首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tissue vascularization is critical to enable oxygen and nutrient supply. Therefore, establishing expedient vasculature is necessary for the survival of tissue after transplantation. The use of biomechanical forces, such as cell-induced traction forces, may be a promising method to encourage growth of the vascular network. Three-dimensional (3D) bioprinting, which offers unprecedented versatility through precise control over spatial distribution and structure of tissue constructs, can be used to generate capillary-like structures in vitro that would mimic microvessels. This study aimed to develop an in vitro, 3D bioprinted tissue model to study the effect of cellular forces on the spatial organization of vascular structures and tissue maturation. The developed in vitro model consists of a 3D bioprinted polycaprolactone (PCL) frame with a gelatin spacer hydrogel layer and a gelatin–fibrin–hyaluronic acid hydrogel layer containing normal human dermal fibroblasts and human umbilical vein endothelial cells printed as vessel lines on top. The formation of vessel-like networks and vessel lumens in the 3D bioprinted in vitro model was assessed at different fibrinogen concentrations with and without inhibitors of cell-mediated traction forces. Constructs containing 5 mg/ml fibrinogen had longer vessels compared to the other concentrations of fibrinogen used. Also, for all concentrations of fibrinogen used, most of the vessel-like structures grew parallel to the direction the PCL frame-mediated tensile forces, with very few branching structures observed. Treatment of the 3D bioprinted constructs with traction inhibitors resulted in a significant reduction in length of vessel-like networks. The 3D bioprinted constructs also had better lumen formation, increased collagen deposition, more elaborate actin networks, and well-aligned matrix fibers due to the increased cell-mediated traction forces present compared to the non-anchored, floating control constructs. This study showed that cell traction forces from the actomyosin complex are critical for vascular network assembly in 3D bioprinted tissue. Strategies involving the use of cell-mediated traction forces may be promising for the development of bioprinting approaches for fabrication of vascularized tissue constructs.  相似文献   

2.
To learn more about the relationship between extracellular matrix organization, cell shape, and cell growth control, we studied DNA synthesis by fibroblasts in collagen gels that were either attached to culture dishes or floating in culture medium during gel contraction. After 4 days of contraction, the collagen density (initially 1.5 mg/ml) reached 22 mg/ml in attached gels and 55 mg/ml in floating gels. After contraction, attached collagen gels were well organized; collagen fibrils were aligned in the plane of cell spreading; and fibroblasts had an elongated, bipolar morphology. Floating collagen gels, however, were unorganized; collagen fibrils were arranged randomly; and fibroblasts had a stellate morphology. DNA synthesis by fibroblasts in contracted collagen gels was suppressed if the gels were floating in medium but not if the gels were attached, and inhibition was independent of the extent of gel contraction. Therefore, growth of fibroblasts in contracted collagen gels could be regulated by differences in extracellular matrix organization and cell shape independently of extracellular matrix density. We also compared the responses of fibroblasts in contracted collagen gels and monolayer culture to peptide growth factors including fibroblast growth factor, platelet-derived growth factor, transforming growth factor-beta, and interleukin 1. Cells in floating collagen gels were generally unresponsive to any of the growth factors. Cells in attached collagen gels and monolayer culture were affected similarly by fibroblast growth factor but not by the others. Our results indicate that extracellular matrix organization influenced not only cell growth, but also fibroblast responsiveness to peptide growth factors.  相似文献   

