共查询到20条相似文献,搜索用时 15 毫秒
1.
V. A. Vorobiev V. V. Martynov A. A. Pankin E. E. Khavkin 《Russian Journal of Plant Physiology》2005,52(6):814-820
The arabidopsis gene LEAFY controls the induction of flowering and maintenance of the floral meristem identity. By comparing the primary structure of LEAFY and its homologs in other Brassicaceae species and beyond this family, we singled out four clusters corresponding to three systematically remote families of angiosperms, Brassicaceae, Solanaceae, and Poaceae, and to gymnosperms. Both structural and functional distinctions of LEAFY homologs from their arabidopsis prototype expanded in the range Brassicaceae—Solanaceae—Poaceae. A LEAFY homolog from B. juncea cloned in our laboratory was used as a hybridization probe to analyze the restriction fragment length polymorphism in six Brassica species comprising diploid (AA, BB, and CC) and allotetraploid (AABB, AACC, and BBCC) genomes. In this way we recognized LEAFY fragments specific of genomes A, B, and C; in contrast, the variations of the length and structure of the LEAFY intron 2 were not genome-specific. LEAFY polymorphism in the Brassica accessions comprising genome B was related to their geographic origin and apparently to the adaptation to day length. 相似文献
2.
3.
Although the CONSTANS gene and its CONSTANS-LIKE1 (COL1) orthologs are known to control the photoperiod-dependent floral transition in many plant species, the role of these genes in Solanum development has not been sufficiently elucidated. Previously we characterized two forms of CONSTANS-LIKE1 genes, sCOL1 and lCOL1, in potato (Solanum tuberosum ssp. tuberosum). To prove that these genes were functional, we followed their expression in potato cv. Early Rose with the real-time PCR technique. Both sCOL1 and lCOL1 displayed characteristic day-night patterns of expression under long-day and short-day conditions. The profiles and amplitudes of expression dramatically differed in two genes, with the maximum sCOL1 expression exceeding that of lCOL1 by an order of magnitude. 相似文献
4.
The FLOWERING LOCUS C (FLC) gene controls the transition of arabidopsis plants to flowering following cold induction (vernalization). Time to flowering in annual and biennial species of Brassicaceae supposedly depends on the number of FLC copies. We analyzed DNA restriction fragment length polymorphism in six Brassica species with diploid (AA, BB, and CC) and allotetraploid (AABB, AACC, and BBCC) genomes using for a hybridization probe an FLC homolog previously cloned in our laboratory from B. juncea. The characteristic variations in the patterns of restriction fragments corresponded to the genomic composition of Brassica species and, in some cases, correlated with the timing of floral transition.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 3, 2005, pp. 399–405.Original Russian Text Copyright © 2005 by Martynov, Khavkin. 相似文献
5.
In the present investigation, the interspecific somatic hybridization between tuber mustard and red cabbage was established in order to introduce valuable genes from red cabbage (Brassica oleracea) into Brassica juncea. Prior to fusion treatment, protoplasts of red cabbage were inactivated with 2 mM iodoacetamide to inhibit cell division. Micro-calluses were obtained at a frequency of 10.3% after approximately 5 weeks culture following protoplast fusion. Some of the fusion-derived calluses possessed red pigmented cells after being transferred to proliferation medium, and they were presumably considered to be somatic hybrid cell lines. Plantlets were regenerated from 12 cell lines, of which nine plantlets exhibited characteristics intermediate of both parents in terms of plant morphology. With the exception of common protein bands featured by two parents, there were unique banding patterns produced in the hybrids by using SDS-PAGE analysis. By chromosome countings, it was showed that they ranged approximately from 2n=30 to 42 in chromosome numbers. Their hybridity were further confirmed by RAPD analysis revealing that genes of both parents were partially incorporated into the hybrids. Positively, all these hybrids were capable of seed-setting. The pod-setting was 4.2 in somatic hybrid H7 when backcrossed with tuber mustard. 相似文献
6.
Brassica nigra is a newly found invasive species in Zhejiang Province, China. It distributes alongside the roads, in vegetable fields and
on riversides. When it blooms, some natives there will suffer from allergic rhinitis. We designed gene-specific primer pairs
according to reported profilin genes and successfully isolated their homolog from flower bud cDNA of B. nigra. The gene, designated BnPFN, was submitted to GenBank under accession number EU004073. BnPFN was 405 bp in length encoding 134 amino acids. Expression analysis of BnPFN gene was carried out by means of RT-PCR. The results showed that BnPFN express only in anthers and pollens, and there was no detection in roots, leaves, stems, sepals, petals and pistils. We suggest
that BnPFN is a pollen-specific gene and may be responsible for pollen anaphylactic reactions in those invading areas when B. nigra blooms. 相似文献
7.
