首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen X  Burger C  Wan F  Zhang J  Rong L  Hsiao BS  Chu B  Cai J  Zhang L 《Biomacromolecules》2007,8(6):1918-1926
In this study, structure changes of regenerated cellulose fibers wet-spun from a cotton linter pulp (degree of polymerization approximately 620) solution in an NaOH/urea solvent under different conditions were investigated by simultaneous synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS). WAXD results indicated that the increase in flow rate during spinning produced a better crystal orientation and a higher degree of crystallinity, whereas a 2-fold increase in draw ratio only affected the crystal orientation. When coagulated in a H2SO4/Na2SO4 aqueous solution at 15 degrees C, the regenerated fibers exhibited the highest crystallinity and a crystal orientation comparable to that of commercial rayon fibers by the viscose method. SAXS patterns exhibited a pair of meridional maxima in all regenerated cellulose fibers, indicating the existence of a lamellar structure. A fibrillar superstructure was observed only at higher flow rates (>20 m/min). The conformation of cellulose molecules in NaOH/urea aqueous solution was also investigated by static and dynamic light scattering. It was found that cellulose chains formed aggregates with a radius of gyration, Rg, of about 232 nm and an apparent hydrodynamic radius, Rh, of about 172 nm. The NaOH/urea solvent system is low-cost and environmentally friendly, which may offer an alternative route to replace more hazardous existing methods for the production of regenerated cellulose fibers.  相似文献   

2.
The crystalline and microstructure of the regenerated cellulose fibers prepared from different solvents and technology processes were investigated by synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS). WAXD results indicated that the crystal orientation, crystallinity of Lyocell and IL-cell fibers were higher than those of Viscose and Newdal fibers. The size of micro-voids located in the cross-section of regenerated cellulose fibers was analyzed based on the results of SAXS. And the technology process had little effect on the radius of the micro-voids. The micro-voids in Viscose and Newdal fibers have longer length (L) and greater misorientation (BΦ) than that in Lyocell and IL-cell fibers. This reveals that the average void volumes of Viscose and Newdal fibers were larger. Furthermore, the regenerated cellulose fibers from dry-jet-wet-spinning process exhibited completely a higher E-modulus, tenacity than the fibers spun by wet-spinning method did.  相似文献   

3.
Sorption properties of TEMPO-oxidized natural and man-made cellulose fibers   总被引:1,自引:0,他引:1  
Cotton and lyocell fibers were oxidized with sodium hypochlorite and catalytic amount of sodium bromide and 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO), under various conditions. Water-insoluble fractions, collected after TEMPO-mediated oxidation, were analyzed and characterized in terms of weight loss, aldehyde and carboxyl contents, and sorption properties. Aldehyde and carboxyl groups were introduced into the oxidized cotton up to 0.321 and 0.795 mmol/g, and into the oxidized lyocell up to 0.634 and 0.7 mmol/g, respectively, where weight loss was generally lower than 12% for cotton and 27% for lyocell. Oxidized cotton and lyocell were shown to exhibit 1.55 and 2.28 times higher moisture sorption than the original fibers, respectively, and water retention values up to about 85% for cotton and 335% for lyocell, while iodine sorption values of oxidized fibers were lower up to 35% for cotton and up to 18% for lyocell than the original fibers.  相似文献   

4.
This paper reports the development of natural cellulose fibers from hop stems with properties similar to that of hemp. Hop stems are currently considered as byproducts and have limited applications. Since hop belongs to the genus cannabis that also includes hemp, it should be possible to obtain natural cellulose fibers from the stems of hop plants with properties similar to that of hemp. A simple alkaline extraction was used to obtain fibers from the bark of hop stems. Fibers obtained have high cellulose content, low% crystallinity but show good orientation of the cellulose crystals to the fiber axis. The strength and modulus of the fibers are lower but elongation is higher than that of hemp. Based on the properties of the fibers, we expect that the hop stem fibers will be suitable for use in textiles and composites similar to the common cellulose fibers currently in use.  相似文献   

