首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effects of reduced temperature, the pH elevators NH4Cl, monensin, and HEPES (N-2-hydroxy-ethylpiperazine-N'-2-ethanesulfonic acid) buffer, as well as the metabolic poisons NaF/KCN on transport of the fluid phase pinocytic marker, horseradish peroxidase (HRP), to lysosomes in Chinese hamster ovary (CHO) cells. In cell fractionation experiments, these agents appeared to block HRP transit at specific point(s) from "early" to "late" (i.e., low to high density) prelysosomal vesicles and lysosomes. Reduced temperature (17 degrees C) most strongly inhibited HRP transport from low density, early endosomes to lysosomes. In long-term HRP uptakes at 17 degrees C, marked peroxidase accumulation occurred both in early endosomes and in lysosomes. Loss (reversible pinocytosis) of HRP from "very early" endosomes occurred at 17 degrees C. All three pH elevators including the common media supplement HEPES buffer inhibited transit of internalized HRP into lysosomes. For all three pH elevators, inhibition was most pronounced at the "early" endosome stage. The respiratory inhibitors NaF/KCN also inhibited transport most strongly at the early endosome stage. Together these results suggest that "early" steps in the endocytic transport of HRP are the most sensitive and that the conditions tested may exert direct effects on the processing of endocytic vesicles.  相似文献   

2.
The rate of movement of different receptors and ligands through the intracellular endocytic apparatus was studied in alveolar macrophages. Cells were exposed to iodinated alpha-macroglobulin-protease complexes, mannose terminal glycoproteins, diferric transferrin, and maleylated proteins. By use of the diaminobenzidine density shift procedure, we demonstrated that these ligands were internalized into the same endocytic vesicle. We then compared the rates of transfer to the lysosome or recycling to the cell surface of different ligands/receptors contained in the same endosome. We found that although the rate constant for degradation was ligand specific, the lag time prior to the initiation of degradation was the same for all three ligands. We also found that molecules taken up nonspecifically by fluid-phase pinocytosis had the same lag time prior to degradation as ligands internalized via receptor-mediated endocytosis. These data suggest that different molecules within the same endocytic compartment are transferred to the lysosome (or degradative compartment) at the same rate. We measured the rate of return of receptors to the cell surface by either inactivating surface receptors by protease treatment at 0 degrees C, or by incubating cells with saturating amounts of nonradioactive ligand at 37 degrees C. We then measured the rate of appearance of "new" receptors on the cell surface. Using these approaches, we found that three different receptors were transferred from internal pools to the cell surface at the same rate. The rate of transfer was independent of whether receptors were initially occupied or unoccupied. Our observations indicate that receptor/ligands, once inside alveolar macrophages, are transported by vesicles which transfer their contents as a cohort from one compartment to another. The rate of movement of these receptors is determined by the movement of vesicles and is independent of their content.  相似文献   

3.
Horseradish peroxidase (HRP), an enzyme internalized by fluid phase pinocytosis, has been used to study the process by which pinosome contents are delivered to lysosomes in Chinese hamster ovary cells. Pinosome contents were labeled by allowing cells to internalize HRP for 3-5 min. Following various chase times, cells were either processed for HRP and acid phosphatase (AcPase) cytochemistry or homogenized and fractionated in Percoll gradients. In Percoll gradients, pinosomes labeled by a 3-5 min HRP pulse behaved as a vesicle population more dense than plasma membrane and less dense than lysosomes. In pulse- chase experiments, internalized HRP was chased rapidly (3-6 min chase) to a density position intermediate between the "initial" pinocytic vesicle population and lysosomes. With longer chase periods, a progressive accumulation of HRP in more dense vesicles was observed. Correspondence between the HRP distribution and lysosomal marker distribution was reached after a approximately 1-h chase. By electron microscope cytochemistry of intact cells, the predominant class of HRP- positive vesicles after pulse uptakes or a 3-min chase period was characterized by a peripheral rim of reaction product and was AcPase negative. After 10-120-min chase periods, the predominant class of HRP- positive vesicles was characterized by luminal deposits and HRP activity was frequently observed in multivesicular bodies. HRP-positive vesicles after a 10- or 30-min chase were AcPase-positive. No HRP activity was detected in Golgi apparatus. Together these observations indicate that progressive processing of vesicular components of the vacuolar apparatus occurs at both a prelysosomal and lysosomal stage.  相似文献   