8.
Interspecific and intergeneric hybridizations have been widely used in plant genetics and breeding to construct stocks for genetic analysis and to introduce into crops the desirable traits and genes from their relatives. The intergeneric crosses between Brassica juncea (L.) Czern. & Coss., B. carinata A. Braun and Orychophragmus violaceus (L.) O. E. Schulz were made and the plants produced were subjected to genomic in situ hybridization analysis. The mixoploids from the cross with B. juncea were divided into three groups. The partially fertile mixoploids in the first group (2n = 36-42) mainly contained the somatic cells and pollen mother cells (PMCs) with the 36 chromosomes of B. juncea and additional chromosomes of O. violaceus. The mixoploids (2n = 30-36) in the second and third groups were morphologically quite similar to the mother plants B. juncea and showed nearly normal fertility. The plants in the second group produced the majority of PMCs (2n = 36) with their chromosomes paired and segregated normally, but 1-4 pairs of the O. violaceus chromosomes were included in some PMCs. The plants in the third group produced only PMCs with the 36 B. juncea chromosomes, which were paired and segregated normally. The mixoploids (2n = 29-34) from the cross with B. carinata produced the majority of PMCs (2n = 34) with normal chromosome pairing and segregation, but some plants had some PMCs with 1-3 pairs of chromosomes from O. violaceus and other plants had only PMCs with the B. carinata chromosomes. The Brassica homozygous plants and aneuploids with complete or partial chromosome complements of Brassica parents and various numbers of O. violaceus chromosomes were derived from these progeny plants. The results in this study provided the molecular cytogenetic evidence for the separation of parental genomes which was previously proposed to occur in the hybridizations of these two genera. 相似文献
9.
Hughes SL Hunter PJ Sharpe AG Kearsey MJ Lydiate DJ Walsh JA 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2003,107(7):1169-1173
A new source of resistance to the pathotype 4 isolate of Turnip mosaic virus (TuMV) CDN 1 has been identified in Brassica napus (oilseed rape). Analysis of segregation of resistance to TuMV isolate CDN 1 in a backcross generation following a cross between a resistant and a susceptible B. napus line showed that the resistance was dominant and monogenic. Molecular markers linked to this dominant resistance were identified using amplified fragment length polymorphism (AFLP) and microsatellite bulk segregant analysis. Bulks consisted of individuals from a BC1 population with the resistant or the susceptible phenotype following challenge with CDN 1. One AFLP and six microsatellite markers were associated with the resistance locus, named TuRB03, and these mapped to the same region on chromosome N6 as a previously mapped TuMV resistance gene TuRB01. Further testing of TuRB03 with other TuMV isolates showed that it was not effective against all pathotype 4 isolates. It was effective against some, but not all pathotype 3 isolates tested. It provided further resolution of TuMV pathotypes by sub-dividing pathotypes 3 and 4. TuRB03 also provides a new source of resistance for combining with other resistances in our attempts to generate durable resistance to this virus. 相似文献
10.
Shuijin Hua Imran Haider Shamsi Yuan Guo Haksong Pak Mingxun Chen Congguang Shi Huabing Meng Lixi Jiang 《Planta》2009,230(3):493-503
The genomic era provides new perspectives in understanding polyploidy evolution, mostly on the genome-wide scale. In this
paper, we show the sequence and expression divergence between the homologous ALCATRAZ (ALC) loci in Brassica napus, responsible for silique dehiscence. We cloned two homologous ALC loci, namely BnaC.ALC.a and BnaA.ALC.a in B. napus. Driven by the 35S promoter, both the loci complemented to the alc mutation of Arabidopsis thaliana, yet only the expression of BnaC.ALC.a was detectable in the siliques of B. napus. Sequence alignment indicated that BnaC.ALC.a and BolC.ALC.a, or BnaA.ALC.a and BraA.ALC.a, possess a high level of similarity. The understanding of the sequence and expression divergence among homologous loci of
a gene is of due importance for an effective gene manipulation and TILLING (or ECOTILLING) analysis for the allelic DNA variation
at a given locus.
S. Hua and I. H. Shamsi contributed equally to this work. 相似文献
11.
