首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Embryos of the brine shrimp, Artemia franciscana, either develop directly into swimming larvae or are released from females as encysted gastrulae (cysts) which enter diapause, a reversible state of dormancy. Metabolic activity in diapause cysts is very low and these embryos are remarkably resistant to physiological stresses. Encysting embryos, but not those undergoing uninterrupted development, synthesize large amounts of two proteins, namely p26 and artemin. Cloning and sequencing demonstrated p26 is a small heat shock/alpha-crystallin protein while artemin has structural similarity to ferritin. p26 exhibits molecular chaperone activity in vitro, moves reversibly into nuclei during stress and confers thermotolerance on transformed organisms, suggesting critical roles in cyst development. The function of artemin is unknown. Encysted Artemia also contain an abundance of trehalose, a disaccharide capable of protecting embryos. Artemia represent a novel experimental system where the developmental functions of small heat shock/alpha-crystallin proteins and other stress response elements can be explored.  相似文献   

2.
p26, a small heat shock protein, is thought to protect Artemia embryos from stress during encystment and diapause. Full-length p26 cDNAs were compared and used to determine phylogenetic relationships between several Artemia species. The alpha-crystallin domain of p26 was the most conserved region of the protein and p26 from each Artemia species contained characteristic amino-terminal WD/EPF and carboxy-terminal VPI motifs. Sequence conservation suggested the importance of p26 to oviparously developing Artemia embryos and indicated common functions for the protein during development and stress resistance, although as shown by modeling some species-specific p26 amino acid substitutions may have adaptive significance. The p26 gene obtained from A. franciscana exhibited a unique sHSP intron arrangement with an intron in the 5'-untranslated region. Computer-assisted analysis revealed heat shock elements and other putative cis regulatory sequences but their role in gene regulation is unknown. In contrast to previous results for which Northern blots were analyzed, p26 gene expression was observed in ovoviviparous embryos by use of PCR-based methodology, but the p26 protein was not detected.  相似文献   

3.
Artemia franciscana embryos undergo encystment, developmental arrest and diapause, the last characterized by profound metabolic dormancy and extreme stress resistance. Encysted embryos contain an abundant small heat shock protein termed p26, a molecular chaperone that undoubtedly has an important role in development. To understand better the role of p26 in Artemia embryos, the structural and functional characteristics of full-length and truncated p26 expressed in Escherichia coli and COS-1 cells were determined. p26 chaperone activity declined with increasing truncation of the protein, and those deletions with the greatest adverse effect on protection of citrate synthase during thermal stress had the most influence on oligomerization. When produced in either prokaryotic or eukaryotic cells the p26 alpha-crystallin domain consisting of amino acid residues 61-152 existed predominantly as monomers, and p26 variants lacking the amino-terminal domain but with intact carboxyl-terminal extensions were mainly monomers and dimers. The amino terminus was, therefore, required for efficient dimer formation. Assembly of higher order oligomers was enhanced by the carboxyl-terminal extension, although removing the 10 carboxyl-terminal residues had relatively little effect on oligomerization and chaperoning. Full-length and carboxyl-terminal truncated p26 resided in the cytoplasm of transfected COS-1 cells; however, variants missing the complete amino-terminal domain and existing predominantly as monomers/dimers entered the nuclei. A mechanism whereby oligomer disassembly assisted entry of p26 into nuclei was suggested, this of importance because p26 translocates into Artemia embryo nuclei during development and stress. However, when examined in Artemia, the p26 oligomer size was unchanged under conditions that allowed movement into nuclei, suggesting a process more complex than just oligomer dissociation.  相似文献   