4.
Previously we reported that internalized ligand-receptor complexes are transported within the alveolar macrophage at a rate that is independent of the ligand and/or receptor but is dependent on the endocytic apparatus (Ward, D. M., R. S. Ajioka, and J. Kaplan. 1989. J. Biol. Chem. 264:8164-8170). To probe the mechanism of intracellular vesicle transport, we examined the ability of vesicles internalized at different times to fuse. The mixing of ligands internalized at different times was studied using the 3,3'-diaminobenzidine/horseradish peroxidase density shift technique. The ability of internalized vesicles to fuse was dependent upon their location in the endocytic pathway. When ligands were administered as tandem pulses a significant amount of mixing (20-40%) of vesicular contents was observed. The pattern of mixing was independent of the ligands employed (transferrin, mannosylated BSA, or alpha macroglobulin), the order of ligand addition, and temperature (37 degrees C or 28 degrees C). Fusion was restricted to a brief period immediately after internalization. The amount of fusion in early endosomes did not increase when cells, given tandem pulses, were chased such that the ligands further traversed the early endocytic pathway. Little fusion, also, was seen when a chase was interposed between the two ligand pulses. The temporal segregation of vesicle contents seen in early endosomes was lost within late endosomes. Extensive mixing of vesicle contents was observed in the later portion of the endocytic pathway. This portion of the pathway is defined by the absence of internalized transferrin and is composed of ligands en route to lysosomes. Incubation of cells in iso-osmotic medium in which Na+ was replaced by K+ inhibited movement of internalized ligands to the lysosome, resulting in ligand accumulation within the late endocytic pathway. The accumulation of ligand was correlated with extensive mixing of sequentially internalized ligands. Although significant amounts of ligand degradation were observed, this compartment was devoid of conventional lysosomal markers such as acid glycosidases. These results indicate changing patterns of vesicle fusion within the endocytic pathway, with a complete loss of temporal ligand segregation in a prelysosomal compartment.  相似文献   

5.
Exocytosis of pinocytic contents by Chinese hamster ovary cells   总被引:19,自引:9,他引:10       下载免费PDF全文
The extent of exocytosis of pinocytic vesicle contents was studied in suspension-cultured Chinese hamster ovary (CHO) cells using horseradish peroxidase (HRP) as a pinocytic content marker. HRP was shown to be internalized via fluid-phase pinocytosis in CHO cells. After an HRP pulse of 2.5-10 min a rapid decrease of 30-50% in cell-associated HRP activity was observed within 10-20 min at 37 degrees C. During this time the loss of cell-associated HRP was accompanied by an equivalent increase in extracellular HRP. After this rapid exocytosis of HRP, the remaining peroxidase activity decreased with a t1/2 of 6-8 h, the known lysosomal half-life of HRP. In pulse-chase experiments HRP was chased into a nonexocytic compartment. Based on cell fractionation and electron microscopic experiments, this nonexocytic compartment was identified as a lysosome and the compartment from which exocytosis occurs as a pinosome. The occurrence of pinocytic content exocytosis in cultured fibroblasts suggests that exocytosis of pinocytic vesicle contents is a general phenomenon.  相似文献   