ANGUSTIFOLIA (AN), a plant homolog of C-terminal binding protein, controls the polar elongation of leaf cells and the trichome-branching pattern in Arabidopsis thaliana. In the present study, degenerate PCR was used to isolate an ortholog of AN, referred to as LgAN, from larch (Larix gmelinii). The LgAN cDNA is predicted to encode a protein of 646 amino acids that shows striking sequence similarity to AN proteins from other plants. The predicted amino acid sequence has a conserved NAD-dependent 2-hydroxy acid dehydrogenase (D2-HDH) motif and a plant AN-specific LxCxE/D motif at its N-terminus, as well as a plant-specific long C-terminal region. The LgAN gene is a single-copy gene that is expressed in all larch tissues. Expression of the LgAN cDNA rescued the leaf width and trichome-branching pattern defects in the angustifolia-1 (an-1) mutant of Arabidopsis, showing that the LgAN gene has effects complementary to those of AN. These results suggest that the LgAN gene has the same function as the AN gene. 相似文献
12.
Jian-Xia Zhang Kun-Lin Wu Li-Ning Tian Song-Jun Zeng Jun Duan 《Acta Physiologiae Plantarum》2011,33(2):409-417
13.
To ensure that the initiation of flowering occurs at the correct time of year, plants need to integrate a diverse range of
external and internal signals. In Arabidopsis, the photoperiodic flowering pathway is controlled by a set of regulators that include CONSTANS (CO). In addition, Arabidopsis plants also have a family of genes with homologies to CO known as CO-LIKE (COL) about which relatively little is known. In this paper, we describe the regulation and interactions of a novel member of
the family, COL5. The expression of COL5 is under circadian and diurnal regulation, but COL5 itself does not appear to affect circadian rhythms. COL5, like CO, is regulated by GIGANTEA. Furthermore, COL5 is expressed in the vascular tissue. Using COL5 over-expressing lines we show that, under short days, constitutive expression of COL5 affects flowering time and the expression of the floral integrator genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CO 1. Constitutive expression of COL5 partially suppresses the late flowering phenotype of the co-mutant plants. However, plants with loss of COL5 function do not show altered flowering. Taken together, our results suggest that COL5 has COL activity, but may either not
have a role in regulating flowering in wild-type plants or may act redundantly with other flowering regulators.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
14.
Calcium serves as a second messenger in various signal transduction pathways in plants. CBL-interacting protein kinases (CIPKs),
which have a variety of functions, are involved in calcium signal transduction. Previous, the studies on CIPK family members
focused on Arabidopsis and rice. Here, we present a comparative genomic analysis of the CIPK gene family in Arabidopsis and poplar, a model tree species. Twenty-seven potential CIPKs were identified from poplar using genome-wide analysis. Like
the CIPK gene family from Arabidopsis, CIPK genes from poplar were also divided into intron-free and intron-harboring groups. In the intron-harboring group, the
intron distribution of CIPKs is rather conserved during the genome evolutionary process. Many homologous gene pairs were found
in the CIPK gene family, indicating duplication events might contribute to the amplification of this gene family. The phylogenetic
comparison of CIPKs in combination with intron distribution analysis revealed that CIPK genes from both Arabidopsis and poplar might have an ancient origin, which formed earlier than the separation of these two eudicot species. Our genomic
and bioinformatic analysis will provide an important foundation for further functional dissection of the CBL-CIPK signaling
network in poplars.
Electronic Supplementary Material
The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
15.
T. Zhang 《In vitro cellular & developmental biology. Plant》2007,43(2):91-94
This study investigated the factors affecting in vitro flowering of Perilla frutescens. The shoots regenerated from cotyledonary and hypocotyl explants cultured on Murashige and Skoog (MS) medium supplemented
with benzyladenine (BA) and indole-3-acetic acid, each at 0.5 mg l−1, were excised and transferred to MS medium containing 30 g l−1 of sucrose, 8.25 g l−1 of ammonium nitrate, and 1.0 mg l−1 of BA. After 40 d of culture, 86.2% of shoots flowered and most of which self-fertilized in vitro and produced mature fruits with viable seeds. These seeds were germinated and plants were grown to maturity and flowered
in soil under greenhouse conditions. The in vitro flowering system reported in this study may facilitate rapid breeding of P. frutescens and offers a model system for studying the physiological mechanism of flowering. 相似文献
16.
We describe patterns of DNA variation among the three centromeric satellite families in Arabidopsis halleri and lyrata. The newly studied subspecies (A. halleri ssp. halleri and A. lyrata ssp. lyrata and petraea), like the previously studied A. halleri ssp. gemmifera and A. lyrata ssp. kawasakiana, have three different centromeric satellite families, the older pAa family (also present in A. arenosa) and two families, pAge1 and pAge2, that probably evolved more recently. Sequence variability is high in all three satellite
families, and the pAa sequences do not cluster by their species of origin. Diversity in the pAge2 family is complex, and different
from variation among copies of the other two families, showing clear evidence for exchange events among family members, especially
in A. halleri ssp. halleri. In A. lyrata ssp. lyrata there is some evidence for recent rapid spread of pAge2 variants, suggesting selection favoring these sequences.
