首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In labor and sport physiology a great deal of interest concerns the conceptual model of governance of both rapid and precise target-directed movements. Widely known in the theory of motor control, Fitts' paradigm determines the time of motion, calculated from the distance to the target and the diameter of the target. However this paradigm does not take into account the time of preparation for movement, which can have a significant impact on accuracy. In addition, the literature highlights little evidence of temporal and spatial asymmetry in the production of fast and accurate movements. The aim of our work was to investigate the influence of the duration of the preparatory phase (reaction time - T(R)) and duration of protractile motion of the arm (T(M)) on the speed and accuracy of movement. Also, the in-dividual asymmetry of the temporal characteristics and accuracy of performance of movements were studied. We measured three aspects of translational motion of the arm to the computerized target: reaction time (T(R), s), time of motion of the arm (T(M), s), and error in the achievement of the target (deltaL, mm). The group of participants consisted of 12 healthy, right-handed, untrained girls, each of whom completed 5 series of 10 discrete movements by each of the left and right arms. Mathematical analysis of the results revealed the existence of five models of performance. Each model was represented in the participant's performance with different probability. The combination of high speed and high precision when the arm moved towards the target was found only in model 5, which combines a long period of preparation for the movement (T(R)) and a short time of motion (T(M)). The probability of its occurrence in the untrained subjects was very low (2-3%). We suggest that it may be possible to develop special methods of training, geared towards the ability to increase the probability of appearance of this model. Asymmetry of motor action appeared clearly evident only in the parameter of accuracy (right arm committed the least errors), especially when the reaction time (T(R)) and movement time (T(M)) were close to average values of the sample. This result enables us to recommend this method for the determination of "handedness". The results allow us to conclude that in the process of development of new motor skills which include both precise and rapid movements we must take into account the initial values of reaction time. We also think that Fitts' existing formula should be modified by including the parameter of reaction time.  相似文献   

2.
The primary purpose of this study was to determine whether the sympathetic neural activation induced by isometric exercise is influenced by the size of the contracting muscle mass. To address this, in nine healthy subjects (aged 19-27 yr) we measured heart rate, systolic arterial blood pressure, and muscle sympathetic nerve activity in the leg (MSNA; peroneal nerve) before (control) and during 2.5 min of isometric handgrip exercise (30% of maximal voluntary force). Exercise was performed with the right and left arms separately and with both arms simultaneously (random order). During exercise, heart rate, systolic pressure, and MSNA increased above control under all conditions (P less than 0.05). For each variable, the magnitudes of the increases from control to the end of exercise were significantly greater when exercise was performed with two arms compared with either arm alone (P less than 0.05). In general, the increases in heart rate, systolic pressure, and MSNA elicited during two-arm exercise were significantly less than the simple sums of the responses evoked during exercise of each arm separately. These findings indicate that the magnitude of the sympathetic neural activation evoked during isometric exercise in humans is determined in part by the size of the active muscle mass. In addition, our results suggest that the sympathetic cardiovascular adjustments elicited during exercise of separate limbs are not simply additive but instead exhibit an inhibitory interaction (i.e., neural occlusion).  相似文献   

3.
The possibility of muscle activation of passive arm during its cyclic movements, imposed by active movements of contralateral arm or by experimenter was studied, as well as the influence of lower extremities cyclic movements onto arm muscles activity. In addition to that the activity of legs muscles was estimated in dependence on motor task condition for arms. Ten healthy supine subjects carried out opposite movements of arms with and without stepping-like movements of both legs. The experiment included three conditions for arm movements: 1) the active movements of both arms; 2) the active movements of one arm, when other entirely passive arm participated in the movement by force; 3) passive arm movement caused by experimenter. In the condition 2) additional load on active arm was applied (30 N and 60 N). In all three conditions the experiment was carried out with arms movements only or together with legs movements. The capability of passive moving arm muscles activation depended on increasing afferent inflow from muscles of contralateral arm was demonstrated. Emerging electrical activity was modulated in the arms movements cycle and depended on the degree of active arm loading. During combined active movements of arms and legs the reduction of activity in the flexor muscles of shoulder and forearm was observed. Concomitant arms movements increased the magnitude ofelectromiographic bursts during passive stepping-like movements in the most of recorded muscles, and the same increasing was only observed in biceps femoris and tibialis anterior muscles during active legs movement. The increasing of loading of one arm caused essential augmentation of EMG-activity in the majority of recording legs muscles. The data obtained are the additional proof of existence of functionally significant neuronal interaction both between arms and between upper and lower extremities, which is evidently depend on the intraspinal neuronal connections.  相似文献   