6.
A sensitive combination of horseradish peroxidase (HRP) tracing and immunohistochemistry was used by Rye et al. [J Histochem Cytochem (1984) 32:1145] in a search for the origins of neurotransmitter- and neuromodulator-containing nerve fibers in brain. In this combination, peroxidase as a marker in immunohistochemistry was thought to yield a homogeneous brown immunoreaction product of diaminobenzidine, different from the black granular reaction product of retrogradely transported HRP, which is visualized by the tetramethylbenzidine (TMB) reaction and subsequent stabilization. A neuron that exhibits both kinds of reaction products in its cytoplasm in sections subjected to combination staining is referred to as a double-labeled cell. With a combined HRP and corticotropin-releasing factor (CRF) immunoperoxidase-antiperoxidase (PAP) method, the first set of experiments showed "false" double-labeled cells in the pyramidal cell layer of rat cerebral cortex, but only rarely in the subcortical areas, possibly because of the use of one enzyme system in two different histochemical procedures. This limitation of the double-staining technique prompted us to demonstrate an alternate combination of HRP tracing and immunohistochemistry in the second set of experiments by employing two previously described independent enzyme systems: HRP as a retrograde tracer and beta-galactosidase as a marker for immunohistochemical demonstration of CRF. A homogeneous blue reaction product indicated immuno-beta-galactosidase staining, and a granular black or brown reaction product labeled retrogradely transported HRP in double-labeled cells in subcortical regions. Neither double labeling nor "false" double labeling was seen in pyramidal cells of cerebral cortex. These findings suggest that application of two independent enzyme systems in a combined HRP and immunohistochemical method may be useful for investigating in origins of peptidergic fibers in brain when the combination of HRP histochemistry and the PAP method appears to be inappropriate.  相似文献   

7.
A method is described for ultrastructural localization of immune complex receptors on the surface of viable peritoneal exudate cells. The technique entails incubation with a soluble complex of horseradish peroxidase (HRP) and specific antibody to HRP at 4 degrees C followed by exposure to diaminobenzidine and processing for electron microscopy. The bound immune complexes were evident as focal deposits of HRP reaction product, adhering closely to the external surface of macrophages with an uninterrupted periodicity varying between 30 and 120 nm. Following incubation with an insoluble immune complex containing a higher proportion of antibody, receptor sites stained frequently, but large aggregates adhered to the cells. Rinsing cells after staining with soluble complexes partially displaced the bound immune complexes. Fixation prior to exposure to immune complexes largely eliminated the binding capacity of the immune complex receptors.  相似文献   

8.
Release of iron from endosomes is an early step in the transferrin cycle   总被引:1,自引:0,他引:1  
Transferrin bound to K 562 cells at 4 degrees C was internalized quickly on temperature shift to 37 degrees C. Endosomes were isolated according to two different procedures. The endosome fraction was shown to be heterogeneous and consisted of two vesicle populations, differing in density properties and iron content. Iron was partially released from endosomes to the supernatant after 3 and 5 min endocytosis. Isolated endosomes, still capable of internal acidification, did not release iron on incubation with ATP. However, endosomes did release iron on incubation with the iron chelator pyridoxal-isonicotinoyl hydrazone. Gel-filtration of solubilized endosomes demonstrated the presence of the transferrin-transferrin receptor complexes, free transferrin and free low molecular weight iron.  相似文献   

9.
Endocytosis of vasoactive intestinal peptide (VIP) and of transferrin (Tf) was comparatively studied in human cancerous colonic HT-29 cells. Cellular depletion in potassium inhibits the internalization of VIP (23%) and to a greater extent (42%) that of Tf. This indicates that clathrin-coated pits are also involved, at least in part, in VIP uptake. The distribution of 125I-Tf- or 125I-VIP-containing vesicles in sucrose gradients revealed low and high density vesicle subpopulations. The low density vesicle subpopulation represented a transient compartment from which incoming vesicles containing N-leucyl-beta naphthylamidase were recycled back to the membrane while those containing beta-hexosaminidase (HA) and ligand were mostly transferred into the high density compartment. Subsequent fusion of the latter with heavy vesicles was demonstrated by the shift of HA and ligand with vesicles that had been prelabeled with horseradish peroxidase (HRP). Simultaneous internalization of Tf-HRP and 125I-VIP showed that both the low and high density vesicle subpopulations comprised of two types of VIP-containing vesicle, as confirmed by the density shift reaction: two-thirds of VIP shifted with the Tf-HRP-containing vesicles to denser fractions and the remaining was found with unshifted vesicles. These findings indicate that the VIP-receptor complex processing in HT-29 cells follows two routes, the major route being common with Tf endocytosis.  相似文献   

