applied to enhance enzymatic digestibility of the distiller's grains. Both pretreatment methods significantly increased the hydrolysis rate of distiller's dried grains with solubles (DDGS) over unpretreated material, resulting in 90% cellulose conversion to glucose within 24h of hydrolysis at an enzyme loading of 15FPU cellulase and 40 IU beta-glucosidase per gram of glucan and a solids loading of 5% DDGS. Hydrolysis of the pretreated wet distiller's grains at 13-15% (wt of dry distiller's grains per wt of total mixture) solids loading at the same enzyme reduced cellulose conversion to 70% and increased conversion time to 72h for both LHW and AFEX pretreatments. However, when the cellulase was supplemented with xylanase and feruloyl esterase, the pretreated wet distiller's grains at 15% or 20% solids (w/w) gave 80% glucose and 50% xylose yields. The rationale for supplementation of cellulases with non-cellulolytic enzymes is given by Dien et al., later in this journal volume. Fermentation of the hydrolyzed wet distiller's grains by glucose fermenting Saccharomyces cerevisiae ATCC 4124 strain resulted in 100% theoretical ethanol yields for both LHW and AFEX pretreated wet distiller's grains. The solids remaining after fermentation had significantly higher protein content and are representative of a protein-enhanced wet DG that would result in enhanced DDGS. Enhanced DDGS refers to the solid product of a modified dry grind process in which the distiller's grains are recycled and processed further to extract the unutilized polymeric sugars. Compositional changes of the laboratory generated enhanced DDGS are also presented and discussed.  相似文献   

3.
发酵白酒糟生产饲料蛋白的优良菌种的筛选   总被引:12,自引:1,他引:12  
采用常规方法从1000多株菌(包括丝状真菌、酵母菌、链霉菌、细菌)中筛选到一批优良菌种,并进行了单菌发酵、多菌株组合发酵,不同原料配方发酵试验。在实验室条件下,发酵产物的粗蛋白含量高达35.9%,比原料本身的粗蛋白含量高50%以上,比所用培养基的粗蛋白含量高30%,发酵产物的粗纤维含量降低率为15%;粗脂肪含量为5.5%左右;产率达80%以上。结果证明,筛选到的菌株确是发酵白酒糟生产饲料蛋白的优良菌种。  相似文献   

4.
Dry mill ethanol processes produce ethanol and animal feed from whole grains, where the wastewater after the distillation and separation of solid materials is called “thin stillage.” In this work, similar production of ethanol (3.5 g/L) and biomass (5 g/L) from thin stillage was obtained during batch cultivation of the edible fungus Neurospora intermedia in a 2‐m high airlift reactor and bubble column. The fungal biomass, containing 50% w/w protein and 12% w/w lipids, was rich in essential amino acids and omega‐3 and ‐6 fatty acids. In a continuous mode of fermentation, dilution rates of up to 0.2 h?1 could be applied without cell washout in the bubble column at 0.5 vvm. At 0.1 h?1, around 5 g/L of ethanol and 4 g/L of biomass containing ca. 50% w/w protein were produced. The fungus was able to assimilate saccharides in the liquid fraction as well as sugar backbones such as xylan and arabinan in the solid fraction. The inclusion of the current process could potentially lead to the production of 11 000 m3 of ethanol (5.5% improvement vs. normal industrial process) and around 6300 tons of high‐quality biomass for animal feed at a typical facility producing 200 000 m3 ethanol per year.  相似文献   

5.
《Process Biochemistry》2007,42(11):1492-1497
This study is aimed at developing a two-step process (fermentation plus enzymatic hydrolysis) for protease and peptone production, using a bioethanol industry by-product – corn distiller's dried grains with solubles (CDDGS) – as the sole carbon/nitrogen and protein source, respectively.Bacillus licheniformis was used for protease production. CDDGS concentration is the main parameter controlling protease generation, only low substrate concentration (below 2%, w/v) induces sporulation followed by enzyme excretion.The enzymatic peptone production process was implemented using the B. licheniformis fermentation broth (proteases) generated in the first step as hydrolytic tool, and CDDGS as a protein source.The protein present in CDDGS is solubilized yielding a peptone (protein concentration >80%), mainly composed of peptides and oligopeptides, soluble at practically all pH values. Both products, proteases and peptones, could be of great potential in industrial processes and in nutrition and food science.  相似文献   

