首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specific fragmentation of T7 phage DNA at low-melting sites.   总被引:4,自引:4,他引:0       下载免费PDF全文
A method has been developed for selective fragmentation of T7 DNA at AT-rich regions. The molecules have been subjected to complete digestion with single-strand-specific SI endonuclease after fixation of DNA AT-rich regions in the denatured state by glyoxal. The treatment resulted in three fragments having molecular weights of 13.6 +/- 0.4, 8.2 +/- 0.4 and 3.5 +/- 0.16 megadaltons as determined by electron microscopy. The position of these fragments along the T7 DNA molecule has been determined by means of analysis of the intermediates during SI-cleavage.  相似文献   

2.
3.
1. We have mapped by electron microscopy the DNA-fragments formed by the action of the restriction endonuclease from Arthrobacter luteus of phi X 174 replicative form DNA. These fragments were separated by polyacrylamide gel electrophoresis and hybridized to phiX 174 single stranded DNA. The partial duplex molecules were inspected in the electron microscope. In this way the relative order of eleven fragments ranging in size from approximately 100 to 1000 nucleotide pairs has been established and compared with that deduced from reciprocal digestion studies. 2. The measured lengths of the fragments agreed well with the lengths found by gel electrophoresis. 3. The purity of the isolated fragments was checked. Most of the contaminating fragments derive from nearest neighbours in the preparative polyacrylamide gels.  相似文献   

4.
We have studied the DNAs of fastidious enteric adenoviruses recovered from the stools of infants with gastroenteritis. By endonuclease analysis, the strains examined represent candidate adenovirus types 40 and 41, which are thought to comprise new adenovirus subgroups F and G. Cloning of DNA from representative enteric adenovirus isolates, together with hybridization and subcleavage analysis, permitted the mapping of restriction enzyme cleavage sites. Although the restriction profiles are different for the two strains, they appear to have several cleavage sites in common. Cross hybridization studies show considerable homology between the subgroup F and G strains but much less homology to adenovirus 2. In addition, regions on both ends of enteric adenovirus genomes (map units, 2.9 to 11.3 and 75 to 100) possess little or no homology to adenovirus 2. Restriction enzyme digests reveal submolar fragments that map to the terminal regions of the genome. Electron micrographic studies of denatured and renatured DNA strands suggest that the submolar fragments may derive from cleavage of defective molecules. Inverted terminal repeat sequences were shown to comprise 0 to 3.2% of the length of complete (greater than or equal to 22 megadaltons) enteric adenovirus DNA molecules but 4 to 69% of incomplete-length (less than 22-megadalton) molecules.  相似文献   

5.
Genome structure of incomplete particles of adenovirus.   总被引:35,自引:21,他引:14       下载免费PDF全文
Incomplete particles arising during productive growth of adenovirus were separated from infectious particles by density gradient centrifugation. The DNA contained in particles of low density was characterized by restriction enzyme analysis and by electron microscopy and heteroduplexing techniques. The DNA is heterogeneous in length, ranging in size from 15% of the normal genome to full length. Many individual molecules contain long, inverted terminal repetitions, which consist of the sequences extending from the normal left-hand end of the viral genome inward; the normal right end sequences appear to be missing from these molecules. The region of the genome reiterated in these molecules is that which has been implicated in transformation of rat cells by adenovirus (Gallimore, Sharp, and Sambrook, 1974; Graham, van der Eb, and Heijneker, 1974). A model for adenovirus replication is presented that accounts for the aberrant structures observed.  相似文献   

6.
Rolling circle replication from M13 DNA circles was previously reconstituted in vitro using purified factors encoded by bacteriophage T4. The products are duplex circles with linear tails >100 kb. When T4 DNA polymerase deficient in 3' to 5' exonuclease activity was employed, electron microscopy revealed short single-stranded DNA "flaps" along the replicated tails. This marked the beginning of each Okazaki fragment, allowing an analysis of the lengths of sequential Okazaki fragments on individual replicating molecules. DNAs containing runs of Okazaki fragments of similar length were found, but most showed large length variations over runs of six or more fragments reflecting the broad population distribution.  相似文献   

