首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymerization of glycine methyl ester catalyzed by cupric ions in organic solvents yields oligoglycines with a degree of polymerization up to nine. With a trifunctional amino acid, the yeild and degree of polymerization were much lower. Extension of this reaction to an aqueous medium was not successful even when copper ions were complexed with substances like montmorillonite or fatty acids. The prebiotic significance of this reaction is discussed.Contribution to the 4th International Conference on the Origin of Life, Barcelona, June 1973.  相似文献   

2.
R P Frigon  S N Timasheff 《Biochemistry》1975,14(21):4559-4566
The self-association of calf brain tubulin at pH 7.0 in the presence of magnesium ions has been examined by velocity sedimentation. The schlieren patterns were analyzed by methods described by Gilbert and by Cox. The observed process is best described in terms of a rapidly reversible progressive self-association of the tubulin dimer with identical chain elongation equilibrium constants, k, terminated by a ring-closing step, at degree of polymerization n = 26 +/- 2, with k26 greater than k. The end product of the polymerization reaction has a sedimentation coefficient s20,w0 k2 +/- 2 S. It is hydrodynamically equivalent to a closed ring structure observed in the electron microscope at identical conditions.  相似文献   

3.
Metal-chelating polymers (MCPs) are important reagents for multiplexed immunoassays based on mass cytometry. The role of the polymer is to carry multiple copies of individual metal isotopes, typically as lanthanide ions, and to provide a reactive functionality for convenient attachment to a monoclonal antibody (mAb). For this application, the optimum combination of chain length, backbone structure, end group, pendant groups, and synthesis strategy has yet to be determined. Here we describe the synthesis of a new type of MCP based on anionic ring-opening polymerization of an activated cyclopropane (the diallyl ester of 1,1-cyclopropane dicarboxylic acid) using a combination of 2-furanmethanethiol and a phosphazene base as the initiator. This reaction takes place with rigorous control over molecular weight, yielding a polymer with a narrow molecular weight distribution, reactive pendant groups for introducing a metal chelator, and a functional end group with orthogonal reactivity for attaching the polymer to the mAbs. Following the ring-opening polymerization, a two-step transformation introduced diethylenetriaminepentaacetic acid (DTPA) chelating groups on each pendant group. The polymers were characterized by NMR, size exclusion chromatography (SEC), and thermogravimetric analysis (TGA). The binding properties toward Gd(3+) as a prototypical lanthanide (Ln) ion were also studied by isothermal titration calorimetry (ITC). Attachment to a mAb involves a Diels-Alder reaction of the terminal furan with a bismaleimide, followed by a Michael addition of a thiol on the mAb, generated by mild reduction of a disulfide bond in the hinge region. Polymer samples with a number average degree of polymerization of 35, with a binding capacity of 49.5 ± 6 Ln(3+) ions per chain, were loaded with 10 different types of Ln ions and conjugated to 10 different mAbs. A suite of metal-tagged Abs was tested by mass cytometry in a 10-plex single cell analysis of human adult peripheral blood, allowing us to quantify the antibody binding capacity of 10 different cell surface antigens associated with specific cell types.  相似文献   

4.
Despite its being weaker base poly(2-vinylpyridine) polymerized DL -β-phenylalanine NCA at a much faster rate than pyridine and α-picoline. Poly(2-vinylpyridine) adsorbs NCA by hydrogen bonding with the cooperation of a few pyridine groups. This results in a high local concentration of NCA. The syndiotactic configuration of pyridine group seemed to be least suitable for the cooperative hydrogen bonding. Adsorbed NCA is activated to form an “activated” NCA which in turn reacts with an NCA adsorbed on the same polymer chain. Since the polymer chain is flexible, this intramolecular reaction takes place frequently, resulting in the acceleration of polymerization. The intramolecular reaction along the polymer chain is dependent on the degree of polymerization of polymer catalyst. A suitable model was proposed for the intramolecular reaction to explain the effect of degree of polymerization.  相似文献   