6.
Economically feasible inoculum mass production methods are required for successful application of Fusarium oxysporum Foxy 2 as a potential mycoherbicide. Therefore, different substrates (agricultural by-products) and the factors that influence the production of spores, especially chlamydospores, of Foxy 2 were investigated in liquid cultures. The substrates tested were cotton seed cake, maize stover, wheat and triticale stillage. The presence of plant fibers in the medium of unfiltered cotton seed cake (2.5%, w/v) significantly enhanced chlamydospore, micro- and macroconidia production by 150, 185, and 300%, respectively, compared to the filtered (fiber-free) medium. Regardless of the type of substrate tested, Foxy 2 was able to produce abundant chlamydospores (0.14-2.7×107 mL-1) in all growth media. Generally, increasing the concentrations of cotton seed cake and maize stover in the medium significantly increased chlamydospore formation; however, this was not the case for wheat-based stillage. To optimize conditions required for chlamydospore production of Foxy 2, the effect of near ultra-violet (NUV) light, substrate combinations (synergism), level of agitation, incubation time and their interaction were studied. A liquid culture of 2.5% (w/v) filtered cotton seed cake, exposed to continuous NUV for 15 days, doubled the yield of chlamydospores (4.7×106 mL-1) and macroconidia (5×105 mL-1), and increased microconidial production by one-third (1×108 mL-1) compared to natural light. An apparent synergistic effect of substrate combination was observed, since the addition of 20% (v/v) of either wheat or triticale-based stillage to maize stover medium (1%, w/v) increased the number of chlamydospores produced by 16 or 12 times, respectively, compared to maize stover alone (1.4×106 mL-1), and 2 times more than either of the stillages. A significantly positive effect between a high level of agitation tested during incubation and chlamydospore production of Foxy 2 was recorded. All in all, substantial chlamydospore production of Foxy 2 (4.3×107 mL-1) was successfully achieved within 12 days of incubation in a single-step liquid fermentation through the combination of 0.5% (w/v) maize stover plus 20% (v/v) wheat-based stillage and a high level of agitation (200 rpm).  相似文献   

7.
一种室内饲养麦蚜的方法   总被引:3,自引:0,他引:3  
鲁艳辉  高希武 《昆虫知识》2007,44(2):289-290,F0004
介绍利用水培麦苗大量饲养麦蚜的技术。在不补充营养液的条件下麦苗可以维持10~15d,一般在饲养条件下可以1周换1次麦苗。小麦种子在经过24h浸种后,平铺在底部垫有滤纸的直径9cm的培养皿中,在25℃,4d后就可以接种麦蚜。适宜的试样条件为温度在18~25℃,相对湿度50%~70%,光周期为17hr∶7hr,饲养1代大约需要5~9d时间,每皿可养麦蚜500头以上。经过40代以上的连续饲养,蚜虫体重和每蚜产幼蚜数量没有明显降低趋势。  相似文献   

8.
Summary High ethanol and stillage solids have been achieved using whole corn mashes. Ethanol yields of 14% (v/v) (89.5% of theory) and stillage levels of approximately 23% (w/v) were obtained in 74–90 hours using mild acid pretreatment with Aspergillus oryzae wheat bran koji saccharification. High ethanol yields were also obtained with bacterial amylase, instead of the acid treatment, when the sterilization step was omitted. The implications of ethanol fermentation process modifications are explored.  相似文献   

9.
《Biomass》1988,15(1):25-43
Hydrous fuel ethanol (95%) and distiller's wet grain (DWG) were produced in a farm-scale plant (< 4 million liters ethanol year−1) from corn, wheat, and grain sorghum particles of various sizes, from corn combined with thin stillage-whey, and from various other cereal grains. These variations were made in a search to find the best set of conditions for maximizing the energy balance (energy output divided by energy input) and minimizing the cost of ethanol production. We found that the optimum hammermill screen size for corn, wheat, and grain sorghum was 1·59–2·38 mm. In tests with thin stillage and whey a higher energy balance (2·91) occurred when one part whey was mixed with three parts stillage, rather than the reverse (2·69). However, the reverse (three parts whey and one part stillage) gave a lower ethanol cost ($0.45 liter−1) than the original ($0.47 liter−1). Tests with various cereal grains (corn, oats, wheat, barley, rye, and grain sorghum) gave identical energy balance values (2·26) when 10% (v/v) ethanol beers were produced. However, rye ($0.50 liter−1), grain sorghum ($0.46 liter−1), and corn ($0.51 liter−1) yielded ethanol at the lowest net cost. Recommendations for farm-scale plants are also provided.  相似文献   