4.
Proprioceptive signals coming from both arms are used to determine the perceived position of one arm in a two-arm matching task. Here, we examined whether the perceived position of one arm is affected by proprioceptive signals from the other arm in a one-arm pointing task in which participants specified the perceived position of an unseen reference arm with an indicator paddle. Both arms were hidden from the participant’s view throughout the study. In Experiment 1, with both arms placed in front of the body, the participants received 70–80 Hz vibration to the elbow flexors of the reference arm (= right arm) to induce the illusion of elbow extension. This extension illusion was compared with that when the left arm elbow flexors were vibrated or not. The degree of the vibration-induced extension illusion of the right arm was reduced in the presence of left arm vibration. In Experiment 2, we found that this kinesthetic interaction between the two arms did not occur when the left arm was vibrated in an abducted position. In Experiment 3, the vibration-induced extension illusion of one arm was fully developed when this arm was placed at an abducted position, indicating that the brain receives increased proprioceptive input from a vibrated arm even if the arm was abducted. Our results suggest that proprioceptive interaction between the two arms occurs in a one-arm pointing task when the two arms are aligned with one another. The position sense of one arm measured using a pointer appears to include the influences of incoming information from the other arm when both arms were placed in front of the body and parallel to one another.  相似文献   

5.
Locomotion of mammals, including humans, is based on the rhythmic activity of spinal cord circuitries. The functioning of these circuitries depends on multimodal afferent information and on supraspinal influences from the motor cortex. Using the method of transcranial magnetic stimulation (TMS) of arm muscle areas in the motor cortex, we studied the motor evoked potentials (MEP) in the upper arm muscles in stationary conditions and during voluntary and vibration-evoked arm movements. The study included 13 healthy subjects under arm and leg unloading conditions. In the first series of experiments, with motionless limbs, the effect of vibration of left upper arm muscles on motor responses in these muscles was evaluated. In the second series of experiments, MEP were compared in the same muscles during voluntary and rhythmic movements generated by left arm m. triceps brachii vibration (the right arm was stationary). Motionless left arm vibration led to an increase in MEP values in both vibrated muscle and in most of the non-vibrated muscles. For most target muscles, MEP was greater with voluntary arm movements than with vibration-evoked movements. At the same time, a similar MEP modulation in the cycle of arm movements was observed in the same upper arm muscles during both types of arm movements. TMS of the motor cortex significantly potentiated arm movements generated by vibration, but its effect on voluntary movements was weaker. These results indicate significant differences in the degree of motor cortex involvement in voluntary and evoked arm movements. We suppose that evoked arm movements are largely due to spinal rather than central mechanisms of generation of rhythmic movements.  相似文献   

6.
Controversy exists regarding whether bimanual skill learning can generalize to unimanual performance. For example, some investigators showed that dynamic adaptation could only partially generalize between bilateral and unilateral movement conditions, while others demonstrated complete generalization of visuomotor adaptation. Here, we identified three potential factors that might have contributed to the discrepancy between the two sets of findings. In our first experiment, subjects performed reaching movements toward eight targets bilaterally with a novel force field applied to both arms, then unilaterally with the force field applied to one arm. Results showed that the dynamic adaptation generalized completely from bilateral to unilateral movements. In our second experiment, the same force field was only applied to one arm during both bilateral and unilateral movements. Results indicated complete transfer again. Finally, our subjects performed reaching movements toward a single target with the force field or a novel visuomotor rotation applied only to one arm during both bilateral and unilateral movements. The reduced breadth of experience obtained during bilateral movements resulted in incomplete transfer, which explains previous findings of limited generalization. These findings collectively suggest a substantial overlap between the neural processes underlying bilateral and unilateral movements, supporting the idea that bilateral training, often employed in stroke rehabilitation, is a valid method for improving unilateral performance. However, our findings also suggest that while the neural representations developed during bilateral training can generalize to facilitate unilateral performance, the extent of generalization may depend on the breadth of experience obtained during bilateral training.  相似文献   

7.
Unit activity was recorded in motor cortex on one side, while monkeys were moving left or right fingers, wrists, or arms. On hundred and eighty five movement-related neurons were obtained from two monkeys. Of these, 122 were related to contralateral movements, 50 were to movements of both sides, and the remaining 13 to ipsilateral movements. It was found that ipsilateral-movement-related neurons tended to appear in groups of neurons that were related more to arm movements than to finger and/or wrist movements.  相似文献   