5.
ATP-G-actin in the absence of excess ATP and divalent metal ions was treated with ADP in amounts large enough to ensure complete formation of ADP-G-actin. Under these conditions the monomer undergoes a very slow structural transition as seen by the exposure of 2.0 +/- 0.2 thiol groups per actin molecule. Once exposed, the second thiol group reacts with 5,5'-dithiobis-(2-nitrobenzoic acid) at a rate approximately 10-fold higher than that of cysteine 374. Labeling experiments with 2,4-dinitrophenyl [1-14C]cysteinyl disulfide followed by digestion and peptide analysis showed (besides reaction with cysteine 374) nearly exclusive labeling of cysteine 10. Since this residue is completely shielded in ATP-G-actin, exchange of ATP for ADP must have caused a partial unfolding of the protein uncovering the side chain of this cysteine. The transition is reversible, because addition of ATP or of excess divalent metal ions restored the conformation with only cysteine 374 exposed. Reversibility of the transition allowed us to directly determine the relative affinities of ATP and ADP to monomeric actin in the absence of Me2+ ions. By determination of the 50% exposure value of cysteine 10 from either side of the equilibrium we found a value of KATP/KADP = 30. The rate of uncovering of the thiol of cysteine 10 at 0 degree C was distinctly slower (t1/2 = 9 h) than its reshielding by the addition of ATP (t1/2 = 3 h). The structural change was accompanied by a decrease in polymerization rate. Relative polymerization rates were determined as ATP-G(1S)-actin:ADP-G(approximately 1S)-actin:ADP-G(2S)-actin = 1.0:0.35:0.1. From the data presented here we conclude that preparations of ADP-G-actin remain undefined unless the number of thiol groups exposed has been determined.  相似文献   

6.
The effect of the dipolar ions, glycine, glycylglycine, and glycylglycylglycine on the polymerization of tobacco mosaic virus (TMV) protein has been studied by the methods of light scattering and ultracentrifugation. All three dipolar ions promote polymerization. The major reaction in the early stage is transition from the 4 S to the 20 S state. As in the absence of dipolar ions, the polymerization is enhanced by an increase in temperature; it is endothermic and therefore entropy-driven. The effect of the dipolar ions can be understood in terms of their action as salting-out agents; they increase the activity coefficient of TMV A protein, the 4 S material, and thus shift the equilibrium toward the 20 S state. The salting-out constants, K, for the reaction in 0.10 ionic strength phosphate buffer at pH 6.7 was found by the light scattering method to be 1.6 for glycine, 2.5 for glycylglycine, and 2.5 for glycylglycylglycine. A value of 2.7 was obtained by the ultracentrifugation method for glycylglycine in phosphate buffer at 0.1 ionic strength and pH 6.8 at 10 degrees C. For both glycine and glycylglycine, K increases when the ionic strength of the phosphate buffer is decreased. This result suggests that electrolytes decrease the activity coefficient of the dipolar ions, a salting-in phenomenon. However, the salting-in constants evaluated from these results are substantially higher than those previously determined by solubility measurements. The effect of glycine and glycylglycine on polymerization was studied at pH values between 6.2 and 6.8. The effectiveness of both dipolar ions is approximately 50% greater at pH 6.8 than at pH 6.2. The variation of the extent of polymerization with pH in the presence of the dipolar ions is consistent with the interpretation that approximately one hydrogen ion is bound for half of the polypeptide units in the polymerized A protein.  相似文献   

7.
The Ferguson plot and ‘quantitative’ gel electrophoresis (based on the Ferguson plot) depend on a knowledge of accurate gel concentrations. The easiest way to estimate accuracy of gel concentrations, in terms of the degree of completion of the polymerization reaction which gives rise to a gel, is by spectrophotometry. Making use of the apparatus for continuous optical scanning of polyacrylamide gels, the extent and rate of polymerization of cross-linked polyacrylamide were estimated by measuring the absorbance at 275 mm of the reaction mixture subsequent to free radical initiation of polymerization. Under appropriate conditions of monomer concentration, initiator levels and temperature, absorbance decreased monotonically after alag period of 10 min, and after 20–30 min of reaction the absorbance reached a plateau value which provided a measure of polymerization efficiency. Application of a standard curve of absorbance vs. monomer concentration allowed one to quantitate concentrations of residual monomer throughout the course of polymerization. Under a set of arbitrary polymerization conditions (e.g. 6–20% total gel concentration), the reaction went to 63–96% completion. The rate of polymerization was approximately proportional to the square of the monomer concentration (2nd-order reaction kinetics). Absorbance decrease subsequent to the initiation of the polymerization reaction appeared suitable as a measure of efficiency of polymerization since: (1) absorbance spectra of monomers at 0.5%T and residual monomers in a 10%T gel, at a time when polymerization seemed terminated, coincided; (b) values of residual monomer obtained were reasonable (10–30%); (c) bimolecular reaction kinetics were found, in agreement with expectation; and (c) absorbance of incomplete polymerization mixtures, deficient in either initiators or monomers, was constant with time.  相似文献   

8.
Divinyl sulfone-crosslinked agarose gels were made hydrophilic by coupling glycidol to the agarose chains. The concentration of glycidol in the reaction mixture determines the pore size of the gels (the glycidol molecules probably form polymers, the degree of polymerization increasing with the glycidol concentration). Gels prepared with moderate glycidol concentrations are still porous enough to be used for separation of proteins and peptides. Gels with a high degree of glycidol polymerization are suited for desalting of low-molecular-weight compounds, for instance peptides.  相似文献   