10.
The corn based dry grind process is the most widely used method in the US for fuel ethanol production. Fermentation of corn to ethanol produces whole stillage after ethanol is removed by distillation. It is centrifuged to separate thin stillage from wet grains. Thin stillage contains 5–10% solids. To concentrate solids of thin stillage, it requires evaporation of large amounts of water and maintenance of evaporators. Evaporator maintenance requires excess evaporator capacity at the facility, increasing capital expenses, requiring plant slowdowns or shut downs and results in revenue losses. Membrane filtration is one method that could lead to improved value of thin stillage and may offer an alternative to evaporation. Fractionation of thin stillage using ultrafiltration was conducted to evaluate membranes as an alternative to evaporators in the ethanol industry. Two regenerated cellulose membranes with molecular weight cut offs of 10 and 100 kDa were evaluated. Total solids (suspended and soluble) contents recovered through membrane separation process were similar to those from commercial evaporators. Permeate flux decline of thin stillage using a resistance in series model was determined. Each of the four components of total resistance was evaluated experimentally. Effects of operating variables such as transmembrane pressure and temperature on permeate flux rate and resistances were determined and optimum conditions for maximum flux rates were evaluated. Model equations were developed to evaluate the resistance components that are responsible for fouling and to predict total flux decline with respect to time. Modeling results were in agreement with experimental results (R 2 > 0.98).  相似文献   

11.
Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute‐acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose–xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute‐acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical‐based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently. Biotechnol. Bioeng. 2010;105: 992–996. © 2009 Wiley Periodicals, Inc.  相似文献   

12.
In addition to chitinase/lysozyme, Pseudomonas aeruginosa K-187 also produced a protease useful for the deproteinization of shrimp and crab shell wastes. The optimal culture conditions for P. aeruginosa K-187 to attain the highest protease activity were investigated and discussed. The highest protease activity was as high as 21.2 U/ml, 10-fold that (2.2 U/ml) obtained prior to optimization. The protease of P. aeruginosa K-187, produced under the optimal culture conditions, was tested for crustacean waste deproteinization. The percent of protein removal for shrimp and crab shell powder (SCSP) after 7-day incubation was 72%, while that of natural shrimp shell (NSS) and acid-treated SCSP was 78% and 45%, respectively. In contrast, with the protease produced under pre-optimization conditions, the percent of protein removal for SCSP, NSS, and acid-treated SCSP was 48%, 55%, and 40%, respectively. For comparison, three other protease-producing microbes were tested for crustacean waste deproteinization. However, they were shown to be less efficient in deproteinization than P. aeruginosa K-187. The crude protease produced by P. aeruginosa K-187 can be covalently immobilized on a reversibly soluble polymeric support (hydroxypropyl methycellulose acetate succinate). The immobilized enzyme was soluble above pH 5.5 but insoluble below pH 4.5. Immobilization efficiency was 82%. The immobilized enzyme was stable between pH 6 and 9 and at temperatures below 60 degrees C. The optimum pH and temperature for the immobilized enzyme was pH 8 and 50 degrees C. The half-life of the immobilized enzyme was 12 days, longer than that of free protease (8 days). The utilization of the immobilized enzyme for the deproteinization of SCSP has resulted in a 67% protein removal. By contrast, SCSP protein removal by using free enzymes was 72%. The protease was further purified and characterized. The purification steps included ammonium sulfate precipitation, DEAE-Sepharose CL-6B ion-exchange chromatography, and Sephacryl S-200 gel-permeation chromatography. The enzyme had a molecular weight estimated to be 58.8 kDa by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme was active from pH 7 to 9 and its optimal pH was 8.  相似文献   

13.
The microbial degradation of thin stillage for environment-friendly treatment has been studied extensively in recent years, and useful compounds in the treated-thin stillage are expected to be utilized in the subsequent fermentation. In this study, an Aspergillus oryzae H18, suitable for growing in thin stillage, was isolated from soil and served to degrade the organic matter in thin stillage, with the increase in pH (from 3·75 to 4·8) and decrease in chemical oxygen demand (COD, 81·3% removal rate). The effect of thin stillage as backset water after degradation of the strain H18 on alcohol production in syrup liquid was investigated. Compared with zero addition of thin stillage, the alcohol yield in mixed syrup liquid increased by 8·6% when the concentration of treated-thin stillage was 20%. After the addition of nutrients at proper concentration (0·5% urea, 1% molasses, 0·25% NaCl, 0·2% NaH2PO4, 0·3% MgSO4 and 0·25% CaCl2) in thin stillage, the alcohol yield in yeast fermentation was increased by 32·7% when mixed syrup liquid (with 40% thin stillage treated by H18) was employed, in comparison to control group without thin stillage addition. Meanwhile, the fermentation time was shortened, and alcohol production rate was enhanced.  相似文献   