5.
Peng XW  Ren JL  Zhong LX  Sun RC 《Biomacromolecules》2011,12(9):3321-3329
Interest in xylan-rich hemicelluloses (XH) film is growing, and efforts have been made to prepare XH films with improved mechanical properties. This work described an effective approach to produce nanocomposite films with enhanced mechanical properties by incorporation of cellulose nanofibers (CNFs) into XH. Aqueous dispersions of XH (64-75 wt %), sorbitol (16-25 wt %), and CNF (0-20 wt %) were cast at a temperature of 23 °C and 50% relative humidity. The surface morphology of the films was revealed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The thermal properties and crystal structure of the films were evaluated by thermal analysis (TG) and X-ray diffraction (XRD). The surface of XH films with and without CNF was composed primarily of nanonodules, and CNFs were embedded in the XH matrix. Freeze-dried XH powder was amorphous, whereas the films with and without CNF showed a distinct peak at around 2θ = 18°, which suggested that XH molecules aggregated or reordered in the casting solution or during water evaporation. Furthermore, the nanocomposite films had improved thermal stability. XH film with 25 wt % plasticizer (sorbitol, based on dry XH weight) showed poor mechanical properties, whereas incorporation of CNF (5-20 wt %, based on the total dry mixture) into the film resulted in enhanced mechanical properties due to the high aspect ratio and mechanical strength of CNF and strong interactions between CNF and XH matrix. This effective method makes it possible to produce hemicellulose-based biomaterials of high quality.  相似文献   

6.
Mechanochemical study of wet-spun lithium-DNA fibers   总被引:2,自引:0,他引:2  
A Rupprecht 《Biopolymers》1970,9(7):825-842
Uniform LiDNA fiber specimens of nearly 20 m length have been prepared with a wet-spinning method developed by the author. Samples immersed in the spinning bath (80% ethyl alcohol containing 0.4M LiCl) have been subjected to mechanochemical study involving stretching, relaxation, and contraction measurements. A special technique was developed to transfer the sample from the Teflon-coated cylinder used in spinning to the sample column of the mechanochemical apparatus without stretching or removing the sample from the spinning bath. Force–strain curves of samples consisting of two fiber bundles showed an initial region of low slope followed by a region of high slope and a second region of low slope up to rupture. Some thicker specimens showed an aging effect which abolished the initial low-slope region and was interpreted as indicative of crystallization. Force–strain curves of two-bundle samples showed a strong influence of temperature with a complete loss of tensile strength of the LiDNA fibers in the spinning bath at about 55°C. Furthermore, samples at zero strain exhibited a contractile force when subjected to temperatures above about 40°C; the contractile process was pronounced with samples kept above 48°C. On contraction these samples obtained a zero-force length 20–30% of the original. These data are taken as evidence for a helix-to-coil transition occurring in the DNA, the low melting temperature being caused by the chemical influence of the ambient aqueous alcohol–LiCl bath.  相似文献   

7.
The determination of the crystal orientation of regenerated cellulose fibers produced under different drawing regimes is presented. Orientation is determined by using wide-angle X-ray diffraction from a synchrotron source and by measuring the azimuthal width of equatorial reflections. The orientation parameter theta is then determined to compare fiber samples. By using a 500 nm beam size, clear differences between the crystal orientations of the skin and the core of the fibers are reported for a range of differently processed fibers for the first time. These results are shown to have implications for the mechanical properties of regenerated cellulose fibers. By applying tensile deformation to fiber bundles it is shown that the most misoriented samples undergo rapid decreases in the orientation parameter, which is an indication of crystal reorientation. However, the more highly oriented fibers undergo little reorientation. An average shear modulus for these fibers is determined by placing the data on a master curve and fitting with a model equation. By using another model for the fibers of low orientation and the shear modulus from the master curve analysis, it is shown that the deformation of less oriented fibers is dominated by shear between crystals, whereas the more oriented filaments are likely to undergo more significant chain deformation. By using a new model for fibers of low orientation, a parameter ksigma is introduced that gives the proportion of the fiber stress that is due to crystal shear. Systematic differences between this parameter for fibers of increasing initial orientation are reported. Moreover it is shown that the fibers of initially lower average orientation are governed by uniform strain, in agreement with the new model, whereas more highly oriented fibers deform under uniform stress. Furthermore, the model that we propose for misoriented domains and the use of a new factor dictating the proportion of shear stress may have general applications in materials engineering.  相似文献   

8.
This work introduces, for the first time worldwide, an advanced nanocomposite involving two additives – a nanoadditive and a conventional additive – within a matrix of natural cellulose fibers. The first additive (the nanoadditive) is sucrose, which incorporates the nanoporous structure of the cell walls of cellulose fibers. The second additive (the conventional additive) is kaolin, the famous paper filler. Kaolin is enmeshed between the adjacent cellulose fibers. This advanced paper nanocomposite was prepared by simple techniques.