9.
N-Cyanoimidazole is an efficient condensing agent for the polymerization of guanosine 5'-phosphate (pG) on a poly(C) template in an aqueous solution. At 0 degree C, up to about 30% of input pG was converted to a mixture of oligomers with a mean chain length of up to 7. The effect of divalent metal ions in the polymerization of pG on a poly(C) template was not so considerable as in that of oligo(A) on a poly(U) template. In the polymerization of pG, the moderate yields were obtaind in the presence of Co2+, Ni2+ and Cu2+.  相似文献   

10.
Phenolic polymerization was carried out by enzymatic catalysis in organic media, and its kinetics was studied by using high-pressure liquid chromatography (HPLC). Phenols and aromatic amines with electron-withdrawing groups could hardly be polymerized by HRP catalysis, but phenols and aromatic amines with electron-donating groups could easily be polymerized. The reaction rate of either the para-substituted substrate or meta-substituted substrate was higher than that of ortho-substituted substrate. When ortho-position of hydroxy group of phenols was occupied by an electron-donating group and if another electron-donating group occupied para-position of hydroxy group, the reaction rate increased. Horseradish peroxidase and lactoperoxidase could easily catalyze the polymerization, but chloroperoxidase and laccase failed to yield polymers. Metallic ions such as Mn(2+), Fe(2+), or Fe(3+), and Cu(2+) could poison horseradish peroxidase to various extents, but ions such as Co(2+), Cd(2+), Zn(2+), and K(+) were not found to inhibit the reaction. (c) 1995 John Wiley & Sons, Inc.  相似文献   

11.
AMDES (aminopropylmethyldiethoxysilane) was used to investigate the physicochemical and chemical events related to the introduction of aminoalkylalkoxysilanes in cellulosic materials. Using (29)Si CP-MAS and (1)H NMR to study the reactivity and structural modification of AMDES in the paper it was shown that polymerization occurs in situ. The distribution of the active compound on the surface of the fibers and throughout the fibers' thickness was visualized by SEM-EDS. A relation between moisture content, fiber swelling, and uptake of AMDES was found. To better represent old and brittle documents, the paper was predegraded by oxidation with sodium hypochlorite. XRD confirmed the advanced destruction of the amorphous areas of cellulose. Adding AMDES in the oxidized paper resulted in improved mechanical properties, a roughly unmodified degree of polymerization of cellulose, but a slight increase in the yellowing, probably due to several possible reaction products such as imines, amine, amides, and Maillard reactions products. The deacidification efficacy was established and the strengthening effect was shown to arise from the interaction of AMDES with the cellulose fibers.  相似文献   

12.
In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.  相似文献   

13.
William Yap 《Biophysical journal》1973,13(11):1160-1165
A model for the binding of ions to oligopeptides, in which nearest neighbor interactions are considered is developed. Equations for the titration curves are derived The apparent association constants are determined as a function of the degree of polymerization and of the interactions between nearest neighbors.  相似文献   

14.
Diaspirin cross-linked hemoglobin (DCLHb), a human hemoglobin that is intramolecularly cross-linked between the alpha chains (lysine 99(alpha)(1)-lysine 99(alpha)(2)), was polymerized with a number of water-soluble, nonimmunogenic polyamide cross-linking agents. The degree of polymerization and the oxygen-carrying capacity depended upon the polyamide reagent, the starting concentration of DCLHb, the molar ratio of the polyamide reagent to DCLHb used, the reaction pH, and whether oxy- or deoxy-DCLHb was used in the polymerization reaction.  相似文献   

15.
Song Liu  Gang Sun   《Carbohydrate polymers》2008,71(4):614-625
Cotton cellulose was successfully functionalized via a free radical graft polymerization process. Potassium persulfate served as an effective water soluble radical initiator to generate cellulosic radicals. The polymeric radicals could react with allyl monomers such as allyl-dimethylhydantion (ADMH) to form surface grafted cellulose. The reaction sites generated by potassium persulfate were probably at carbon 3 and 4 in glucose ring via oxidative hydrogen abstraction. The cellulosic radicals can initiate grafting polymerization of ADMH with a maximum polymerization degree of about 12 based on LC–MS results. The radical graft polymerization mechanisms were proposed based on LC–ESI/MS analysis. The ideal covalent bonding between cellulose and poly (allyl-dimethylhydantion) (PADMH) ensured permanent graft of the monomers on cotton and durability of the expected functions on the treated cotton.  相似文献   