3.
There is a growing appreciation of the profound effects that passive mechanical properties, especially the stiffness of the local environment, can have on cellular functions. Many experiments are conducted in a 2D geometry (i.e., cells grown on top of substrates of varying stiffness), which is a simplification of the 3D environment often experienced by cells in vivo. To determine how matrix dimensionality might modulate the effect of matrix stiffness on actin and cell stiffness, endothelial cells were cultured on top of and within substrates of various stiffnesses. Endothelial cells were cultured within compliant (1.0–1.5 mg/ml, 124±8 to 202±27 Pa) and stiff (3.0 mg/ml, 502±48 Pa) type-I collagen gels. Cells elongated and formed microvascular-like networks in both sets of gels as seen in previous studies. Cells in stiffer gels exhibited more pronounced stress fibers and ~1.5-fold greater staining for actin. As actin is a major determinant of a cell's mechanical properties, we hypothesized that cells in stiff gels will themselves be stiffer. To test this hypothesis, cells were isolated from the gels and their stiffness was assessed using micropipette aspiration. Cells isolated from relatively compliant gels were 1.9-fold more compliant than cells isolated from relatively stiff gels (p<0.05). Similarly, cells cultured on top of 1700 Pa polyacrylamide gels were 2.0-fold more compliant that those cultured on 9000 Pa (p<0.05). These data demonstrate that extracellular substrate stiffness regulates endothelial stiffness in both three- and two-dimensional environments, though the range of stiffnesses that cells respond to vary significantly in different environments.  相似文献   

4.
In vitro angiogenesis assays have shown that tubulogenesis of endothelial cells within biogels, like collagen or fibrin gels, only appears for a critical range of experimental parameter values. These experiments have enabled us to develop and validate a theoretical model in which mechanical interactions of endothelial cells with extracellular matrix influence both active cell migration--haptotaxis--and cellular traction forces. Depending on the number of cells, cell motility and biogel rheological properties, various 2D endothelial patterns can be generated, from non-connected stripe patterns to fully connected networks, which mimic the spatial organization of capillary structures. The model quantitatively and qualitatively reproduces the range of critical values of cell densities and fibrin concentrations for which these cell networks are experimentally observed. We illustrate how cell motility is associated to the self-enhancement of the local traction fields exerted within the biogel in order to produce a pre-patterning of this matrix and subsequent formation of tubular structures, above critical thresholds corresponding to bifurcation points of the mathematical model. The dynamics of this morphogenetic process is discussed in the light of videomicroscopy time lapse sequences of endothelial cells (EAhy926 line) in fibrin gels. Our modeling approach also explains how the progressive appearance and morphology of the cellular networks are modified by gradients of extracellular matrix thickness.  相似文献   

5.
TGF-beta at concentrations in the range from 0.1 to 10 ng/ml gave significant growth inhibition of nonmalignant human mammary epithelial cells (HMEC) but not of malignant HMEC grown in monolayer cultures in serum-free medium. However, no growth inhibition of the nonmalignant cells was observed when the cells were cultivated within a type-I collagen gel matrix either adhering to a plastic substratum or floating on the medium. Within floating collagen gels, both nonmalignant and malignant HMEC formed a cell mass having radial extensions, and TGF-beta at 1 or 10 ng/ml prevented the formation of extensions only in the nonmalignant HMEC.  相似文献   

6.
The mechanical properties of the extracellular matrix play an important role in maintaining cellular function and overall tissue homeostasis. Recently, a number of hydrogel systems have been developed to investigate the role of matrix mechanics in mediating cell behavior within three-dimensional environments. However, many of the techniques used to modify the stiffness of the matrix also alter properties that are important to cellular function including matrix density, porosity and binding site frequency, or rely on amorphous synthetic materials. In a recent publication, we described the fabrication, characterization and utilization of collagen gels that have been non-enzymatically glycated in their unpolymerized form to produce matrices of varying stiffness. Using these scaffolds, we showed that the mechanical properties of the resulting collagen gels could be increased 3-fold without significantly altering the collagen fiber architecture. Using these matrices, we found that endothelial cell spreading and outgrowth from multi-cellular spheroids changes as a function of the stiffness of the matrix. Our results demonstrate that non-enzymatic collagen glycation is a tractable technique that can be used to study the role of 3D stiffness in mediating cellular function. This commentary will review some of the current methods that are being used to modulate matrix mechanics and discuss how our recent work using non-enzymatic collagen glycation can contribute to this field.  相似文献   