The present work shows, for the first time, that sucrose can overcome the ultimate fate of deterioration in strength of paper, due to addition of inorganic fillers such as kaolin. This deterioration was counteracted by incorporating cellulose fibers with sucrose, which leads to incorporation beating of the fibers, and thus increases the strength of the produced paper nanocomposites. In addition, sucrose was proven – for the first time – to act as retention aid for inorganic fillers such as kaolin. We called this phenomenon incorporation retention to differentiate it from the conventional types of retention of inorganic fillers.

Recent studies, by the authors and others, have shown that incorporating cellulose fibers, with sucrose, leads to paper nanocomposites of enhanced strength (breaking length). Also, sucrose is privileged by its small size (0.8 nm), substantial hydrogen bonding capacity, low cost, and abundance. Therefore, sucrose was chosen as a nanoadditive in this work. The present study shows that the nanoadditive sucrose may find its use as a new retention aid and strength promoter in papermaking.  相似文献   


9.
Velvet leaf (Abutilon theophrasti) that is currently considered a weed and an agricultural problem could be used as a source for high quality natural cellulose fibers. The fibers obtained from the velvet leaf stems are mainly composed of approximately 69% cellulose and 17% lignin. The single cells in the fiber have lengths of approximately 0.9 mm, shorter than those in common bast fibers, hemp and kenaf. However, the widths of single cells in velvet leaf fibers are similar to the single cells in hemp and kenaf. The fibers exhibited breaking tenacity from 2.4 to 3.9 g/denier (325-500 MPa), breaking elongation of 1.6-2.4% and Young's modulus of 140-294 g/denier (18-38 GPa). Overall, velvet leaf fibers have properties similar to that of common bast fibers such as hemp and kenaf. Velvet leaves fibers could be processed on the current kenaf processing machineries for textile, composite, automotive and other fibrous applications.  相似文献   

10.
Natural cellulose fibers have been obtained from the bark of cotton stalks and the fibers have been used to develop composites. Cotton stalks are rich in cellulose and account for up to 3 times the quantity of cotton fiber produced per acre. Currently, cotton stalks have limited use and are mostly burned on the ground. Natural cellulose fibers obtained from cotton stalks are composed of approximately 79% cellulose and 13.7% lignin. The fibers have breaking tenacity of 2.9 g per denier and breaking elongation of 3% and modulus of 144 g per denier, between that of cotton and linen. Polypropylene composites reinforced with cotton stalk fibers have flexural, tensile and impact resistance properties similar to jute fiber reinforced polypropylene composites. Utilizing cotton stalks as a source for natural cellulose fibers provides an opportunity to increase the income from cotton crops and make cotton crops more competitive to the biofuel crops.  相似文献   

11.
We report the production and characteristics of natural cellulose fibers obtained from the leaves and stems of switchgrass. In this paper, the composition, structure and properties of fibers obtained from the leaves and stem of switchgrass have been studied in comparison to the common natural cellulose fibers, such as cotton, linen and kenaf. The leaves and stems of switchgrass have tensile properties intriguingly similar to that of linen and cotton, respectively. Fibers were obtained from the leaves and stems of switchgrass using a simple alkaline extraction and the structure and properties of the fibers were studied. Fibers obtained from switchgrass leaves have crystallinity of 51%, breaking tenacity of 5.5 g per denier (715 MPa) and breaking elongation of 2.2% whereas the corresponding values for fibers obtained from switchgrass stems are 46%, 2.7 g per denier and 6.8%, respectively. Switchgrass is a relatively easy to grow and high yield biomass crop that can be source to partially substitute the natural and synthetic fibers currently in use. We hope that this research will stimulate interests in using switchgrass as a novel fiber crop in addition to being promoted as a potential source for biofuels.  相似文献   

12.
Natural cellulose fibers from soybean straw   总被引:1,自引:0,他引:1  
This paper reports the development of natural cellulose technical fibers from soybean straw with properties similar to the natural cellulose fibers in current use. About 220 million tons of soybean straw available in the world every year could complement the byproducts of other major food crops as inexpensive, abundant and annually renewable sources for natural cellulose fibers. Using the agricultural byproducts as sources for fibers could help to address the concerns on the future price and availability of both the natural and synthetic fibers in current use and also help to add value to the food crops. A simple alkaline extraction was used to obtain technical fibers from soybean straw and the composition, structure and properties of the fibers was studied. Technical fibers obtained from soybean straw have high cellulose content (85%) but low% crystallinity (47%). The technical fibers have breaking tenacity (2.7 g/den) and breaking elongation (3.9%) higher than those of fibers obtained from wheat straw and sorghum stalk and leaves but lower than that of cotton. Overall, the structure and properties of the technical fibers obtained from soybean straw indicates that the fibers could be suitable for use in textile, composite and other industrial applications.  相似文献   