8.
Studies in brain-damaged patients indicate that the left hemisphere in right-handers is specialized for controlling cognitive-motor tasks in both arms. Recent functional imaging data support this conclusion, with the finding that ipsilateral, as well as contralateral, movements activate the left, but not the right, motor cortex or associated areas of either hemisphere. Future studies must aspire to identify the mechanisms for this asymmetry.  相似文献   

9.
The phenomenon of reproduction of the series of passive single-joint movements in the tested arm by the contralateral arm just in the course of passive movements with no visual control was studied in 35 healthy subjects and 13 post-stroke patients in order to develop a new method for objective assessment of sense of the arm motion for the detection of proprioceptive deficit and for monitoring of the changes in proprioception during rehabilitation. We examined the reproduction of flexion–extension at the elbow and wrist joints, abduction–adduction at the wrist joint and the forearm pronation–supination in both right and left arms in healthy subjects and in the affected arm in post-stroke patients. Displacements of the angles in the tested joint and a homonymous joint of the other arm were acquired by means of video recording system, goniometers, or 9-DoF inertional-magnetometric sensors. Qualitative and quantitative indicators were evaluated to assess the similarity of the passive and active movements. It has been found that the healthy subjects are able to actively reproduce the repeated passive movements at different joints of either the left or right tested arm almost simultaneously and with quite accurate reproduction of an amplitude and shape of movement. At the same time, most of post-stroke patients reproduce movements either with qualitative errors demonstrating incorrect location or wrong estimation of direction or number of repeated test movements, or with significant reduction of accuracy (increased latency or shape distortion). We proposed a method for the assessment of movement proprioception at individual joints. The procedure is easy and convenient for both physicians and patients. It does not require special heavy equipment and can easily be performed under different conditions in a wide range of patients.  相似文献   

10.
Behaviour of Gammarus oceanicus was studied in the open field test. For the whole except (n = 204) spatial-motor asymmetry was found. It was manifested in significantly greater number of movements clockwise (to the right) than counterclockwise (to the left). Animals with significant asymmetry dominated, forming 93.5% of the except. The asymmetry was characterized by distinct right-sided direction. Motor activity and spatial-motor asymmetry at repeated tests in the main weakened; the changes in "right" and "left" animals were manifested differently. The essential factor which disturbed the behaviour of the animals in the open field test (including the asymmetry of movement direction) proved to be a toxicant (oil pollution) action.  相似文献   

11.
Non-visually triggered arm movements over a horizontal table at shoulder height were analysed by an Information Theory approach according to a method suggested by Sakitt et al. (1983) and Sakitt (1980). The movement track was along the subject's median line and was indicated by a vertical metal ridge fixed to the table. The observer passively moved the subject's left index finger along the left side of the ridge to the target position. The blindfolded subject then had to move his right index finger along the right side of the ridge to match the left finger position. Direct contact between the two fingers was prevented by the ridge. We compared our results, which involve the transmission of information through the arm and shoulder joints of both arms, whith those of Sakitt et al. which involved just one elbow joint. We supplemented our experimental results with simulations and show that the value for the transmitted information, obtained using the method of analysis suggested by Sakitt et al., is very dependent upon the number of trials, and number and spacing of the targets. Sakitt et al. suggest that the Information Theory approach permits easy comparison between different tasks and different observers. Our results suggest that comparisons should be made with caution.  相似文献   

12.
Unilateral movements are mainly controlled by the contralateral hemisphere, even though the primary motor cortex ipsilateral (M1(ipsi)) to the moving body side can undergo task-related changes of activity as well. Here we used transcranial magnetic stimulation (TMS) to investigate whether representations of the wrist flexor (FCR) and extensor (ECR) in M1(ipsi) would be modulated when unilateral rhythmical wrist movements were executed in isolation or in the context of a simple or difficult hand-foot coordination pattern, and whether this modulation would differ for the left versus right hemisphere. We found that M1(ipsi) facilitation of the resting ECR and FCR mirrored the activation of the moving wrist such that facilitation was higher when the homologous muscle was activated during the cyclical movement. We showed that this ipsilateral facilitation increased significantly when the wrist movements were performed in the context of demanding hand-foot coordination tasks whereas foot movements alone influenced the hand representation of M1(ipsi) only slightly. Our data revealed a clear hemispheric asymmetry such that MEP responses were significantly larger when elicited in the left M1(ipsi) than in the right. In experiment 2, we tested whether the modulations of M1(ipsi) facilitation, caused by performing different coordination tasks with the left versus right body sides, could be explained by changes in short intracortical inhibition (SICI). We found that SICI was increasingly reduced for a complex coordination pattern as compared to rest, but only in the right M1(ipsi). We argue that our results might reflect the stronger involvement of the left versus right hemisphere in performing demanding motor tasks.  相似文献   