Electronic Supplementary Material Electronic Supplementary material is available for this article at
and accessible for authorised users.
[Reviewing Editor: Dr. Brian Morton] 相似文献
17.
Cotton fibres are single, highly elongated cells derived from the outer epidermis of ovules, and are developmentally similar to the trichomes of Arabidopsis thaliana. To identify genes involved in the molecular control of cotton fibre initiation, we isolated four putative homologues of the Arabidopsis trichome-associated gene TRANSPARENT TESTA GLABRA1 (TTG1). All four WD-repeat genes are derived from the ancestral D diploid genome of tetraploid cotton and are expressed in many tissues throughout the plant, including ovules and growing fibres. Two of the cotton genes were able to restore trichome formation in ttg1 mutant Arabidopsis plants. Both these genes also complemented the anthocyanin defect in a white-flowered Matthiola incana ttg1 mutant. These results demonstrate parallels in differentiation between trichomes in cotton and Arabidopsis, and indicate that these cotton genes may be functional homologues of AtTTG1. 相似文献
18.
19.
Fujimoto R Nishio T 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2003,106(8):1433-1437
A self-incompatibility system is used for F(1) hybrid breeding in Brassicaceae vegetables. The determinants of recognition specificity of self-incompatibility in Brassica are SRK in the stigma and SP11/SCR in the pollen. Nucleotide sequences of SP11 alleles are more highly variable than those of SRK. We analyzed the S haplotype specificity of SP11 DNA by Southern-blot analysis and dot-blot analysis using 16 S haplotypes in Brassica oleracea, and found that DNA fragments of a mature protein region of SP11 cDNA, SP11(m), of eight S haplotypes can detect only the SP11 alleles of the same S haplotypes. This specificity makes these methods useful for S haplotype identification. Therefore, we developed two methods of dot-blot analysis for SP11. One is dot blotting of DNA samples, i.e. plant genomic DNA probed with labeled SP11(m), and the other is dot blotting of SP11(m) DNA fragments probed with labeled DNA samples, i.e. the SP11 coding region labeled by PCR using a template of plant genomic DNA. The former is useful for testing many plant materials. The latter is suitable, if there is no previous information on the S haplotypes of plant materials. 相似文献
20.
Jeffrey A. Harvey Leontien M. A. Witjes Maria Benkirane Henk Duyts Roel Wagenaar 《Plant Ecology》2007,189(1):117-126
The thale cress, Arabidopsis thaliana, is considered to be an important model species in studying a suite of evolutionary processes. However, the species has been
criticized on the basis of its comparatively small size at maturity (and consequent limitations in the amount of available
biomass for herbivores) and on the duration and timing of its life cycle in nature. In the laboratory, we studied interactions
between A. thaliana and the cabbage butterfly, Pieris rapae, in order to determine if plants are able to support the complete development of the herbivore. Plants were grown in pots
from seedlings in densities of one, two, or four per pot. In each treatment, one, two, or five newly hatched larvae of P. rapae were placed on fully developed rosettes of A. thaliana. In a separate experiment, the same densities of P. rapae larvae were reared from hatching on single mature cabbage (Brassica oleracea) plants. Pupal fresh mass and survival of P. rapae declined with larval density when reared on A. thaliana but not on B. oleracea. However, irrespective of larval density and plant number, some P. rapae were always able to complete development on A. thaliana plants. A comparison of the dry mass of plants in different treatments with controls (= no larvae) revealed that A. thaliana partially compensated for plant damage when larval densities of P. rapae were low. By contrast, single cress plants with 5 larvae generally suffered extensive damage, whereas damage to B. oleracea plants was negligible. Rosettes of plants that were monitored in spring, when A. thaliana naturally grows, were not attacked by any insect herbivores, but there was often extensive damage from pulmonates (slugs
and snails). Heavily damaged plants flowered less successfully than lightly damaged plants. Small numbers of generalist plant-parasitic
nematodes were also recovered in roots and root soil. By contrast, plants monitored in a sewn summer plot were heavily attacked
by insect herbivores, primarily flea beetles (Phyllotreta spp.). These results reveal that, in natural populations of A. thaliana, there is a strong phenological mismatch between the plant and most of its potential specialist insect herbivores (and their
natural enemies). However, as the plant is clearly susceptible to attack from non-insect generalist invertebrate herbivores
early in the season, these may be much more suitable for studies on direct defense strategies in A. thaliana. 相似文献