10.
Incubation of animal cells with hypertonic sucrose and polyethylene glycol (PEG) 1,000 renders endosomes sensitive in situ to hypotonic shock (Okada and Rechsteiner, 1982). We found that: 1) in vitro endosomes were osmotically insensitive; and 2) hypertonic sucrose inhibited transport from very early endosomes to lysosomes. Endocytic vesicles were labeled by incubating Chinese hamster ovary (CHO) cells for 1-10 min at 37 degrees C with horseradish peroxidase (HRP) and/or fluorescein isothiocyanate-conjugated dextran (FITC-dextran). Cell fractions prepared in 0.25 M sucrose were hypotonically shocked by dilution with 5 mM Na phosphate buffer, pH 6.7, to a final sucrose concentration of 0.05 M. After hypotonic shock, endocytized HRP and FITC-dextran pelleted with membrane while lysosomal hydrolases did not. The HRP activity in the pellet was latent, suggesting that endosomes were resistant to osmotic shock. Uptake in the presence of hypertonic sucrose had little effect on the subsequent osmotic sensitivity of the endosomes. Uptake in the presence of hypertonic sucrose and PEG 1,000 rendered endosomes fragile to cell homogenization. Unexpectedly, the inclusion of hypertonic sucrose in the uptake and chase media inhibited the appearance of HRP in lysosomes. HRP internalized during a 10-min uptake appeared as if it were present in two physically distinct compartments, one accessible to transport inhibition by exogenous sucrose ("very early" endosomes) and the other not ("early" endosomes). After a brief uptake (1-3 min), postincubation of CHO cells in 0.25 M sucrose-containing media completely blocked transport of internalized HRP to lysosomes. This blockage could be partially relieved by cointernalization of invertase with HRP. These results suggest that transport between multiple early endosome populations is sensitive to intraorganellar osmotic conditions.  相似文献   

11.
To examine whether and how internalized plasma membrane components are routed to the compartment of the biosynthetic-exocytic pathway in cultured atrial myocytes, the plasma membrane labeled with wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) was traced electron microscopically by cytochemical detection of HRP. The WGA-HRP label was internalized via a coated pit-small vesicle pathway and reached vacuoles and endosomes by 3 min. Labeled endosomes comprised vacuoles and tubular elements containing reaction product. By 15 min, similar tubular structures containing reaction product accumulated in the area of the trans-Golgi network (TGN). The labeled TGN consisted of interconnected tubular elements, which often connected to atrial granules containing reaction product. In contrast, neither native HRP nor Lucifer Yellow reached Golgi elements or atrial granules. These results suggest that a proportion of the plasma membrane labeled with WGA-HRP is delivered to endosomes, from which tubules might bud off to transfer the tracer molecules to the TGN, where the lectin conjugate and associated membranes are packaged into atrial granules.  相似文献   

12.
The hypothesis that insulin is internalized into the hepatic Golgi apparatus was tested by the diaminobenzidine-shift protocol of Courtoy et al. (1984, J. Cell Biol. 98, 870). Highly purified Golgi fractions were isolated after the coinjection of [125I]insulin and the synthetic ligand, galactose-bovine serum albumin-horseradish peroxidase. Golgi fractions were subsequently reacted in the presence or absence of diaminobenzidine, then subjected to Percoll gradient centrifugation. For incubations carried out in the absence of diaminobenzidine, [125I]insulin-containing components were found at a low density (peak density congruent to 1.042) identical to that of the Golgi marker enzyme galactosyltransferase. However after incubations carried out in the presence of diaminobenzidine, the majority of [125I]insulin-containing components was shifted to a higher density of greater than 1.06 while that of galactosyltransferase remained unchanged (peak congruent to 1.042). These observations indicate that the majority of internalized insulin is not located in galactosyltransferase-containing Golgi components.  相似文献   