4.
Small heat shock/alpha-crystallin proteins function as molecular chaperones, protecting other proteins from irreversible denaturation by an energy-independent process. The brine shrimp, Artemia franciscana, produces a small heat shock/alpha-crystallin protein termed p26, found in embryos undergoing encystment, diapause, and metabolic arrest. These embryos withstand long-term anoxia and other stresses normally expected to cause death, a property likely dependent on molecular chaperone activity. The association of p26 with tubulin in unfractionated cell-free extracts of Artemia embryos was established by affinity chromatography, suggesting that p26 chaperones tubulin during encystment. To test this possibility, both proteins were purified by modifying published protocols, thereby simplifying the procedures, enhancing p26 yield about 2-fold, and recovering less tubulin than before. The denaturation of purified tubulin as it "aged" and exposed hydrophobic sites during incubation at 35 degrees C was greatly reduced when p26 was present; however, tubulin polymerization into microtubules was reduced. On incubation at 35 degrees C, centrifugation in sucrose density gradients demonstrated the association of purified p26 with tubulin. This is the first study where the relationship between a small heat shock/alpha-crystallin protein and tubulin from the same physiologically stressed organism was examined. The results support the proposal that p26 binds tubulin and prevents its denaturation, thereby increasing the resistance of encysted Artemia embryos to stress. Additional factors are apparently required for release of tubulin from p26 and restoration of efficient assembly, events that would occur as embryos resume development and the need for microtubules is established.  相似文献   

5.
Qiu Z  MacRae TH 《The FEBS journal》2008,275(14):3556-3566
Diapause embryos of the crustacean Artemia franciscana exhibit extreme stress tolerance, a property thought to involve molecular chaperones known as small heat shock proteins. To further explore this idea, the structure, function and synthesis of ArHsp22, an Artemia small heat shock protein, were characterized. ArHsp22 contains amino-terminal WXDPF motifs, an alpha-crystallin domain with a highly conserved arginine, and a carboxy-terminal I/VXI/V motif, all typical of small heat shock proteins. ArHsp22 formed large oligomers and exhibited molecular chaperone activity in vitro, protecting citrate synthase and insulin from denaturation. Quantitative PCR and immunoprobing of western blots revealed that ArHsp22 synthesis is restricted to diapause-destined Artemia embryos and that the protein is degraded during post-diapause development. ArHsp22 was observed in cyst nuclei, a location shared by p26 but not ArHsp21, which are two other diapause-specific Artemia small heat shock proteins. ArHsp22 production was enhanced by thermal stress, but only in adults, thus representing the first crustacean small heat shock protein whose synthesis is known to be both developmentally regulated and stress inducible. The results demonstrate that expression of the gene for ArHsp22 is modulated by multiple cues that vary with life history stage. Such findings are of importance in understanding diapause maintenance in Artemia embryos and the survival of adult animals experiencing environmental insult.  相似文献   

6.
AM King  TH Macrae 《PloS one》2012,7(8):e43723
Artemia franciscana embryos enter diapause as encysted gastrulae, a physiological state of metabolic dormancy and enhanced stress resistance. The objective of this study was to use RNAi to investigate the function of p26, an abundant, diapause-specific small heat shock protein, in the development and behavior of encysted Artemia embryos (cysts). RNAi methodology was developed where injection of Artemia females with dsRNA specifically eliminated p26 from cysts. p26 mRNA and protein knock down were, respectively, confirmed by RT-PCR and immuno-probing of western blots. ArHsp21 and ArHsp22, diapause-related small heat shock proteins in Artemia cysts sharing a conserved α-crystallin domain with p26, were unaffected by injection of females with dsRNA for p26, demonstrating the specificity of protein knock down. Elimination of p26 delayed cyst release from females demonstrating that this molecular chaperone influences the development of diapause-destined embryos. Although development was slowed the metabolic activities of cysts either containing or lacking p26 were similar. p26 inhibited diapause termination after prolonged incubation of cysts in sea water perhaps by a direct effect on termination or indirectly because p26 is necessary for the preservation of diapause maintenance. Cyst diapause was however, terminated by desiccation and freezing, a procedure leading to high mortality within cyst populations lacking p26 and indicating the protein is required for stress tolerance. Cysts lacking p26 were also less resistant to heat shock. This is the first in vivo study to show that knock down of a small heat shock protein slows the development of diapause-destined embryos, suggesting a role for p26 in the developmental process. The same small heat shock protein prevents spontaneous termination of diapause and provides stress protection to encysted embryos.  相似文献   