7.
HT-29 Human colonic adenocarcinoma cells when grown on a plastic substratum were anaplastic in appearance and failed to express any morphological or biochemical features that were characteristic of intestinal differentiation. Growth of HT-29 cells subcutaneously in the flank of immune deprived mice gave rise to morphologically heterogeneous tumors which were poorly differentiated but contained approximately 11% of cells with an intestinal phenotype: these showed features typical of cell polarization with well-developed microvilli, tight junctional complexes and desmosomes between adjacent cells. The transfer of cells from plastic onto either a fixed (designated 'non-released') or floating (designated 'released') type I collagen gel induced some morphological features typical of intestinal differentiation; for example goblet-like cells were observed after 9 days, but biochemical markers of differentiation were expressed only modestly. The continued subculture of HT-29 cells on collagen type I gels, which were either attached to the plastic or floating in the medium, induced some morphological features of intestinal differentiation and changes in the activity of brush border-associated enzymes. Alkaline phosphatase activity was enhanced from 1.3 x 10(-3) mumoles/mg/min for cells cultured on plastic substrata to 2.1 x 10(-3) mumoles/mg/min when gels were non-released, and 2.9 x 10(-3) mumoles/mg/min when gels were released after 12 days of culture. This was confirmed by electron microscopical visualization of alkaline phosphatase activity. Elevated levels of aminopeptidase activity were also observed on day 12 (plastic = 26 milliunits/mg; non-released gel = 41 milliunits/mg; released gel = 36 milliunits/mg). Similarly, changes occurred in the secretion of carcinoembryonic antigen from 0.96 x 10(-2) micrograms/mg/48 hours by cells cultured on plastic to 2.3 x 10(-2) micrograms/mg/48 hours by cells cultured on floating collagen gels. The effects of permitting HT-29 cells to undergo polarization were tested by culture on inert filter inserts: morphological features of intestinal differentiation were observed although this did not occur until after 21 days. These studies show that optimization of the growth conditions of anaplastic cells in vitro may provide cultures more representative of the tumor in vivo. This model system may be useful for cell biological and pharmacological studies of colon carcinoma.  相似文献   

8.
Summary The mechanism of induction of tubular outgrowths in vitro on floating collagen gels and the influence of extracellular factors on this process have been investigated using the clonal rat mammary epithelial cell line, Rama 25. Growth of Rama 25 on such floating gels causes their contraction. Contraction of the gel is accompanied by a 10-fold increase in the number of cells per unit area, a change in cell shape, and a convolution of the epithelial cell sheet. Gels folded over manually show an 11-times higher incidence of tubules along the folds than on the flat surface. Tubular formation begins when cords of cells develop from local proliferations of the cell sheet and become canalized. Tubules follow wrinkles in the gel and branch to yield monopodial, dichotomous, or lobular architecture. Hydrocortisone and insulin, in the presence of serum, stimulate both narrow and thick tubular structures on folded gels, whereas extra additions of 1 ng/ml cholera toxin or 100 ng/ml epidermal growth factor preferentially stimulate thick tubular structures. Floating glutaraldehyde-fixed gels, very thick collagen gels, and collagen gels prepared on the top of rigid steel grids fail to support the formation of tubules, suggesting that flexibility and access of the medium to basal surfaces are important to their genesis. Incorporation of hyaluronic acid into the gel matrix preferentially inhibits the thick tubular outgrowths. Thus, the branching tubular structures generated by Rama 25 can be influenced in different ways by various extracellular factors in the medium and in the gel. During the course of this work E. J. Ormerod was in receipt of a Ludwig Research Studentship.  相似文献   