13.
Thorpe et al. (Am J Phys Anthropol 110:179–199, 1999) quantified chimpanzee (Pan troglodytes) muscle architecture and joint moment arms to determine whether they functionally compensated for structural differences between chimpanzees and humans. They observed enough distinction to conclude that musculoskeletal properties were not compensatory and suggested that chimpanzees and humans do not exhibit dynamically similar movements. These investigators based their assessment on unilateral limb musculatures from three male chimpanzees, of which they called one non-adult representative. Factors such as age, sex, and behavioral lateralization may be responsible for variation in chimpanzee muscle architecture, but this is presently unknown. While the full extent of variation in chimpanzee muscle architecture due to such factors cannot be evaluated with data presently available, the present study expands the chimpanzee dataset and provides a preliminary glimpse of the potential relevance of these factors. Thirty-seven forelimb and 36 hind limb muscles were assessed in two chimpanzee cadavers: one unilaterally (right limbs), and one bilaterally. Mass, fiber length, and physiological cross-sectional area (PCSA) are reported for individual muscles and muscle groups. The musculature of an adult female is more similar in architectural patterns to a young male chimpanzee than to humans, particularly when comparing muscle groups. Age- and sex-related intraspecific differences do not obscure chimpanzee-human interspecific differences. Side asymmetry in one chimpanzee, despite consistent forelimb directional asymmetry, also does not exceed the magnitude of chimpanzee-human differences. Left forelimb muscles, on average, usually had higher masses and longer fiber lengths than right, while right forelimb muscles, on average, usually had greater PCSAs than left. Most muscle groups from the left forelimb exhibited greater masses than right groups, but group asymmetry was significant only for the manual digital muscles. The hind limb exhibited less asymmetry than the forelimb in most comparisons. Examination of additional chimpanzees would clarify the full range of inter- and intra-individual variation.  相似文献   

14.
Coordinated arm and leg movements imply neural interactions between the rhythmic generators of the upper and lower extremities. In ten healthy subjects in the lying position, activity of the muscles of the upper and lower extremities was recorded during separate and joint cyclic movements of the arms and legs with different phase relationships between the movements of the limbs and under various conditions of the motor task. Antiphase active arm movements were characterized by higher muscle activity than during the inphase mode. The muscle activity during passive arm movements imposed by the experimentalist was significantly lower than muscle activity during passive arm movements imposed by the other arm. When loading one arm, the muscle activity in the other, passively moving, arm increased independently from the synergy of arm movements. During a motor task implementing joint antiphase movements of both upper and lower extremities, compared to a motor task implementing their joint in-phase movements, we observed a significant increase in activity in the biceps brahii muscle, the tibialis anterior muscle, and the biceps femoris muscle. Loading of arms in these motor tasks has been accompanied by increased activity in some leg muscles. An increase in the frequency of rhythmic movements resulted in a significant growth of the muscle activity of the arms and legs during their cooperative movements with a greater rate of rise in the flexor muscle activity of the arms and legs during joint antiphase movements. Thus, both the spatial organization of movements and the type of afferent influences are significant factors of interlimb interactions, which, in turn, determine the type of neural interconnections that are involved in movement regulation.  相似文献   

15.
B. Gutnik  J. Skirius  G. Hudson  D. Gale   《HOMO》2004,54(3):215-228
The maximal torque effect of the middle portion of action of the deltoid muscle while raising an outstretched upper limb was measured from left and right sides of normal untrained young adults and of the same age elite athletes. Seventeen strongly right-handed untrained males and females and 10 elite tennis players were tested. All participants were required to raise (abduct) one arm (right and then left, or vice versa) as fast as possible with maximal amplitude while standing on an electronic platform scale which measured to 0.001 kg. An assumed force at the centre of mass of the entire upper limb was considered. The force consisted of two components, namely static weight force of the upper limb and a dynamic force component created by upward acceleration of the limb. Using regression equations and scaling methods the static weight of the upper limb was derived and combined with the dynamic component to produce the total force, applied to the centre of mass of the limb. The total force multiplied by the distance from the centre of mass to point of rotation of the limb equated to the torque produced by deltoid muscle. Using video system analyses the angle of abduction was measured for each individual exercise. The additional anthropometrical tests identified proportionality and body mass indices for each participant.