7.
We isolated phi 29 DNA replicative intermediates from extracts of phage-infected Bacillus subtilis, pulsed-labeled with [3H]thymidine, by velocity sedimentation in neutral sucrose followed by CsCl equilibrium density gradient centrifugation. During a chase, the DNA with a higher sedimentation coefficient in neutral sucrose and a lower sedimentation rate in alkaline sucrose than that of viral phi 29 DNA was converted into mature DNA. The material with a density higher than that of mature phi 29 DNA consisted of replicative intermediates, as analyzed with an electron microscope. We found two major types of molecules. One consisted of unit-length duplex DNA with one single-stranded branch at a random position. The length of the single-stranded branches was similar to that of one of the double-stranded regions. The other type of molecules was unit-length DNA with one double-stranded region and one single-stranded region extending a variable distance from one end. Partial denaturation of the latter molecules showed that replication was initiated with a similar frequency from either DNA end. These findings suggest that phi 29 DNA replication occurs by a mechanism of strand displacement and that replication starts non-simultaneously from either DNA end, as in the case of adenovirus.  相似文献   

8.
The interaction of intermediate filaments prepared from pure, delipidated vimentin with vesicles obtained from Ehrlich ascites tumor (EAT) cell lipids was studied employing sucrose density gradient centrifugation in combination with electron microscopy. In negative stain electron microscopy, preformed vimentin filaments were seen in lateral association with lipid vesicles; end-on contacts of filaments with liposomes were rarely detected. When the reaction of filaments with vesicles was carried out at 0 degree C, sucrose density gradient equilibrium centrifugation of the reaction products led to the banding of relatively light filament-vesicle meshworks in clear separation from free filaments and free vesicles. With certain vimentin and lipid preparations, occasionally partial breakdown of the filaments during centrifugation and banding of vesicle-free fragments in denser regions of the sucrose gradients was observed. However, when the reaction mixtures were incubated at 37 degrees C prior to sucrose gradient analysis, all filaments were released from vesicles and totally fragmented during centrifugation. Electron microscopy showed unraveling of the filament fragments into subfilament strands. Employing lipid vesicles labeled with [3H]cholesterol, a low but significant amount of radioactivity was found to be associated with the fragments in a non-vesicular form. Filament reconstitution experiments performed in the presence of EAT cell lipids revealed an inhibitory effect of vesicles on filament assembly, particularly at lower temperatures. The mechanical labilization of the filament structure by lipid vesicles might play a role in the redistribution of intermediate filaments in the course of certain cellular processes involving turnover and fragmentation of intracellular membrane systems.  相似文献   

9.
Deoxyribonucleoprotein complexes released 17 h postinfection from adenovirus type 1 (Ad2)-infected HeLa cell nuclei were shown by electron microscopy to contain filaments much thicker (about 200 A [20 nm]) than double-stranded DNA (about 20 A [2 nm]). The complexes were partially purified through a linear sucrose gradient, concentrated, and further purified in a metrizamide gradient. The major protein present in the complexes was identified as the 72,000-dalton (72K), adenovirus-coded single-stranded DNA-binding protein (72K DBP). Three types of complexes have been visualized by electron microscopy. Some linear complexes were uniformly thick, and their length corresponded roughly to that of the adenovirus genome. Other linear genome-length complexes appeared to consist of a thick filament connected to a thinner filament with the diameter of double-stranded DNA. Forked complexes consisting of one thick filament connected to a genome-length, thinner double-stranded DNA filament were also visualized. Both thick and thin filaments were sensitive to DNase and not to RNase, but only the thick filaments were digested by the single-strand-specific Neurospora crassa nuclease, indicating that they correspond to a complex of 72K DBP and Ad2 single-stranded DNA. Experiments with anti-72K DBP immunoglobulins indicated that these nucleoprotein complexes, containing the 72K DBP, correspond to replicative intermediates. Both strands of the Ad2 genome were found associated to the 72K DBP. Altogether, our results establish the in vivo association of the 72K DBP with adenovirus single-stranded DNA, as previously suggested from in vitro studies, and support a strand displacement mechanism for Ad2 DNA replication, in which both strands can be displaced. In addition, our results indicate that, late in infection, histones are not bound to adenovirus DNA in the form of a nucleosomal chromatine-like structure.  相似文献   