9.
MDCK cells are grown on various substrates (Thermanox pure, extracellular matrix (ECM), dried or wet collagen type I or type III), on floating collagen and enclosed in collagen gels, and their differentiation behaviour is investigated electron microscopically. The cells grown on ECM or dried collagen (type I and type III) do not show any changes as compared with the controls (Thermanox). Differentiation processes can only be observed when the cells are grown on wet collagen (type I and type III), especially on floating collagen and enclosed in collagen gels. These differentiation processes comprise changes in the cell shape, an increase in the number of microvilli, an increase in the length of the lateral contact zone with the formation of gap junctions and desmosomes, and an increase in the number and size of the cell organelles. A basement membrane only develops in the form of short segments. Moreover, on floating collagen and in collagen gels three-dimensional, organoid structures develop: cell aggregates with central lumina and tubuli. They are formed by cuboid cells that also exhibit indications of differentiation. Basement membrane fragments occur more often and are longer. It can be concluded from these findings that the chemical structure of the substrate does not play the primary role in the described process. It is rather the physical properties, probably the plasticity, that are of significance. Due to this property the cells change their shape and the contact areas increase in size. The establishment of contacts might be the triggering factor for differentiation. Organoid structures with lumina develop when the apical surface comes into contact with other cells or collagen gels. The pronounced tendency towards polarization necessitates a re-arrangement of three-dimensionally growing cells to structures with lumina. The formation of the basement membrane is the result and not the cause of differentiation.  相似文献   

10.
Angiogenesis depends on proper collagen biosynthesis and cross-linking, and type I collagen is an ideal angiogenic scaffold, although its mechanism is unknown. We examined angiogenesis using an assay wherein confluent monolayers of human umbilical vein endothelial cells were overlain with collagen in a serum-free defined medium. Small spaces formed in the cell layer by 2 h, and cells formed net-like arrays by 6-8 h and capillary-like lumens by 24 h. Blocking of alpha2beta1, but not alpha1 or alpha(v)beta3 integrin function halted morphogenesis. We found that a triple-helical, homotrimeric peptide mimetic of a putative alpha2beta1 binding site: alpha1(I)496-507 GARGERGFP*GER (where single-letter amino acid nomenclature is used, P* = hydroxyproline) inhibited tube formation, whereas a peptide carrying another putative site: alpha1(I)127-138 GLP*GERGRP*GAP* or control peptides did not. A chemical inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), SB202190, blocked tube formation, and p38 MAPK activity was increased in collagen-treated cultures, whereas targeting MAPK kinase (MEK), focal adhesion kinase (FAK), or phosphatidylinositol 3-kinase (PI3K) had little effect. Collagen-treated cells had fewer focal adhesions and 3- to 5-fold less activated FAK. Thus capillary morphogenesis requires endothelial alpha2beta1 integrin engagement of a single type I collagen integrin-binding site, possibly signaling via p38 MAPK and focal adhesion disassembly/FAK inactivation.  相似文献   

11.
There is a growing body of work in the literature that demonstrates the significant differences between 2D versus 3D environments in cell morphologies, spatial organization, cell-ECM interactions, and cell signaling. The 3D environments are generally considered more realistic tissue models both because they offer cells a surrounding environment rather than just a planar surface with which to interact, and because they provide the potential for more diverse mechanical environments. Many studies have examined cellular-mediated contraction of 3D matrices; however, because the 3D environment is much more complex and the scale more difficult to study, little is known regarding how mechanical environment, cell and collagen architecture, and collagen remodeling are linked. In the current work, we examine the spatial arrangement of neonatal cardiac fibroblasts and the associated collagen organization in constrained and unconstrained collagen gels over a 24 h period. Collagen gels that are constrained by their physical attachment to a mold and similar gels, which have been detached (unconstrained) from the mold and subsequently contract, offer two simple mechanical models by which the mechanisms of tissue homeostasis and wound repair might be examined. Our observations suggest the presence of two mechanical regimes in the unconstrained gels: an outer ring where cells orient circumferentially and local collagen aligns with the elongated cells; and a central region where unaligned stellate/bipolar cells are radially surrounded by collagen, similar to that seen throughout constrained gels. The evolving organization of cell alignment and surrounding collagen organization suggests that cellular response may be due to the cellular perception of the apparent stiffness of local physical environment.  相似文献   