7.
The small heat shock/alpha-crystallin protein p26 undergoes nuclear translocation in response to stress in encysted embryos of the brine shrimp Artemia franciscana. About 50% of total p26 translocates to nuclei in embryos treated with heat shock or anoxia, and in embryo homogenates incubated at low pH. Nuclear fractionation shows that the majority of nuclear p26 and a nuclear lamin are associated with the nuclear matrix fraction. To further explore the roles of p26 and other HSPs in stabilizing nuclear matrix proteins (NMPs), nuclear matrices from control, and heat-shocked embryos were disassembled in urea and evaluated by one and two-dimensional (2-D) gel electrophoresis and Western immunoblotting after reassembling. Nuclear lamins were present only in reassembled fractions and, in the case of heat shock, p26 and HSP70 were also present. HSP90 was not detected in any nuclear fraction. Confocal microscopy on isolated nuclei and nuclear matrix preparations from control and heat-shocked embryos showed that the majority of p26 and a nuclear lamin share similar nuclear distributions. The combination of microscopy and fractionation results suggests that p26 and HSP70 play a role in the protection of nuclear lamins within the nuclear matrix.  相似文献   

8.
Oviparous development in the extremophile crustacean, Artemia franciscana, generates encysted embryos which enter a profound state of dormancy, termed diapause. Encystment is marked by the synthesis of p26, a polydisperse small heat shock protein thought to protect embryos from stress. In order to elucidate structural/functional relationships within p26 and other polydisperse small heat shock proteins, and to better define the protein's role during diapause, amino acid substitutions R110G, F112R, R114A and Y116D were generated within the p26 alpha-crystallin domain by site-directed mutagenesis. These residues were chosen because they are highly conserved across species boundaries, and molecular modelling indicates that they are part of a key structural interface between dimers. The F112R mutation, which had the greatest impact on oligomerization, placed two charged residues at the p26 dimer-dimer interface, demonstrating the importance of beta-strand 7 in tetramer formation. All mutated versions of p26 were less able than wild-type p26 to confer thermotolerance on transformed bacteria and they exhibited diminished chaperone action in three in vitro assays; however, all variants retained protective activity. This apparent stability of p26 may, by prolonging effective chaperone life in vivo, enhance embryo stress resistance. All substitutions modified p26 intrinsic fluorescence, surface hydrophobicity and secondary structure, and the pronounced changes in variant R114A, as indicated by these physical measurements, correlated with the greatest loss of function. Although mutation R114A had the greatest effect on p26 chaperoning, it had the least on oligomerization. These results demonstrate that in contrast to many other small heat shock proteins, p26 effectiveness as a chaperone is independent of oligomerization. The results also reinforce the idea, occasioned by modelling, that R114 is removed slightly from dimer-dimer interfaces. Moreover, beta-strand 7 is shown to have an important role in oligomerization of p26, a function first proposed for this structural element upon crystallization of wheat Hsp16.9, a small heat shock protein with different quaternary structure.  相似文献   

9.
10.
p26, an abundantly expressed small heat shock protein, is thought to establish stress resistance in oviparously developing embryos of the crustacean Artemia franciscana by preventing irreversible protein denaturation, but it might also promote survival by inhibiting apoptosis. To test this possibility, stably transfected mammalian cells producing p26 were generated and their ability to resist apoptosis induction determined. Examination of immunofluorescently stained transfected 293H cells by confocal microscopy demonstrated p26 is diffusely distributed in the cytoplasm with a minor amount of the protein in nuclei. As shown by immunoprobing of Western blots, p26 constituted approximately 0.6% of soluble cell protein. p26 localization and quantity were unchanged during prolonged culture, and the protein had no apparent ill effects on transfected cells. Molecular sieve chromatography in Sepharose 6B revealed p26 oligomers of about 20 monomers, with a second fraction occurring as larger aggregates. A similar pattern was observed in sucrose gradients, but overall oligomer size was smaller. Mammalian cells containing p26 were more thermotolerant than cells transfected with the expression vector only, and as measured by annexin V labeling, Hoescht 33342 nuclear staining and procaspase-3 activation, transfected cells effectively resisted apoptosis induction by heat and staurosporine. The ability to confer thermotolerance and limit heat-induced apoptosis is important because Artemia embryos are frequently exposed to high temperature in their natural habitat. p26 also blocked apoptosis in transfected cells during drying and rehydration, findings with direct relevance to Artemia life history characteristics because desiccation terminates cyst diapause. Thus, in addition to functioning as a molecular chaperone, p26 inhibits apoptosis, an activity shared by other small heat shock proteins and with the potential to play an important role during Artemia embryo development.  相似文献   

