首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Processivity of proteolytically modified forms of T7 RNA polymerase   总被引:3,自引:0,他引:3  
  相似文献   

2.
It was found that human platelets possess a high sensitivity towards alpha-thrombin (Km = 2 nM). Modified thrombin forms (beta/gamma-thrombin) with an impaired recognition site of high molecular weight substrates and DIP-alpha-thrombin and trypsin are incapable of inducing platelet aggregation when taken at concentrations corresponding to effective concentrations of alpha-thrombin. Beta/gamma-Thrombin and trypsin, unlike DIP-alpha-thrombin, cause platelet aggregation at concentrations of 100-200 nM. Studies on the modulating effects of modified thrombin forms, alpha-thrombin and trypsin, on platelet aggregation induced by alpha-thrombin revealed that beta/gamma-thrombin, alpha-thrombin and trypsin at concentrations causing no cell aggregation potentiate the platelet response after 2 min incubation and inhibit platelet aggregation upon prolonged (15 min) incubation. However, DIP-alpha-thrombin, irrespective of the incubation time (up to 30 min) increased the sensitivity of platelets to alpha-thrombin-induced aggregation. The activating effect of DIP-alpha-thrombin is characterized by an equilibrium constant (KA) of 17 nM. The experimental data confirm the hypothesis that the necessary prerequisite for an adequate physiological response of platelets to alpha-thrombin is the maintenance in the thrombin molecule of an intact active center and a recognition site for high molecular weight substrates. The specificity of thrombin as a potent platelet aggregation inducer is determined by the recognition site for high molecular weight substrates.  相似文献   

3.
Functionally active proteolytic modified form of tyrosyl-tRNA-synthetase has been isolated in a homogeneous form from the bovine liver under incomplete blocking of endogenous proteolysis. The isolation scheme is described. From the data of gel electrophoresis under denaturing conditions the molecular weight of this form is 39 +/- 1.5 kDa and from the data of gel filtration under native conditions -84 kDa. Thus, this form as well as the native enzyme is a dimer of the alpha 2-type. As compared to the native enzyme (Mm 2 x 59 kDa) a proteolytically modified form has a fragment of the polypeptide chain about 20 kDa long split out (this fragment is not essential for catalytic activity). The values of catalytic characteristics of the modified form in tRNA(Tyr) aminoacylation reaction (Km = 1.19 microM and kcat = 2.99 min-1) are close to those obtained for the main form of the enzyme (0.69 microM and 2.97 min-1, respectively). Amino acid composition of the low-molecular form of tyrosyl-tRNA-synthetase has been determined. It was found that the fragment split out in limited proteolysis was characterized by very high content of positively charged lysine residues (46 residues). A proteolytically modified form of tyrosyl-tRNA-synthetase possesses, like the main form, the affinity to high-molecular rRNA but it is eluted from the column filled with rRNA-sepharose at lower salt concentration (50 mM KCl) as compared to the main form of the enzyme (100 mM KCl).  相似文献   

4.
The consequences of the combined effects of fibrin II monomer (FnIIm) and heparin (H) on the hydrolysis of peptidyl p-nitroanilide substrates by thrombin (IIa), the cleavage of prothrombin by thrombin and the thrombin-catalyzed release of fibrinopeptides from fibrinogen have been studied at pH 7.4 and I 0.15. The effects of fibrin II monomer and heparin on chromogenic substrate hydrolysis can be described by a hyperbolic mixed inhibition model in which substrate can interact with four possible enzyme species (IIa, IIa.H, IIa.FnIIm, and IIa.FnIIm.H) that arise as a result of random formation of a ternary complex among thrombin, fibrin II monomer, and heparin (Hogg, P. J. and Jackson, C. M. (1990) J. Biol. Chem. 265, 241-247). The formation of the ternary IIa.FnIIm.H complex results in an increase in the Km values of 7.03 +/- 1.17-fold (1.37-9.65 microM) and 1.94 +/- 0.60-fold (38.1-73.9 microM) for H-D-Ile-Pro-Arg-pNA and Cbz-Gly-Pro-Arg-pNA hydrolysis, respectively, and a decrease in the kc values of 0.45 +/- 0.08-fold (49.5-22.3 s-1) and 0.52 +/- 0.05-fold (93.1-48.4 s-1). Fibrin II monomer and heparin in combination also decrease the efficiency (kc/Km) with which thrombin cleaves prothrombin to produce Fragment 1 and Prethrombin 1 by 2.3-fold from 607 +/- 30 to 264 +/- 13 M-1 s-1. In contrast to the effects of fibrin II monomer and heparin on thrombin hydrolysis of chromogenic substrates, its proteolysis of prothrombin and its inactivation by antithrombin III (Hogg, P. J., and Jackson, C. M. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 3619-3623), these components have no discernible influence on the ability of thrombin to cleave fibrinogen. These observations indicate that the substrate specificity of thrombin is altered when it is bound in a complex with fibrin II monomer and heparin and suggest that the catalytic efficiency of thrombin for its physiological substrates will be affected differentially by these interactions. Such ternary complex formation involving thrombin, fibrin II monomer, and heparin may provide a mechanism for selectively regulating thrombin action.  相似文献   