13.
Classically, the polymeric immunoglobulin receptor and its ligand, IgA, are thought to be sorted from basolateral early endosomes into transcytotic vesicles that directly fuse with the apical plasma membrane. In contrast, we have found that in MDCK cells IgA is delivered from basolateral endosomes to apical endosomes and only then to the apical cell surface. When internalized from the basolateral surface of MDCK cells IgA is found to accumulate under the apical plasma membrane in a compartment that is accessible to two apically added membrane markers: anti-secretory component Fab fragments, and avidin internalized from the biotinylated apical pole of the cell. This accumulation occurs in the presence of apical trypsin, which prevents internalization of the ligand from the apical cell surface. Using a modification of the diaminobenzidine density-shift assay, we estimate that approximately 80% of basolaterally internalized IgA resides in the apical endosomal compartment. In addition, approximately 50% of basolaterally internalized transferrin, a basolateral recycling protein, has access to this apical endosomal compartment and is efficiently recycled back to the basolateral surface. Microtubules are required for the organization of the apical endosomal compartment and it is dispersed in nocodazole-treated cells. Moreover, this compartment is largely inaccessible to fluid-phase markers added to either pole of the cell, and therefore seems analogous to the recycling endosome described in nonpolarized cells. We propose a model in which transcytosis is not a specialized pathway that uses unique transcytotic vesicles, but rather combines portions of pathways used by non- transcytosing molecules.  相似文献   

14.
Horseradish peroxidase (HRP), a commonly used enzymatic marker for tracing pathways in the central nervous system, can be visualized histochemically with the aid of the chromogen tetramethyl benzidine (TMB). In a recent report, Olucha and collaborators (J Neurosci Meth 13:131, 1985) introduced the use of ammonium heptamolybdate (AHM) as a substitute for sodium nitroferricyanide (SNF) which serves to stabilize the HRP reaction product. This TMB-AHM method of Olucha et al. proves superior to the TMB-SNF method of Mesulam (J Histochem Cytochem 26:106, 1978) in that the reaction does not produce crystalline artifact. For visualization of retrogradely transported HRP, the two methods are reportedly equivalent in sensitivity. In the work reported here, we have compared the sensitivity of the two methods in detecting HRP that was transported anterogradely after intraocular injections of the enzyme in normal adult and neonatal hamsters, as well as in animals with lesions of the superior colliculus or retina. We demonstrate that the TMB-SNF method is decidedly more sensitive than the TMB-AHM technique for visualization of anterogradely transported HRP. This difference in sensitivity is especially evident in regions of sparse projections.  相似文献   

15.
《The Journal of cell biology》1988,106(6):1821-1829
We used a conjugate of transferrin and horseradish peroxidase (Tf/HRP) to label the intracellular transferrin receptor route in the human hepatoma cell line HepG2. The recycling kinetics of [125I]Tf/HRP were similar to those of unmodified [125I]Tf, implying identical routes for both ligands. 3,3'Diaminobenzidine (DAB)-cytochemistry was performed on post-nuclear supernatants of homogenates of cells which were incubated with both Tf/HRP and [125I]Tf, and caused two different effects: (a) the equilibrium density of [125I]Tf containing microsomes in a Percoll density gradient was increased, and (b) the amount of immunoprecipitable [125I]Tf from density-shifted lysed microsomes was only 20% of that of nonDAB treated microsomes. The whole biosynthetic route of alpha 1-antitrypsin (AT), a typical secretory glycoprotein in HepG2 cells, was labeled during a 60-min incubation with [35S]methionine. DAB cytochemistry was performed on post-nuclear supernatants of homogenates of cells which were also incubated with Tf/HRP. DAB cytochemistry caused approximately 40% of microsome- associated "complex" glycosylated [35S]alpha 1-antitrypsin ([35S]c-AT) to shift in a Percoll density gradient. Only part of the density shifted [35S]c-AT could be recovered by immunoprecipitation. A maximum effect was measured already after 10 min of Tf/HRP uptake. The density distribution of the "high mannose" glycosylated form of 35S-alpha 1- anti-trypsin [( 35S]hm-AT) was not affected by Tf/HRP. If in addition to Tf/HRP also an excess of non-conjugated transferrin was present in the medium, [35S]c-AT was not accessible for Tf/HRP, showing the involvement of the transferrin receptor (TfR) in the process. Furthermore, we show that if Tf/HRP and [35S]c-AT were located in different vesicles, the density distribution of [35S]c-AT was not affected by DAB-cytochemistry. Pulse-labeling with [35S]methionine was used to show that [35S]c-AT became accessible to endocytosed Tf/HRP minutes after acquirement of the complex configuration. A common intracellular localization of endocytosed Tf/HRP and secretory protein could be confirmed by immuno-electron microscopy: cryosections labeled with anti-albumin (protein A-colloidal gold) as well as DAB reaction product showed double-labeling in the trans-Golgi reticulum.  相似文献   