11.
Embryos of the crustacean, Artemia franciscana, undergo alternative developmental pathways, producing either larvae or encysted embryos (cysts). The cysts enter diapause, characterized by exceptionally high resistance to environmental stress, a condition thought to involve the sHSP (small heat-shock protein), p26. Subtractive hybridization has revealed another sHSP, termed ArHsp21, in diapause-destined Artemia embryos. ArHsp21 shares sequence similarity with p26 and sHSPs from other organisms, especially in the alpha-crystallin domain. ArHsp21 is the product of a single gene and its synthesis occurred exclusively in diapause-destined embryos. Specifically, ArHsp21 mRNA appeared 2 days post-fertilization, followed 1 day later by the protein, and then increased until embryo release at day 5. No ArHsp21 protein was detected in embryos developing directly into larvae, although there was a small amount of mRNA at 3 days post-fertilization. The protein was degraded during post-diapause development and had disappeared completely from second instar larvae. ArHsp21 formed large oligomers in encysted embryos and transformed bacteria. When purified from bacteria, ArHsp21 functioned as a molecular chaperone in vitro, preventing heat-induced aggregation of citrate synthase and reduction-driven denaturation of insulin. Sequence characteristics, synthesis patterns and functional properties demonstrate clearly that ArHsp21 is an sHSP able to chaperone other proteins and contribute to stress tolerance during diapause. As such, ArHsp21 would augment p26 chaperone activity and it may also possess novel activities that benefit Artemia embryos exposed to stress.  相似文献   

12.
Cloning and expression analysis of p26 gene in Artemia sinica   总被引:1,自引:0,他引:1  
The protein p26 is a small heat shock protein that functions as a molecular chaperone to protect embryos by preventing irreversible protein damage during embryonic development. A 542 bp fragment of the p26 gene was cloned and sequenced. The fragment encoded 174 amino acid residues and the amino acid sequence contained the α-crystallin domain. Phylogenetic analysis showed that eight Artemia populations were divided into four major groups. Artemia sinica (YC) belonged to the East Asia bisexual group. Expression of the p26 gene at different developmental stages ofA. sinica was quantified using real-time quantitative polymerase chain reaction followed by cloning and sequencing. The relationship between the quantity of p26 gene expression and embryonic development was analyzed. The results indicated that massive amounts of p26 were expressed during the development of A. sinica. At the developmental stage of 0 h, A. sinica expressed the highest level of p26. As development proceeded, expression levels of the p26 gene reduced significantly. There was a small quantity of p26 gene expression at the developmental stages of 16 h and 24 h. We concluded that p26 might be involved in protecting the embryo from physiological stress during embryonic development.  相似文献   