12.
The formation of microvascular sprouts during angiogenesis requires that endothelial cells move through an extracellular matrix. Endothelial cells that migrate in vitro generate forces of traction that compress (i.e., contract) and reorganize vicinial extracellular matrix, a process that might be important for angiogenic invasion and morphogenesis in vivo. To study potential relationships between traction and angiogenesis, we have measured the contraction of fibrillar type I collagen gels by endothelial cells in vitro. We found that the capacity of bovine aortic endothelial (BAE) cells to remodel type I collagen was similar to that of human dermal fibroblasts—a cell type that generates high levels of traction. Contraction of collagen by BAE cells was stimulated by fetal bovine serum, human plasma-derived serum, bovine serum albumin, and the angiogenic factors phorbol myristate acetate and basic fibroblast growth factor (bFGF). In contrast, fibronectin and immunoglobulin from bovine serum, several nonserum proteins, and polyvinyl pyrrolidone (a nonproteinaceous substitute for albumin in artificial plasma) were not stimulatory. Contraction of collagen by BAE cells was diminished by an inhibitor of metalloproteinases (1, 10-phenanthroline) at concentrations that were not obviously cytotoxic. Zymography of proteins secreted by BAE cells that had contracted collagen gels revealed matrix metalloproteinase 2. Subconfluent BAE cells that were migratory and proliferating were more effective contractors of collagen than were quiescent, confluent cells of the same strain. Moreover, bovine capillary endothelial cells contracted collagen gels to a greater degree than was seen with BAE cells. Collectively, our observations indicate that traction-driven reorganization of fibrillar type I collagen by endothelial cells is sensitive to different mediators, some of which, e.g., bFGF, are known regulators of angiogenesis in vivo. © 1996 Wiley-Liss, Inc.  相似文献   

13.
We examined the role of cell shape, cytodifferentiation, and tissue topography on the induction and maintenance of functional differentiation in rabbit mammary cells grown as primary cultures on two-dimensional collagen surfaces or in three-dimensional collagen matrices. Mammary glands from mid-pregnant rabbits were dissociated into single cells, and epithelial cells were enriched by isopycnic centrifugation. Small spheroids of epithelial cells (approximately 50 cells) that formed on a rotary shaker were plated on or embedded in collagen gels. The cells were cultured for 1 d in serum-containing medium and then for up to 25 d in chemically defined medium. In some experiments, epithelial monolayers on gels were mechanically freed from the dishes on day 2 or 5. These gels retracted and formed floating collagen gels. On attached collagen gels, flat monolayers of a single cell type developed within a few days. The cells synthesized DNA until the achievement of confluence but did not accumulate milk proteins. No morphological changes were induced by prolactin (PRL). On floating gels, two cell types appeared in the absence of cell proliferation. The cells in direct contact with the medium became cuboidal and developed intracellular organelles typical of secretory cells. PRL-induced lipogenesis, resulting in large fat droplets filling the apical cytoplasm and accumulation of casein and α-lactalbumin in vesicles surrounding the fat droplets. We detected tranferrin in the presence or absence of PRL intracellularly in small vesicles but also in the collagen matrix in contact with the cell layer. The second cell type, rich in microfilaments and reminiscent of the myoepithelial cells, was situated between the secretory cell layer and the collagen matrix. In embedding gels, the cells formed hollow ductlike structures, which grew continuously in size. Secretory cells formed typical lumina distended by secretory products. We found few microfilament-rich cells in contact with the collagen gels. Storage and secretion of fat, caseins and alpha-lactalbumin required the presence of PRL, whereas the accumulation and vectorial discharge of transferrin was prolactin independent. There was no differentiation gradient between the tip and the cent of the outgrowth, since DNA synthesis and milk protein storage were random along the tubular structures. These results indicate that establishment of functional polarity and induction of cytodifferentiation are influenced by the nature of the interaction of the cells with the collagen structure. The morphological differentiation in turn plays an important role in the synthesis, storage, and secretion of fat and milk proteins.  相似文献   