There was no significant difference in dynamic force and torque between left and right limb from the three groups. Sportsmen demonstrated greater lateral abduction when performing the exercise from the dominant side of the body. Sportsmen also demonstrated greater range of abduction, bigger dynamic force and torque on both sides in comparison to untrained adults. Remarkably, the absolute and relative length of arms of athletes were shorter in comparison to untrained males, but the radius of gyration from the stretched upper limb (from its centre of gravity to the shoulder joint) were greater. This phenomenon may be due to distal shifting of the gravity center of the entire upper limb in elite athletes, perhaps, because greater investment of the distal portion of the limb with skeletal muscle tissue.  相似文献   


16.
17.
The purpose of this study was to determine whether the phenomenon of bilateral deficit in muscular force production observed in healthy subjects and mildly impaired stroke patients also exists in patients with more chronic and greater levels of stroke impairment. Ten patients with chronic hemiparesis resulting from stroke performed unilateral and bilateral maximal voluntary isometric contractions of the elbow flexors. When the total force produced by both arms was compared, 12% less force was produced in the bilateral compared with unilateral condition (p=0.01). However, studying the effect of task conditions on each arm separately revealed a significant decline in nonparetic (p=0.01) but not paretic elbow flexor force in the bilateral compared with unilateral condition. Results suggest that a significant bilateral force deficit exists in the nonparetic but not the paretic arm in individuals with chronic stroke. Bilateral task conditions do not seem to benefit or impair paretic arm maximal isometric force production in individuals with moderate-severity chronic stroke.  相似文献   

18.
Recommendations vary on whether blood pressures should be measured in the right or in the left arm because no frequency distributions for a pressure difference between the arms exist. We took a total of 12 blood pressure determinations in both arms of 174 elderly persons and analyzed the data by a least-squares components of variance method. The mean difference between the arms (right minus left) was 0.93 mm of mercury for systole and 0.70 mm of mercury for diastole. For systole the proportion of persons having arm pressure differences exceeding 10 mm of mercury is 1.4% and that exceeding 7.5 mm of mercury is 6.5%. For most people, the pressure difference between the arms is small.  相似文献   

19.
The Entire Compound Autosomes of DROSOPHILA MELANOGASTER   总被引:3,自引:1,他引:2       下载免费PDF全文
E. Novitski  D. Grace    C. Strommen 《Genetics》1981,98(2):257-273
Three new unusual compound chromosomes have been synthesized in Drosophila melanogaster. They consist of two homologous autosomes joined together in the new order: right arm, left arm, centromere, left arm, right arm, for each of the two major autosomes, and one in which chromosomes 2 and 3 have been combined in the order: right arm of 2, left arm of 2, centromere, left arm of 3, right arm of 3. The attachments of the autosomal arms were accomplished by obtaining chromosome breaks at or very close to the ends of the left arms of the autosomes such that no essential chromosome material has been removed; the compounds derived from them are therefore referred to as entire compounds. These large chromosomes are recovered in progeny with frequencies lower than expectation partly because of zygote mortality associated with these chromosomes, and partly because of a failure of spermiogenesis.  相似文献   

20.
Specific cleavages within the shufflon-specific recombination site of plasmid R64 were detected by primer extension when a DNA fragment carrying the recombination site was incubated with the shufflon-specific Rci recombinase. Rci-dependent cleavages occurred in the form of a 5' protruding 7 bp staggered cut, suggesting that DNA cleavage and rejoining in the shufflon system take place at these positions. As a result, shufflon crossover sites were designated as sfx sequences consisting of a central 7 bp spacer sequence, and left and right 12 bp arms. R64 sfx sequences are unique among various site-specific recombination sites, since only the spacer sequence and the right arm sequence are conserved among various R64 sfxs, whereas the left arm sequence is not conserved and is not related to the right arm sequence. From nuclease protection analyses, Rci protein was shown to bind to entire R64 and artificial sfx sequences, suggesting that one Rci molecule binds to the conserved sfx right arm in a sequence-specific manner and the second to the sfx left arm in a non-specific manner. The sfx left arm sequences as well as the right arm sequences were shown to determine affinity to Rci and subsequently inversion frequency. Asymmetry of the sfx sequence may be the reason why Rci protein acts only on the inverted sfx sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号