5.
Urokinase was covalently bounded with modified thrombin. Thrombin was modified by carbodiimide and 1, 12-dodecamethylenediamine. In this conjugate thrombin is not catalytically active and does not induce platelets aggregation. The catalytic properties of modified urokinase do not essentially differ from native enzyme but its thermostability increases. The modified urokinase thrombolytic effect is at least 10-fold higher than the native one. In femoral arteries of experimental thrombosis the conjugate urokinase-thrombin brings about total thrombolytic effect as early as 1.5 hours after injection (2500 IU per 1 kg of the animals weight). The causes of the observed effect were discussed.  相似文献   

6.
We previously showed that the alpha-thrombin-antithrombin III complex causes antigenic change in vitronectin as monitored by the monoclonal anti-vitronectin antibody 8E6 (Tomasini & Mosher, 1988). We have extended these studies to other protease-serpin complexes and to gamma-thrombin, a proteolytic derivative of alpha-thrombin. In the presence of heparin, recognition of vitronectin by 8E6 was increased 64- or 52-fold by interaction with the complex of alpha-thrombin and heparin cofactor II or the Pittsburgh mutant (Met358----Arg) of alpha 1-protease inhibitor, respectively. This was comparable to the value obtained with the alpha-thrombin-antithrombin III complex. Factor Xa-serpin complexes were approximately 4-fold less effective than the corresponding thrombin complexes. alpha-Thrombin-serpin complexes but not Xa-serpin complexes formed disulfide-bonded complexes with vitronectin. Antigenic changes and disulfide-bonded complexes were not detected when trypsin- or chymotrypsin-serpin complexes were incubated with vitronectin. gamma-Thrombin caused 7- and 34-fold increases in recognition of vitronectin by MaVN 8E6 in the absence and presence of heparin, respectively. In contrast, alpha-thrombin by itself had no effect. The antigenic change induced by gamma-thrombin was maximal when gamma-thrombin and vitronectin were equimolar, was not dependent on cleavage of vitronectin, and was abolished by inhibition of gamma-thrombin with Phe-Pro-Arg-chloromethyl ketone but not with diisopropyl fluorophosphate. These data indicate that alpha-thrombin is the component in alpha-thrombin-serpin complexes that induces the antigenic change in vitronectin, probably via a region that is preferentially exposed in gamma-thrombin.  相似文献   

7.
Successive thrombin modification by carbodiimide and aliphatic diamines decreases esterase and fibrin-coagulating activity of the enzyme. Modified thrombin causes no platelet aggregation. Water-soluble enzyme conjugates devoid of fibrinogen-coagulating action and possessing increased fibrinolytic affinity to the site of fibrin clot location have been obtained by covalent binding of chymotrypsin to modified thrombin.  相似文献   

8.
Protein degradation by diploid human-embryo lung fibroblasts (MRC5 cells) in monolayer culture was studied. 1. Varying the labelling period of proteins was found to alter the half-lives of labelled abnormal canavanine-containing proteins to an extent very similar to that obtained with normal proteins. 2. By manipulating the times of labelling it was possible to generate a species of abnormal protein with a greater half-life than that of a species of normal protein. A comparison of the lysosomal involvement in their degradation as determined both by inhibition by methylamine, a lysosomotropic agent, and by the degree of increase in protein degradation in step-down conditions, indicated that the degree of lysosomal involvement was not entirely dependent upon the half-life of the protein, but that abnormal proteins are preferentially degraded non-lysosomally. 3. The microtubule inhibitors colchicine and vinblastine were found to stimulate statistically basal protein degradation of normal long-labelled protein, whereas they had less effect upon the basal degradation of the other species of proteins studied and very little effect upon step-down degradation of all proteins studied. The stimulation in protein degradation found did not seem to involve the acid proteinases of lysosomes.  相似文献   