13.
Sun Y  MacRae TH 《The FEBS journal》2005,272(20):5230-5243
The small heat shock proteins function as molecular chaperones, an activity often requiring reversible oligomerization and which protects against irreversible protein denaturation. An abundantly produced small heat shock protein termed p26 is thought to contribute to the remarkable stress resistance exhibited by encysted embryos of the crustacean, Artemia franciscana. Three novel sequence motifs termed G, R and TS were individually deleted from p26 by site-directed mutagenesis. G encompasses residues G8-G29, a glycine-enriched region, and R includes residues R36-R45, an arginine-enhanced sequence, both in the amino terminus. TS, composed of residues T169-T186, resides in the carboxy-extension and is augmented in threonine and serine. Deletion of R had more influence than removal of G on p26 oligomerization and chaperoning, the latter determined by thermotolerance induction in Escherichia coli, protection of insulin and citrate synthase from dithiothreitol- and heat-induced aggregation, respectively, and preservation of citrate synthase activity upon heating. Oligomerization of the TS and R variants was similar, but the TS deletion was slightly more effective than R as a chaperone. The extent of p26 structural perturbation introduced by internal deletions, including modification of intrinsic fluorescence, 1-anilino-8-naphthalene-sulphonate binding and secondary structure, paralleled reductions in oligomerization and chaperoning. Three-dimensional modeling of p26 based on wheat Hsp16.9 crystal structure indicated many similarities between the two proteins, including peptide loops associated with secondary structure elements. Loop 1 of p26 was deleted in the G variant with minimal effect on oligomerization and chaperoning, whereas loop 3, containing beta-strand 6 was smaller than the corresponding loop in Hsp16.9, which may influence p26 function.  相似文献   

14.
Encysted embryos of the primitive crustacean Artemia franciscana are among the most resistant of all multicellular eukaryotes to environmental stress, in part due to massive amounts of a small heat shock/alpha-crystallin protein (p26) that acts as a molecular chaperone. These embryos also contain very large amounts of the disaccharide trehalose, well known for its ability to protect macromolecules and membranes against damage due to water removal and temperature extremes. Therefore, we looked for potential interactions between trehalose and p26 in the protection of a model substrate, citrate synthase (CS), against heat denaturation and aggregation and in the restoration of activity after heating in vitro. Both trehalose and p26 decreased the aggregation and irreversible inactivation of CS at 43 degrees C. At approximate physiological concentrations (0.4 M), trehalose did not interfere with the ability of p26 to assist in the reactivation of CS after heating, but higher concentrations (0.8 M) were inhibitory. We also showed that CS and p26 interact physically during heating and that trehalose interferes with complex formation and disrupts CS-p26 complexes that form at high temperatures. We suggest from these results that trehalose may act as a "release factor," freeing folding intermediates of CS that p26 can chaperone to the native state. Trehalose and p26 can act synergistically in vitro, during and after thermal stress, suggesting that these interactions also occur in vivo.  相似文献   

15.
Induced thermotolerance is a phenomenon whereby exposure to a mild heat shock can induce heat shock proteins (HSP) and other cellular changes to make cells more resistant to a subsequent, more severe heat shock. Given that the 2-cell bovine embryo is very sensitive to heat shock, but can also produce HSP70 in response to elevated temperature, experiments were conducted to test whether 2-cell embryos could be made to undergo induced thermotolerance. Another objective was to test the role of the heat-inducible form of heat shock protein 70 (HSP70i) in development and sensitivity of bovine embryos to heat shock. To test for induced thermotolerance, 2-cell bovine embryos were first exposed to a mild heat shock (40 degrees C for 1 hr, or 41 degrees C or 42 degrees C for 80 min), allowed to recover at 38.5 degrees C and 5% (v/v) CO2 for 2 hr, and then exposed to a severe heat shock (41 degrees C for 4.5, 6, or 12 hr). Regardless of the conditions, previous exposure to mild heat shock did not reduce the deleterious effect of heat shock on development of embryos to the blastocyst stage. The role of HSP70i in embryonic development was tested in two experiments by culturing embryos with a monoclonal antibody to the inducible form of HSP70. At both 38.5 degrees C and 41 degrees C, the proportion of 2-cell embryos that developed to blastocyst was reduced (P < 0.05) by addition of anti-HSP70i to the culture medium. In contrast, sensitivity to heat shock was not generally increased by addition of antibody. In conclusion, bovine 2-cell embryos appear incapable of induced thermotolerance. Lack of capacity for induced thermotolerance could explain in part the increased sensitivity of 2-cell embryos to heat shock as compared to embryos at later stages of development. Results also implicate a role for HSP70i in normal development of bovine embryos.  相似文献   