10.
Isolation and sequence organization of human ribosomal DNA.   总被引:6,自引:0,他引:6  
The genes coding for 28 S and 18 S ribosomal RNA have been purified from leukemic leukocytes of one human individual by density gradient centrifugation. The purified ribosomal DNA was analyzed by restriction endonuclease digestion and electron microscopy. The location of cleavage sites for the restriction endonuclease EcoRI was established by R-loop mapping of restriction fragments by electron microscopy. The results are in agreement with gel analysis and gel transfer hybridization. One type of ribosomal DNA repeating unit contains four cleavage sites for EcoRI. Two of these cuts are located in the genes coding for 28 S and 18 S rRNA, while the other two are in the non-transcribed spacer. Thus, one of the restriction fragments generated contains non-transcribed spacer sequences only and is not detected by gel transfer hybridization if labeled rRNA is used as the hybridization probe. A second type of repeating unit lacks one of the EcoRI cleavage sites within the non-transcribed spacer. This indicates that sequence heterogeneity exists in human rDNA spacers. R-loop mapping of high molecular weight rDNA in the electron microscope reveals that the majority of repeats are rather uniform in length. The average size of 22 repeats was 43.65(±1.27) kb. Two repeats were found with lengths of 28.6 and 53.9 kb, respectively. This, and additional evidence from gels, indicates that some length heterogeneity does exist in the non-transcribed spacer. The structure of the human rDNA repeat is summarized in Figure 10.  相似文献   

11.
Isolation and characterization of kinetoplast DNA from Leishmania tarentolae   总被引:11,自引:0,他引:11  
Kinetoplast DNA (? = 1.703 g/ml.) was isolated by preparative cesium chloride ultracentrifugation in a fixed-angle rotor from total cell DNA of Leishmania tarentolae and examined in terms of sedimentation properties, melting characteristics, and appearance in the electron microscope. It consisted of several molecular types, either free or bound together in associations of variable size: minicircles (molecular weight = 0.56 ± 0.03 × 106), catenated minicircles, “figure 8” molecules, and long molecules. The associations seem to be held together by the long molecules threading through the smaller circles and catenanes. The large associations could be broken down by sonication, DNase II-treatment, or shear forces. Minicircles, catenated dimers, trimers, and small linear fragments were separated on preparative sucrose gradients of sonicated DNA, and S20,w values were assigned to each molecular type by band sedimentation in the analytical ultracentrifuge.  相似文献   

12.
Minicells ofEscherichia coli P678-54 containing plasmid R1drd19 were submitted to careful controlled lysis. By sedimentation of the resulting lyzate in a sucrose gradient, the material absorbing at 260 nm was separated into three distinct bands. Among the most rapidly sedimenting particles, doublestranded topological circles of DNA attached to patches of membrane were visualized by electron microscopy, while single-stranded molecules (probably RNA) with associated proteins were detected in the medium band. Covalently closed and open circles of the R1drd19 DNA were found at the top of the gradient. Their contour lengths corresponded to the size of the DNA sedimenting together with the membrane in the first peak. This finding implies a direct intracellular interaction between R1drd19 DNA and membrane inE. coli minicells. Preliminary results were presented at the 12th FEBS Meeting in Dresden (July 2–8, 1978).  相似文献   

13.
The results presented here indicate that mitochondrial DNA (mtDNA) synthesis occurs on the inner mitochondrial membrane and that a membrane-DNA complex, enriched in newly synthesized DNA, can be isolated. The complex is able to synthesize DNA in vitro. Enrichment studies demonstrated that mtDNA synthesis occurs on an intact membrane-DNA complex in vitro and that pulse-labeled mtDNA could be chased from the membrane-DNA complex to the top fraction of the discontinuous sucrose gradient. The membrane-DNA complex was also shown to carry out replicative synthesis of mtDNA in vitro. Replication was shown to be asynchronous with heavy-strand synthesis preceding light-strand synthesis. The progression of mtDNA replication by the membrane-DNA complex was shown to be from small fragments (<13 S) to larger fragments (14–24 S) liberated from closed circular molecules, to a heat-stable 27 S molecule, and finally to a 38 S heat-stable molecule. The time estimated to progress from small fragments to the 38 S molecule is 120 min.  相似文献   