16.
We have investigated the effects of the lysosomotropic amines, ammonium chloride and chloroquine, on the delivery of fluid-phase pinocytic tracers to lysosomes in Chinese hamster ovary (CHO) cells. In preliminary experiments, 15 mM ammonium chloride and 0.1 mM chloroquine were found to be sufficient to give maximal protection of endocytosed material from digestion in a lysosome. In the presence of either amine at these concentrations, the generation time of CHO cells was depressed by less than 30% even though selective depletion of lysosomal hydrolases was observed. For cells treated with either amine for 1 or 6 days the amount of horseradish peroxidase (HRP) internalized in a 1-h pulse was approximately 50-70% of that of control. By cell fractionation, cells treated with amine for 2 or 6 days were found to accumulate fluorescein-dextran or HRP in lysosomes. HRP accumulation in lysosomes in amine-treated cells was also observed by electron microscopy. Little exocytosis of lysosomal HRP into the media was observed under any condition. We conclude that in long-term amine-treated CHO cells endocytic vesicle traffic is maintained.  相似文献   

17.
Transport of phagosomal components to an endosomal compartment.   总被引:5,自引:0,他引:5  
The participation of phagosomes in interorganellar protein and membrane exchange is important to the maturation of phagosomes into phagolysosomes. To investigate this process, we have developed an assay to measure protein transport from phagosomes to other vesicle populations. J774-E clone macrophages phagocytosed 125I-anti-dinitrophenol IgG-coated Staphylococcus aureus for 3 min followed by chase for intervals of 0-30 min. Following cell fractionation, the intracellular distribution of radioiodinated protein was assayed. We observed a time-dependent increase radioiodinated protein in a non-phagosome vesicle fraction which displayed endosome characteristics. Concomitantly, radioiodinated protein within phagosomes decreased over the chase period. As assessed via Percoll density gradient fractionation, the phagocytosed radioiodinated protein migrated to both heavy (lysosome density) and light (endosome density) vesicle populations. Characterization of the fusogenic properties of the transport vesicles demonstrated that they are capable of in vitro fusion with early endosomes. Furthermore, this fusion event shares many of the biochemical requirements identified for phagosome-endosome and endosome-endosome fusion. Morphological analysis of phagosome maturation provides additional evidence for phagosome to endosome transport. These results suggest phagocytosed material is transferred from phagosomes to endosomes and then recycled out of the cell.  相似文献   