14.
Cellulose conversion in dry grind ethanol plants   总被引:2,自引:1,他引:1  
The expansion of the dry grind ethanol industry provides a unique opportunity to introduce cellulose conversion technology to existing grain to ethanol plants, while enhancing ethanol yields by up to 14%, and decreasing the volume while increasing protein content of distiller's grains. The technologies required are cellulose pretreatment, enzyme hydrolysis, fermentation, and drying. Laboratory data combined with compositional analysis and process simulations are used to present a comparative analysis of a dry grind process to a process with pretreatment and hydrolysis of cellulose in distiller's grains. The additional processing steps are projected to give a 32% increase in net present value if process modifications are made to a 100 million gallon/year plant.  相似文献   

15.
《Process Biochemistry》2010,45(7):1148-1155
The protease from the latex of Calotropis procera was isolated by an aqueous two-phase system (ATPS). The systems consist of polyethylene glycol (PEG 4000, 6000 and 8000) at concentrations of 9, 12 and 15% (w/w) with salts (Na-citrate, MgSO4, K2HPO4, and (NH4)2SO4) at concentrations of 11, 14 and 17% (w/w) were investigated. The highest protease recovery was found in the PEG-rich phase of the system, comprising of 12% PEG 4000–17% MgSO4. For optimization of the system to obtain the higher yield of protease, the system pH (4, 7 and 10) or NaCl addition (2, 4 and 6%, w/w) was studied. At acidic (pH 4.0) and alkaline (9.0) conditions of the systems the reduction of KE and protease recovery was clearly observed compared to that of the neutral pH (7.0). The addition of NaCl up to a final concentration of 6% (w/w) significantly increased the yield to 107% of the control. Molecular weight distribution and activity staining showed that the isolated protease had the molecular weight of ∼38 kDa. However, the isolated protease had no activity under reducing condition (βME). Under cathodic electrophoresis, protease from C. procera showed the same protein pattern to purified papain.  相似文献   

16.
Grain-to-ethanol production has increased steadily in the United States in the past few decades, which resulted in remarkable records in the availability of co-products. Dry-grind is the most common method of ethanol production worldwide, which concentrates the corn and yeast nutrients in the downstream operations. The ethanol co-products have traditionally been a commodity for livestock feed as they contain desirable nutrients, mostly sold as distiller’s grains. The liquid fraction produced after the centrifugation of the bottoms of the ethanol rectifying and distilling operations is named thin stillage, produced at volumes several times greater than those of ethanol. A portion of thin stillage is normally recycled as backset water, while the remaining goes through a series of evaporations. Evaporating a large amount of water from thin stillage is an energy-consuming process and recycling the thin stillage may lead to the accumulation of nutrients in co-products in distiller’s grains. There are several other industrial processes to utilize thin stillage, such as oil extraction, anaerobic digestion, and secondary fermentation. Recently, promising results have been reported on the production of important commodity chemicals, extracting high-value products, and energy production from thin stillage. This review provides an overview on the new processes and products via valorization of thin stillage by innovative technologies that are being currently developed. The new applications of thin stillage discussed in this review could open new opportunities for the ethanol plants and ethanol researchers by increasing the revenue and simultaneously reducing negative environmental impacts of ethanol production.  相似文献   