16.
The acceptor reaction of dextransucrase from Leuconostoc mesenteroides NRRL-B512F with glucose as acceptor is of technical interest for isomaltooligosaccharide (IMOs) synthesis. Different experimental conditions were investigated for free and immobilized enzyme. The data for oligosaccharide formation up to a degree of polymerization 4 were correlated with a model developed earlier, and optimal reaction conditions for immobilized dextransucrase design and application were identified for later continuous application. Furthermore, stability was investigated for free and immobilized enzyme including stabilization by sugars.  相似文献   

17.
Physical developers can increase the visibility of end products of certain histochemical reactions, such as oxidative polymerization of diaminobenzidine and selective binding of complex silver iodide ions to Alzheimer's neurofibrillary changes. Unfortunately, this intensification by silver coating is generally superimposed on a nonspecific staining originating from the argyrophil III reaction, which also takes place when tissue sections are treated with physical developers. The present study reveals that the argyrophil III reaction can be suppressed when tissue sections are treated with certain metal ions and hydrogen peroxide before they are transferred to the physical developer. The selective intensification of Alzheimer's neurofibrillary changes requires a pre-treatment with lanthanum nitrate (10 mM/liter) and 3% hydrogen peroxide for 1 hr. The diaminobenzidine reaction can be selectively intensified when physical development is preceded by consecutive treatments with copper sulfate (10 mM/liter, pH 5, 10 min) and hydrogen peroxide (3%, pH 7, 10 min). In peroxidase histochemistry, this high-grade intensification may help to increase specificity and reduce the threshold of detectability in tracing neurons with horseradish peroxidase or in immunohistochemistry when the peroxidase-antiperoxidase method is used.  相似文献   

18.
Yeast alcohol dehydrogenase (ADH), diaphorase (DI) and NAD were co-immobilized on Sepharose that had been repeatedly modified with hexamethylenediamine and glutaraldehyde. The activity and re-usability of the gel were investigated with changing the immobilization conditions of the enzymes and the reaction conditions of the glutaraldehyde used in the modification. The results suggested that the immobilization temperature and the immobilization time of the enzymes mainly had an effect on the stability and activity, respectively. The degree of polymerization of the glutaraldehyde affected both the activity and the re-usability, and A235/A2S0 was used as an index of the degree of polymerization. The optimum conditions were as follows: a temperature and reaction time in the immobilization of the enzymes of 20°C and 7 hr, respectively, and a degree of polymerization of the glutaraldehyde used in the modification of A235/A2S0 = 20. The gel prepared under these optimum conditions was applied to a flow injection analytical system for ethanol. A good linear relationship between the concentration and the response was observed in the range of 20 ~ 80 mm, suggesting that the gel would be applicable to ethanol analysis.  相似文献   

19.
An amphoteric starch-graft-polyacrylamide (S-g-PAM) was prepared by inverse emulsion polymerization, subsequent hydrolysis reaction and Mannich reaction. The copolymerization was carried out using ammonium persulfate and urea as redox initiator. The reaction conditions and application as flocculant were investigated. Experiments showed that in hydrolysis reaction, a stable emulsion of anionic S-g-PAM with high hydrolysis degree could be obtained in a shorter time when sodium carbonate and sodium hydroxide were used together as hydrolyzing agents. In Mannich reaction, after pre-formation of an aldehyde–amine adduct was added to the anionic emulsion product, the amination degree of amphoteric S-g-PAM could reach 43.6% and the highest solution viscosity was obtained. The application test showed that the results of treatment of several kinds of industrial waste water by amphoteric S-g-PAM were better than those treated with cationic polyacrylamide (PAM), hydrolytic PAM and amphoteric PAM.  相似文献   

20.
Collagen fibrillogenesis in the presence of lanthanides   总被引:1,自引:0,他引:1  
Following removal of most of the telopeptide regions with pepsin, bovine dermal collagen gelled more slowly to form fibrils with a weak banding pattern. The reduction in gelling rate reflected an increase in the length of the nucleation phase and a lower rate of turbidity increase during the growth phase; the activation energy of both phases was increased. Lanthanide ions, phosphate, or, to a lesser degree, Ca2+ restored higher gelling rates to pepsin-treated collagen, but were unable to improve the banding pattern. Only lanthanide ions were able to accelerate the polymerization of intact collagen, lowering the activation energies of both the nucleation and growth phases. Lanthanide ions and phosphate also improved the banding characteristics of fibrils formed from intact collagen, without changing their width. Luminescence studies confirmed the direct binding of Tb3+ to collagen and suggested that the lanthanide ions may mediate their effects on fibrillogenesis by attaching to the helical part of the molecule. Quantitative considerations indicate that five or less lanthanide ion-binding sites per collagen molecule may be involved in the promotion of fibril formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号