18.
After receptor-mediated uptake, asialoglycoproteins are routed to lysosomes, while transferrin is returned to the medium as apotransferrin. This sorting process was analyzed using 3,3'-diaminobenzidine (DAB) cytochemistry, followed by Percoll density gradient cell fractionation. A conjugate of asialoorosomucoid (ASOR) and horseradish peroxidase (HRP) was used as a ligand for the asialoglycoprotein receptor. Cells were incubated at 0 degree C in the presence of both 131I-transferrin and 125I-ASOR/HRP. Endocytosis of prebound 125I-ASOR/HRP and 131I-transferrin was monitored by cell fractionation on Percoll density gradients. Incubation of the cell homogenate in the presence of DAB and H2O2 before cell fractionation gave rise to a density shift of 125I-ASOR/HRP-containing vesicles due to HRP-catalyzed DAB polymerization. An identical change in density for 125I-transferrin and 125I-ASOR/HRP, induced by DAB cytochemistry, is taken as evidence for the concomitant presence of both ligands in the same compartment. At 37 degrees C, sorting of the two ligands occurred with a half-time of approximately 2 min, and was nearly completed within 10 min. The 125I-ASOR/HRP-induced shift of 131I-transferrin was completely dependent on the receptor-mediated uptake of 125I-ASOR/HRP in the same compartment. In the presence of a weak base (0.3 mM primaquine), the recycling of transferrin receptors was blocked. The cell surface transferrin receptor population was decreased within 6 min to 15% of its original size. DAB cytochemistry showed that sorting between endocytosed 131I-transferrin and 125I-ASOR/HRP was also blocked in the presence of primaquine. These results indicate that transferrin and asialoglycoprotein are taken up via the same compartments and that segregation of the transferrin-receptor complex and asialoglycoprotein occurs very efficiently soon after uptake.  相似文献   

19.
We developed a new method for the histochemical demonstration of peroxidase. This method, which has a novel reaction mechanism, is based on the oxidation of phenol by peroxidase and coupling of this reaction to the reduction of a tetrazolium salt, with the deposition of an insoluble formazan at sites of enzyme activity. This new method was compared with an established diaminobenzidine (DAB) technique for peroxidase histochemistry and immunohistochemistry. Although both methods identified peroxidase activity in myeloid cells of bone marrow biopsy specimens, there was no interference from red cell pseudoperoxidase activity with the phenol-tetrazolium method, in contrast to the diaminobenzidine method. The detection of cytokeratin using an indirect immunoperoxidase technique was compared with both methods for demonstrating peroxidase activity. The phenol-tetrazolium method gave results similar to that obtained with DAB and appeared to be at least as sensitive as DAB in detecting low amounts of antigen. In addition, the production of a formazan as the final reaction product means that the phenol-tetrazolium method is ideally suited for quantitative peroxidase histochemistry. Therefore, the phenol-tetrazolium method represents a useful alternative method to DAB and for certain applications offers significant advantages over DAB.  相似文献   

20.
《The Journal of cell biology》1989,109(6):2703-2720
A morphological analysis of the compartments of the endocytic pathway in baby hamster kidney (BHK) cells has been made using the fluid-phase marker horseradish peroxidase (HRP). The endocytic structures labeled after increasing times of endocytosis have been identified and their volume and surface densities measured. In the first 2 min of HRP uptake the volume density of the labeled structures increased rapidly and thereafter remained constant for the next 13-18 min. This plateau represents the volume density of endosome organelles and accounts for 0.65% of the cytoplasmic volume (or 6.8 microns 3 per cell). The labeled structures consist of tubular-cisternal elements which are frequently observed in continuity with 300-400 nm vesicles. After 15-20 min of internalization the volume density of HRP-labeled structures again increased rapidly and reached a second plateau between 30 and 60 min of labeling. This second increase corresponded to detectable levels of HRP reaching later, acid phosphatase (AcPase)-reactive compartments. These structures, comprising the prelysosomes and lysosomes, were mostly vesicular and collectively accounted for 3.5% of the cytoplasmic volume (or 37 microns 3 per cell). The absolute peripheral surface areas of the two classes of organelles (endosomes and prelysosomes/lysosomes) were estimated to be 430 and 370 microns 2 per cell, respectively. The volume of fluid internalized in the first 2 min of uptake was five- to sevenfold less than the volume of the compartment labeled in this time. To account for these results we propose that, after uptake from the cell surface, HRP is delivered to, and diluted in, endosomes that are preexisting organelles initially devoid of the marker. With increasing times of endocytosis the concentration of HRP in the early endosomes increases, as more of the marker enters this compartment. An elevation in HRP concentration in endosomes during the early time points was shown directly using anti- HRP antibodies and colloidal gold on cryosections. The stereological values given in the present study, in combination with earlier studies, provide a minimum estimate for both the total surface area of membranes and the rate of membrane synthesis in a BHK cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号