14.
When inverted thyroid follicles in suspension culture are embedded in a collagen gel, there is extensive reorganization of the follicle. To identify intermediate stages in the reorganization, a suspension of inverted follicles was mixed with a cold solution of collagen (0.1 mg/ml) in culture medium and the resultant was warmed and allowed to gel. Prior to embedding, the epithelial cells bounding the lumens formed a monolayer of attenuated cells with their microvilli-bearing surface in contact with the medium. The first change noted was a shrinkage of the lumen in many follicles by 18 h. The cells became cuboidal to columnar. Some of the cells had long sheet-like processes extending into the lumen in contact with those of other cells. In late stages of the reorganization, 48 h, the cells were arranged in a compact spheroid. The spheroids contained two different kinds of colloid-filled lumens, possibly of different origins, one a spherical microlumen, the other very long and narrow in section. The peripheral cells of the spheroid had a smooth plasma membrane (without microvilli) in contact with collagen. Although most of the cells in a section had a microvilli-bearing surface forming part of the boundary of a lumen, it is not certain that all cells were in contact with a lumen.  相似文献   

15.
Summary This study deals with the role of the mechanical properties of matrices in in vitro angiogenesis. The ability of rigid fibrinogen matrices with fibrin gels to promote capillarylike structures was compared. The role of the mechanical properties of the fibrin gels was assessed by varying concentration of the fibrin gels. When the concentration of fibrin gels was decreased from 2 mg/ml to 0.5 mg/ml, the capillarylike network increased. On rigid fibrinogen matrices, capillarylike structures were not formed. The extent of the capillarylike network formed on fibrin gels having the lowest concentration depended on the number of cells seeded. The dynamic analysis of capillarylike network formation permitted a direct visualization of a progressive stretching of the 0.5 mg/ml fibrin gels. This stretching was not observed when fibrin concentration increases. This analysis shows that 10 h after seeding, a prearrangement of cells into ringlike structures was observed. These ringlike structures grew in size. Between 16 and 24 h after seeding, the capillarylike structures were formed at the junction of two ringlike structures. Analysis of the αvβ3 integrin localization demonstrates that cell adhesion to fibrinogen is mediated through the αvβ3 integrin localized into adhesion plaques. Conversely, cell adhesion to fibrin shows a diffuse and dot-contact distribution. We suggest that the balance of the stresses between the tractions exerted by the cells and the resistance of the fibrin gels triggers an angiogenic signal into the intracellular compartment. This signal could be associated with modification in the αvβ3 integrin distribution.  相似文献   

16.
Human mammary carcinoma cell line MCF-7 cells grown on type I collagen gels floating in a medium occasionally invaginated into the gels as a cell mass and formed cylindrical or domed structures within it. The 0.05% Triton-insoluble cytoskeleton of such cellular structures sedimented as a white flocculent layer at the boundary between 60 and 70% sucrose layers by ultracentrifugation, and consisted of 4 basal components: 54-kD (beta-tubulin), 45-kD, 42-kD (actin), and 39-kD polypeptides. By contrast, the isolated cytoskeleton of MCF-7 cells grown as monolayers on plastic substratum formed a finer cytoskeletal network with a smaller buoyant density and consisted of two distinct polypeptides with apparent molecular sizes of 80-kD and 65-kD in addition to the 4 basal components found in the morphologically developing cells. The present results indicate that the cytoskeleton of MCF-7 cells forming the three-dimensional cellular structures within collagen gels is lacking in these two polypeptides, and that it has a coarser cytoskeletal network with a greater buoyant density than that of the monolayered cells on plastic.  相似文献   