9.
10.
Phosphorylation of fructose-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) by the catalytic subunit of cyclic AMP-dependent protein kinase from pig muscle decreased the K0.5 for fructose-bisphosphate from 21 to 11 microM. When the phosphorylated fructose-bisphosphatase was treated with trypsin the K0.5 increased to 22 microM. The K0.5 also increased when the phosphoenzyme was treated with a partially purified phosphatase from rat liver. There was no difference between the unphosphorylated and phosphorylated enzyme with respect to pH dependence, the pH optimum being about 7.0 for both. Limited treatment of fructose-bis-phosphatase with subtilisin, which cleaves the enzyme at its unphosphorylatable N-terminal part, increased the pH optimum more than limited treatment with trypsin, which releases the phosphorylated peptide at the C-terminal part of fructose-bisphosphatase. The phosphorylated site on the phosphorylated fructose-bisphosphatase was more easily split off by trypsin treatment than the corresponding unphosphorylated site. The results suggest in addition to the glucagon-induced phosphorylation of fructose-bisphosphatase described by Claus et al. [1] that the phosphorylation-dephosphorylation of fructose-bisphosphatase could be of importance for the hormonal regulation of the enzyme in vivo.  相似文献   

11.
12.
13.
Reactions between near equimolar amounts of antithrombin and Factors IXa or Xa resulted in the formation of a free proteolytically modified, two-chain form of the inhibitor, in addition to the inactive antithrombin-protease complexes. The modified inhibitor produced by either enzyme was electrophoretically identical with that formed in the reaction with thrombin. As in the latter reaction, the formation of the modified antithrombin by Factor Xa was increased in the presence of heparin, while only small amounts were produced by Factor IXa both in the absence and presence of the polysaccharide. NH2-terminal sequence analyses of the isolated modified inhibitor formed by Factor Xa showed that a single Arg-Ser bond in the COOH-terminal end of the inhibitor had been cleaved. This cleavage site is identical with that identified in free thrombin-modified antithrombin. The purified antithrombin-Factor IXa and antithrombin-Factor Xa complexes were dissociated by ammonia or hydroxylamine into free enzyme and a modified two-chain form of the inhibitor. Electrophoresis studies and NH2-terminal sequence analyses showed that the modified antithrombin obtained from either complex was identical with that produced in free form by the two enzymes and also with the modified inhibitor that is released from the antithrombin-thrombin complex. The fact that identical results were obtained for the reactions between antithrombin and three enzymes with different specificities strongly suggests that the observed Arg-Ser cleavage site is the active site of antithrombin.  相似文献   

14.
The interaction of thrombin, plasmin or their antithrombin III complexes with isolated mouse hepatocytes was studied. Plasmin bound to hepatocytes in a concentration-dependent manner with an apparent Kd of 6.4.10(-8) M, attaining equilibrium within 10 min, and the interaction was inhibited by 6-amino-n-hexanoic acid. Plasmin treated with diisopropylfluorophosphate (DFP) bound to the cells in similar way as the untreated form of the enzyme. Thrombin bound also to hepatocytes, in a concentration-dependent manner, with a Kd of 5.4.10(-8) M reaching a steady state after 180 min. Thrombin inactivated with DFP, however, was inhibited in its binding to these cells. These data suggest that, whereas the kringle domains of plasmin are responsible for the enzyme-cell interaction, the active center of thrombin may be involved in the binding of this enzyme to hepatocytes. Plasmin-antithrombin III and thrombin-antithrombin III complexes were also associated with hepatocytes in a time-dependent manner, reaching a plateau after 180 min, and the two complexes competed in the interaction. While the interaction of active proteinases plasmin or thrombin with hepatocytes did not result in their internalization, the antithrombin III complexes were taken up by the cells, and thrombin-antithrombin III complex was degraded. These results indicate that hepatocytes may participate in the elimination of proteinase-antithrombin III complexes from the plasma, while the association of plasmin and thrombin with hepatocytes could imply distinct biological importance.  相似文献   

15.
The tertiary structure of a thrombin inhibitor-trypsin complex has been predicted by a molecular modelling considering the van der Waals interactions between the inhibitor and the enzyme. The selective inhibition of trypsin, thrombin, factor Xa, and plasmin exhibited by arginine and lysine derivatives has been clearly explained based on the predicted structure and the homology in the amino acid sequences of these enzymes. The differences in the amino acid sequences at the positions corresponding to Ile63, Leu99, and Ser190 of trypsin give each enzyme different binding affinities toward inhibitors and result in the selective inhibition. The X-ray analysis of the inhibitor-trypsin complex is in progress to prove the predicted structure.  相似文献   