17.
分析不同基因型小麦品种逆境萌发过程中种子萌发相关酶活性及基因表达差异,明确在逆境条件下,种子活力与种子萌发相关酶活性及基因表达量的关系.通过标准发芽试验和逆境(冷浸、人工老化、干旱胁迫)发芽试验,测定4个小麦品种种子活力、萌发过程中可溶性总糖和可溶性蛋白含量、α-淀粉酶活性、半胱氨酸蛋白酶活性及相关基因表达量.结果表明:干旱、人工老化和冷浸胁迫3种逆境对种子活力都有一定影响.不同萌发条件下,可溶性总糖含量呈现先小幅度升高后小幅度降低再迅速升高的趋势;而可溶性蛋白含量随着萌发时间的延长呈现逐渐下降的趋势.α-淀粉酶活性整体呈现逐渐升高的趋势,但在冷浸胁迫处理后,豫农949和轮选061的α-淀粉酶活性在萌发60 h后出现下降.半胱氨酸蛋白酶活性整体呈先降低后升高的趋势,但在干旱胁迫条件下,豫农949、豫麦49-198和轮选061的半胱氨酸蛋白酶活性呈现先升高后降低再升高的趋势.不同逆境萌发条件下,α-AMY(α-淀粉酶基因)表达量整体呈先上升后下降的趋势.冷浸胁迫处理后,轮选061的α-AMY表达量高于对照,在其他逆境萌发条件下,4个品种的α-AMY表达量均低于对照;人工老化处理后,长4738的CP(半胱氨酸蛋白酶基因)表达量与对照差异不显著,在其他逆境萌发条件下,4个品种的CP表达量均高于对照.种子萌发期间,不同萌发条件下α-淀粉酶和半胱氨酸蛋白酶活性与其基因表达并没有直接关系,α-淀粉酶活性与可溶性总糖含量达到显著正相关,半胱氨酸蛋白酶活性与可溶性蛋白含量的相关性不显著.在标准发芽条件下,α-淀粉酶活性与活力指数呈显著正相关,而在逆境萌发过程中,其相关性不显著.冷浸胁迫处理后,半胱氨酸蛋白酶活性与活力指数呈显著正相关,但在标准发芽、干旱胁迫、人工老化处理后,其相关性不显著.  相似文献   

18.
小麦类甜蛋白基因(TaTLP1)的克隆、定位和蛋白表达   总被引:2,自引:0,他引:2  
  相似文献   

19.
The activity of 4-ene-5 alpha-reductase was assayed in porcine testis homogenates and subcellular fractions, using testosterone as substrate. 'Marker' enzyme activities were utilized to indicate the purity of the subcellular fractions. 4-Ene-5 alpha-reductase activity was associated with the microsomal fraction; there was no activity in the purified nuclear fraction. Enzyme activity was higher in the testes of 6 week old pigs than those of 3 and 17 week old animals, and a range of activity was found. The enzyme was unstable when stored at -20 degrees C but the addition of albumin (0.1%, w/v) or glycerol (20%, v/v) to the buffer and storage at -70 degrees C or in liquid nitrogen ensured that maximal activity was retained for at least 35 days. In addition to 5 alpha-DHT, other 5 alpha-reduced metabolites and 4-androstenedione were formed in this reaction; NADPH was the preferred cofactor, but 40% of the 4-ene-5 alpha-reductase activity was retained when NADH was used. Solubilization of the microsomal enzyme was achieved using sodium citrate (0.1 M); 4-ene-5 alpha-reductase activity was enhanced to greater than 120% and 60% of this activity was in the soluble fraction. The optimum pH and temperature for both soluble and membrane-bound 4-ene-5 alpha-reductase were 6.9 and 32 degrees C, respectively. The mean apparent Km and Vmax were 0.6 mumol/l and 158 pmol/min/mg microsomal protein for the microsomal enzyme and 1.42 mumol/l and 212.0 pmol/min/mg soluble protein for the solubilized 4-ene-5 alpha-reductase. The estimated sedimentation coefficient was 11.6.  相似文献   

20.
Potato root water (PRW) contains ~1.5% protein. In this study, expanded bed adsorption (EBA) chromatography with Amberlite XAD7HP resin adsorbent was used to isolate native protein from crude PRW. The optimal pH and ionic strength for potato protein binding onto Amberlite XAD7HP were 5.0 and 20 mmol/L. The EBA-refined proteins were dried by vacuum freeze drying and spray drying at varying outlet temperatures. Results indicated that low temperature spray drying was the most cost effective method with respect to retaining protease inhibitor activities. The dried protein concentrates appeared bright yellow or dark reddish brown, with a total glycoalkaloid content of ~170 μg/g. The protease inhibitor activity was ~400 mg/g and 11 ~ 12 mg/g for trypsin inhibition and chymotrypsin inhibition, respectively. The results presented here suggest that EBA using Amberlite XAD7HP as the adsorbent is a feasible strategy for the direct adsorption of native protein from crude PRW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号