16.
17.
Oviparously developing embryos of the crustacean Artemia franciscana encyst and enter diapause, exhibiting a level of stress tolerance seldom seen in metazoans. The extraordinary stress resistance of encysted Artemia embryos is thought to depend in part on the regulated synthesis of artemin, a ferritin superfamily member. The objective of this study was to better understand artemin function, and to this end the protein was synthesized in Escherichia coli and purified to apparent homogeneity. Purified artemin consisted of oligomers approximately 700 kDa in molecular mass that dissociated into monomers and a small number of dimers upon SDS/PAGE. Artemin inhibited heat-induced aggregation of citrate synthase in vitro, an activity characteristic of molecular chaperones and shown here to be shared by apoferritin and ferritin. This is the first report that apoferritin/ferritin may protect cells from stress other than by iron sequestration. Stably transfected mammalian cells synthesizing artemin were more resistant to heat and H(2)O(2) than were cells transfected with vector only, actions also shared by molecular chaperones such as the small heat shock proteins. The data indicate that artemin is a structurally modified ferritin arising either from a common ancestor gene or by duplication of the ferritin gene. Divergence, including acquisition of a C-terminal peptide extension and ferroxidase center modification, eliminated iron sequestration, but chaperone activity was retained. Therefore, because artemin accumulates abundantly during development, it has the potential to protect embryos from stress during encystment and diapause without adversely affecting iron metabolism.  相似文献   

18.
Cells of encysted embryos of Artemia franciscana, the brine shrimp, are among the most resistant of all animal cells to extremes of environmental stress. We focus here on their ability to survive continuous anoxia for periods of years, during which their metabolic rate is undetectable. We asked whether their impressive tolerance was reflected in changes at the ultrastructural level. The ultrastructure of encysted embryos previously experiencing 38 days and 3.3 years of anoxia was compared with those not undergoing anoxia (controls). Rough endoplasmic reticulum was abundant in anoxic embryos, in spite of the absence of protein biosynthesis in their cells. Other cytoplasmic changes had occurred in the anoxic cells, but overall their structure was remarkably intact, in view of their 3 years of continuous anoxia. A major difference was the presence of abundant electron-dense granules in the nuclei of anoxic embryos; these were present but rare in nuclei of controls. Biochemical fractionation and Western immunoblotting confirmed previous observations that substantial amounts of the small heat shock/alpha-crystallin protein (p26) translocated into nuclei of anoxic embryos. We have no evidence that the dense granules contain this protein, but that remains a possibility. In contrast, and contrary to expectation, proteins of the hsp70 and 90 families did not undergo anoxia-induced nuclear translocation, an unusual result since such translocations have been widely observed in cells from a variety of organisms.  相似文献   

19.
During early development, elevated temperatures have deleterious effects on embryonic viability and development. The primary objective of the current study was to determine the ontogeny of induced thermotolerance during early murine embryonic development. Embryos were either retrieved from superovulated ICR female mice at the 2 cell and 4 cell stages and cultured thereafter or were retrieved from oviducts or uterine horns at the desired stage of development. Induction of thermotolerance was detected by evaluating viability and further development after embryos were exposed to homeothermic temperature (37°C), mild heat shock (40°C for 1 h), severe heat shock (42°C for 1 h or 43°C for 2 h), or mild heat shock followed by severe heat shock (to induce thermotolerance). Induction of thermotolerance was observed beginning at the 8 cell stage when embryos were developed in culture from the 2 cell to 4 cell stage. When embryos were developed in vivo (i.e., were retrieved from the reproductive tract at the desired stage of development), thermotolerance was not induced until the blastocyst stage of development. The induction of thermotolerance was dependent on serum supplementation since induction of thermotolerance was not observed when embryos were placed in medium without serum. Induced thermotolerance could also be demonstrated in bovine blastocysts. In conclusion, embryos acquire the ability to undergo thermotolerance as they progress through development. The timing of processes leading to acquisition of thermotolerance can, however, be hastened by exposure of embryos to in vitro conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号