13.
《Process Biochemistry》2010,45(10):1713-1719
Cibacron Blue F3GA (CB) was covalently attached onto the bacterial cellulose (BC) nanofibers for human serum albumin (HSA) depletion from human serum. The BC nanofibers were produced by Acetobacter xylinum in the Hestrin–Schramm medium in a static condition for 14 days. The CB content of the BC nanofibers was 178 μmol/g. The specific surface area of the BC nanofibers was determined to be 914 m2/g. HSA adsorption experiments were performed by stirred-batch adsorption. The non-specific adsorption of HSA on the BC nanofibers was very low (1.4 mg/g polymer). CB attachment onto the BC nanofibers significantly increased the HSA adsorption (1800 mg/g). The maximum HSA adsorption was observed at pH 5.0. The HSA adsorption capacity decreased drastically with an increase of the aqueous phase concentration of sodium chloride. The elution studies were performed by adding 1 M NaCl to the HSA solutions in which adsorption equilibria had been reached. The elution results demonstrated that the binding of HSA to the adsorbent was reversible. The depletion efficiencies for HSA were above 96.5% for all studied concentrations. Proteins in the serum and eluted portion were analyzed by SDS-PAGE for testing the efficiency of HSA depletion from human serum. Eluted proteins include mainly HSA.  相似文献   

14.
Triggered biodegradable composites made entirely from renewable resources are urgently sought after to improve material recyclability or be able to divert materials from waste streams. Many biobased polymers and natural fibers usually display poor interfacial adhesion when combined in a composite material. Here we propose a way to modify the surfaces of natural fibers by utilizing bacteria ( Acetobacter xylinum) to deposit nanosized bacterial cellulose around natural fibers, which enhances their adhesion to renewable polymers. This paper describes the process of modifying large quantities of natural fibers with bacterial cellulose through their use as substrates for bacteria during fermentation. The modified fibers were characterized by scanning electron microscopy, single fiber tensile tests, X-ray photoelectron spectroscopy, and inverse gas chromatography to determine their surface and mechanical properties. The practical adhesion between the modified fibers and the renewable polymers cellulose acetate butyrate and poly(L-lactic acid) was quantified using the single fiber pullout test.  相似文献   

15.
Towards electronic paper displays made from microbial cellulose   总被引:1,自引:0,他引:1  
Cellulose (in the form of printed paper) has always been the prime medium for displaying information in our society and is far better than the various existing display technologies. This is because of its high reflectivity, contrast, low cost and flexibility. There is a major initiative to push for a dynamic display technology that emulates paper (popularly known as electronic paper). We have successfully demonstrated the proof of the concept of developing a dynamic display on cellulose. To the best of our knowledge, this is the first significant effort to achieve an electronic display using bacterial cellulose. First, bacterial cellulose is synthesized in a culture of Acetobacter xylinum in standard glucose-rich medium. The bacterial cellulose membrane thus formed (not pulp) is dimensionally stable, has a paper-like appearance and has a unique microfibrillar nanostructure. The technique then involves first making the cellulose an electrically conducting (or semi-conducting) sheet by depositing ions around the microfibrils to provide conducting pathways and then immobilizing electrochromic dyes within the microstructure. The whole system is then cased between transparent electrodes, and upon application of switching potentials (2–5 V) a reversible color change can be demonstrated down to a standard pixel-sized area (ca. 100 m2). Using a standard back-plane or in-plane drive circuit, a high-resolution dynamic display device using cellulose as substrate can be constructed. The major advantages of such a device are its high paper-like reflectivity, flexibility, contrast and biodegradability. The device has the potential to be extended to various applications, such as e-book tablets, e-newspapers, dynamic wall papers, rewritable maps and learning tools.  相似文献   