17.
We investigated the relative roles of basic fibroblast growth factor (bFGF) and transforming growth factor beta-1 (TGF-b) on bovine aortic endothelial cell mitogenesis and morphogenesis using two-dimensional Petri dish cultures and a threedimensional hydrated collagen gel. bFGF alone stimulated endothelial cell proliferation with an EC50 of 0.5 ng/ml. At bFGF levels greater than 2.5 ng/ml, morphologic alterations in confluent monolayers predominated; cells changed from a cobblestone morphology to an elongated cell pattern and showed enhanced migration into a denuded area of a Petri dish. In the three-dimensional model, exposure of endothelial cell monolayers to high bFGF levels stimulated minor cell migration directly under the monolayer but no invasion into the gel matrix. In combination with bFGF, heparin potentiated morphogenic changes, but not mitogenesis. bFGF, modification of the antiproliferative effect of TGF-b in confluent cultures was evidenced by induction of endothelial cell sprouting in response to 0.5 ng/ml TGF-b and 10–20 ng/ml bFGF in two-dimensional cultures. On collagen gels, endothelial cells migrated into the deep layers of the gel in a dose-dependent manner: invasion was maximal at 0.3–0.7 ng/ml TGF-b with decreased invasion at higher concentrations. The optimal collagen concentration that supported cell invasion was 0.075% collagen with the number of invading cells decreasing with increasing collagen gel density. By scanning electron microscopy, invading endothelial cells assumed a fibroblast-like appearance with slender cell extensions. We concluded that bFGF and TGF-b had independent effects on endothelial cell morphology and mitogenesis in culture. In combination at specific doses, these agents stimulated sprouting in the two-dimensional model and cell invasion in a collagen gel model. Morphogenic changes may be the primary event in determining angiogenesis. © 1993 Wiley-Liss, Inc.  相似文献   

18.
19.
The vascular endothelium in vivo is a remarkably quiescent cell layer that displays a highly differentiated and tissue-specific phenotype. Once established in culture, endothelial cells (EC) are phenotypically different from their in situ counterparts, displaying altered gene expression, increased mitotic index, and decreased cell density. To determine whether manipulating the microenvironment of cells in vitro would lead to a more differentiated phenotype, we cultured bovine aortic EC on floating collagen gels. EC cultured to confluence on floating gels for 24 or 48 hr display mitotic indices nearly identical to those of quiescent endothelium in vivo, nearly two log orders lower than that of EC cultured to confluence on plastic, and cell density on floating gels also resembles that observed for endothelium in vivo. Culture of EC on floating gels leads to decreased expression of platelet-derived growth factor-B, fibronectin, and fibronectin isoform ED-B, and increased levels of connexin40, relative to cells cultured on plastic. We conclude that culture of bovine aortic EC under standard culture conditions results in a phenotype reminiscent of development and/or wound healing, and that culturing them on a floating collagen gel leads to a more differentiated phenotype, reminiscent of that observed for large vessel EC in vivo.  相似文献   

20.
Here we describe a method for quantifying traction in cells that are physically constrained within micron-sized adhesive islands of defined shape and size on the surface of flexible polyacrylamide gels that contain fluorescent microbeads (0.2-microm diameter). Smooth muscle cells were plated onto square (50 x 50 microm) or circular (25- or 50-microm diameter) adhesive islands that were created on the surface of the gels by applying a collagen coating through microengineered holes in an elastomeric membrane that was later removed. Adherent cells spread to take on the size and shape of the islands and cell tractions were quantitated by mapping displacement fields of the fluorescent microbeads within the gel. Cells on round islands did not exhibit any preferential direction of force application, but they exerted their strongest traction at sites where they formed protrusions. When cells were confined to squares, traction was highest in the corners both in the absence and presence of the contractile agonist, histamine, and cell protrusions were also observed in these regions. Quantitation of the mean traction exerted by cells cultured on the different islands revealed that cell tension increased as cell spreading was promoted. These results provide a mechanical basis for past studies that demonstrated a similar correlation between spreading and growth within various anchorage-dependent cells. This new approach for analyzing the spatial distribution of mechanical forces beneath individual cells that are experimentally constrained to defined sizes and shapes may provide additional insight into the biophysical basis of cell regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号