14.
15.
Pulse-labeled ColEl DNA molecules, undergoing replication in Escherichia coli cells either in the absence or presence of chloramphenicol, were extracted and purified by neutral sucrose density gradient sedimentation and equilibrium centrifugation in an ethidium bromide-cesium chloride gradient. In the dye-buoyant density gradient, the replicating molecules were found in regions between the supercoiled and open-circular nonreplicating plasmid DNA, as well as in the open-circular region. In a neutral sucrose gradient, peaks of pulse label were found in the region of 26 to 38 S as well as at the 23 and 17 S positions corresponding to the positions of supercoiled and open-circular ColEl DNA. In alkaline sucrose gradient, nascent ColEl DNA was found to sediment as discrete peaks corresponding to 5-6, 7-9, and 14-16 S, indicating that at least one growing strand of the replicating molecule is produced discontinuously. In the electron microscope, many of the molecules appeared as partially supercoiled structures containing two open-circular branches of equal length, of less than 20% to more than 90% replicated. Branched open-circular molecules were not observed to any significant extent without prior treatment to induce single-strand scissions. The parental strands of the replicating molecules were determined to be covalently closed, but the superhelical density of the DNA was shown to be progressively decreased as replication proceeded.  相似文献   

16.
We have investigated the association of viral DNA with cell DNA in chicken embryo kidney (CEK) cells productively infected with chicken embryo lethal orphan (CELO) virus and in human (HEK) cells infected with mutants ts36 and ts125 of human adenovirus type 5 under permissive and restrictive conditions. Cell and viral DNA molecules were separated after CELO virus infection of CEK cells by alkaline sucrose gradient centrifugation, network formation, and CsCl density gradient centrifugation, methods that rely on different properties of the DNA. The cell DNA was then tested for viral sequences by DNA reannealing kinetics. Between 500 and 1,000 viral genome equivalents per cell were found at 36 h postinfection associated with cell DNA purified by each method. These values greatly exceeded the amount of free viral DNA found contaminating cell DNA prepared by the same methods from uninfected cells to which CELO virus DNA had been added. Quantitative agreement in the amounts of viral DNA found associated with cell DNA purified by these different methods suggests that CELO virus DNA is integrated into chick cell DNA during lytic infection. Similar experiments in HEK cells using mutants ts36 and ts125 of adenovirus type 5 at both restrictive and permissive temperatures showed that the same proportion of viral DNA is associated with cell DNA in the absence of viral DNA replication, and this suggests that the difference in the frequency with which cells are transformed by these mutants is not due to a difference in the frequency integration.  相似文献   

17.
18.
Four genomic clones obtained from microdissected fragments of the proximal portion of mouse chromosome 17 have been used to identify a series of t-haplotype-specific restriction fragments. Their specificity is defined by presence in eight complete t haplotypes and absence from 18 inbred strains of wild-type mice. Partial t haplotypes contain subsets of the t-specific fragments, and each can be classified according to the t-specific fragments it contains. This is the first molecular evidence that independent partial t haplotypes contain different lengths of t haplotype DNA. Recombination studies indicate that partial t haplotypes suppress recombination in proportion to the extent of t haplotype DNA they contain. Molecular analysis of partial t haplotyes shows that the t-specific fragments map to and thus define different regions of the t complex. Certain regions of t haplotype DNA defined by t-specific restriction fragments can be correlated with loci involved in the control of transmission ratio distortion.  相似文献   

19.
Colicin plasmids E2 and E3 (Col E2 and Col E3) deoxyribonucleic acid (DNA) has been shown to contain, respectively, two and three EcoR1 restriction endonuclease-sensitive sites. This was determined by measuring the DNA fragments generated after EcoR1 endonuclease treatment by agarose gel electrophoresis and electron microscopy. The structure of heteroduplex Col E2-col E3 DNA molecules formed from EcoR1-generated fragments permitted a localization of the EcoR1-sensitive sites on the plasmid chromosomes.  相似文献   

20.
The persistence of viral DNA in BHK-21 cells abortively infected with human adenovirus type 12 has been investigated using reassociation kinetics. No indication of an increase in the amount of viral DNA per cell has been found. On the contrary, the amount of intracellular viral DNA sequences decreases rapidly after infection. Thus, free adenovirus type 12 DNA does not replicate in BHK-21 cells. The influence of the multiplicity of infection on the amount of persisting adenovirus type 12 DNA has also been explored. The viral DNA sequences persisting in four lines of hamster cells transformed in vitro by adenovirus type 12 at various multiplicities of infection have been quantitated and mapped by reassociation kinetics experiments using restriction endonuclease fragments of 3H-labeled adenovirus type 12 DNA. All the EcoRI restriction nuclease fragments of the adenovirus type 12 genome are represented in each of the four cell lines. Individual fragments of the viral genome are represented in multiple copies in non-equimolar amounts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号