16.
Chitosan bicomponent nanofibers and nanoporous fibers   总被引:5,自引:0,他引:5  
Li L  Hsieh YL 《Carbohydrate research》2006,341(3):374-381
Nanofibers with average diameters between 20 and 100nm have been prepared by electrospinning of 82.5% deacetylated chitosan (Mv=1600 kDa) mixed with poly(vinyl alcohol) (PVA, Mw=124-186 kDa) in 2% (v/v) aqueous acetic acid. The formation of bicomponent fibers was feasible with 3% concentration of solution containing up to an equal mass of chitosan. Finer fibers, fewer beaded structures and more efficient fiber formation were observed with increasing PVA contents. Nanoporous fibers could be generated by removing the PVA component in the 17/83 chitosan/PVA bicomponent fibers with 1M NaOH (12 h). Fiber formation efficiency and composition uniformity improved significantly when the molecular weight of chitosan was halved by alkaline hydrolysis (50 wt% aqueous NaOH, 95 degrees C, 48 h). The improved uniform distribution of chitosan and PVA in the bicomponent fibers was attributed to better mixing mostly due to the reduced molecular weight and to the increased deacetylation of the chitosan.  相似文献   

17.
The aim of this study was to develop a new inorganic-organic hybrid film. Nanohydroxyapaptite (nHAP) particles as the inorganic phase was mixed with cellulose in 7 wt.% NaOH/12 wt.% urea aqueous solution with cooling to prepare a blend solution, and then inorganic-organic hybrid films were fabricated by coagulating with Na2SO4 aqueous solution. The structure and properties of the hybrid films were characterized by high resolution transmitting electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), thermo-gravimetric analysis (TGA), Fourier transform infra-red (FT-IR) spectra, wide angle X-ray diffraction (WAXD) and tensile testing. The results revealed that the HAP nanoparticles with mean diameter of about 30 nm were uniformly dispersed and well immobilized in the hybrid film as a result of the role of the nano-and micropores in the cellulose substrate. A strong interaction existed between HAP and cellulose matrix, and their thermal stability and mechanical strength were improved as a result of good miscibility. Furthermore, the results of 293T cell viability assay indicated that the HAP/cellulose films had excellent biocompatibility and safety, showing potential applications in biomaterials.  相似文献   

18.
The uv absorption of Na-hyaluronate (NaHA) films and the refractive indices, water content, and swelling of LiHA films have been measured as a function of relative humidity. Three peaks are observed in the uv absorption of NaHA (at about 250, 310, and 330 nm) for water content above 10 water molecules per disaccharide. The absorptivity of the 250, 310, and 330 nm peaks increase as the water content increases, indicating a change in the electronic properties of the HA molecule. The refractive indices, water content, and swelling of LiHA films are used to determine the optical polarizability via the Lorentz–Lorenz relation. The polarizability of LiHA is found to have a similar dependence on water content as NaHA, though the changes observed are larger in magnitude. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Obtaining cellulose nanofibers with a uniform width of 15 nm from wood   总被引:5,自引:0,他引:5  
Abe K  Iwamoto S  Yano H 《Biomacromolecules》2007,8(10):3276-3278
  相似文献   

20.
Engineering approaches used in the study of textile fibers have been applied to the measurement of mechanical properties of bacterial cell walls by using the Bacillus subtilis bacterial thread system. Improved methods have been developed for the production of thread and for measuring its mechanical properties. The best specimens of thread produced from cultures of strain FJ7 grown in TB medium at 20 degrees C varied in diameter by a factor of 1.09 over a 30-mm thread length. The stress-strain behavior of cell walls was determined over the range of relative humidities between 11 and 98%. Measurements of over 125 specimens indicated that cell wall behaved like other viscoelastic polymers, both natural and man-made, exhibiting relaxation under constant elongation and recovery upon load removal. This kinetic behavior and also the cell wall strength depended greatly on humidity. The recovery from extension observed after loading even up to a substantial fraction of the breaking load indicated that the properties measured were those of cell wall material rather than of behavior of the thread assemblage. Control experiments showed that neither drying of thread nor the length of time it remained dry before testing influenced the mechanical properties of the cell walls. Specimens drawn from TB medium and then washed in water and redrawn were found to be stiffer and stronger than controls not washed. However, tensile properties were not changed by exposure of cells to lysozyme before thread production. This suggests that glycan backbones are not arranged along the length of the cell cylinder. The strength of the cell wall in vivo was estimated by extrapolation to 100% relative humidity to be about 3 N/mm2. Walls of this strength would be able to bear a turgor pressure of 6 atm (ca. 607.8 kPa), but if the increase in strength of water-washed threads was appropriate, the figure could be 24 atm (ca. 2,431.2 kPa).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号