16.
Interferon tau (IFNtau) is the pregnancy recognition signal produced by the conceptus trophectoderm and acts in a paracine manner on the ovine endometrium to increase expression of IFN-stimulated genes primarily in the stroma and deep glandular epithelium, including IFN regulatory factor-1 (IRF-1). The roles of Stat1, Stat2, and IRF-9 in IFNtau regulation of IRF-1 expression were determined using human stromal fibroblasts lacking specific IFN signaling components or complemented with specific Stat1 mutants. In parental (2fTGH) cells treated with IFNtau, Stat1alpha/beta was tyrosine phosphorylated by 15 min, and IRF-1 mRNA and protein increased from 0 to 6 h, was maximal at 6 h, and decreased to 24 h. In contrast, IFNtau did not affect IRF-1 expression in Stat1- and Stat2-deficient cells or in Stat1-deficient cells complemented with Stat1 Y701Q or Stat1 R602L mutants. In Stat1-deficient cells complemented with the Stat1 S727A mutant, Stat1alpha, or Stat1beta and treated with IFNtau, IRF-1 increased from 0 to 6 h, was maximal at 6 h, and decreased thereafter. In IRF-9-deficient cells stimulated with IFNtau, IRF-1 increased from 0 to 6 h but did not exhibit the sharp decline from 6 to 12 h observed in other cells. Collectively, results indicate that IFNtau effect on IRF-1 expression is primarily regulated by tyrosine-phosphorylated Stat1alpha or Stat1beta dimers, whereas the decline of IRF-1 after 6 h of IFNtau treatment is regulated by IRF-9.  相似文献   

17.
Prostaglandin synthesis in endothelial cells may be initiated by the addition of exogenous substrate (arachidonic acid) or by addition of thrombin or the CA2+-ionophore A23187, which leads to prostacyclin formation from endogenous substrates. We noticed that endothelial cells produce more than twice the amount of prostacyclin when incubated with thrombin and arachidonic acid together than with arachidonic acid alone. In addition, it was found that the thrombin-induced conversion of endogenous substrates was inhibited by exogenous arachidonic acid. This means that the conversion of exogenous added arachidonic acid to prostacyclin was stimulated by thrombin. This activation of the enzymes involved in prostacyclin synthesis lasted about 5 min and could be inhibited by phospholipase inhibitors such as mepacrine and p-bromophenyl-acylbromide but not by the cAMP analogue dibutyryl cAMP, an inhibitor of arachidonic acid release from cellular phospholipids. These data demonstrate that, in addition to causing release of endogenous substrate, thrombin and the Ca2+-ionophore also activate the enzyme system involved in the further transformation of arachidonic acid.  相似文献   

18.
The following peptides were synthesized by classical methods in solution: Ac-Gly-Gly- Val-Arg-Gly-Pro-Arg-Val-Val-Glu-Arg-NHCH3 (A), Ac-Ala-Glu-Gly-Gly-Gly-Val- Arg-Gly-Pro-Arg-Val-Val-Glu-Arg-NHCH3 (B), and Ac-Phe-Leu-Ala-Glu-Gly-Gly- Gly-Val-Arg-Gly-Pro-Arg-Val-Val-Glu-Arg-NHCH3 (C). The rates of hydrolysis of the Arg-Gly bond of these three peptides by thrombin were measured, and the values of kcatKm were found to be 0.05 × 10?7 (A), 0.02 × 10?7 (B), and 1.6 × 10?7 (C) [(NIH units/ liter)s]?1. The value ofkcatKm for peptide C is less than 1% of that for fibrinogen [although the value of kcat itself, for peptide C (but not for A or B), is comparable to that for fibrinogen]. These results indicate that phenylanine and leucine at positions P9 and P8, respectively, play a key role in the reaction of thrombin with fibrinogen. The data also show that factors outside of the 16 residues of peptide C are important in determining the rate of hydrolysis of fibrogen by thrombin.  相似文献   

19.
Viscosity measurements and ultracentrifugal experiments show no difference between fibrinogen and fibrinogen incubated with thrombin, both kept at pH 4.85, although the progressing action of thrombin can be demonstrated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号